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The minimum-energy configurations for impurity displacements along the (111}, {110}, and (100) crystal
symmetry axes were determined for KCl:Li*, KBr:Li*, and CsF:Na*, through calculations based on a
nearest-neighbor Born-Mayer-type model. The off-center configurations were all found to have lower
energies than the centrosymmetric configurations. For all three materials the (111) displacement gave the
lowest and the (100) the highest minimum energy, in agreement with the KCI:Li* experimental results.
The CsF:Na* potential wells were about twice as deep as those in KCl:Li*, whereas the KBr:Lit wells
were only half as deep, indicating rapid tunneling between adjacent minima, which might explain the
absence of an electrocaloric effect in KBr:Li*, The calculated static dipole moments of the (111) con-
figurations were 6.23, 5.90, and 6.72 D, respectively, for KCl:Li*, KBr:Lit, and CsF:Nat. The electric-
field-gradient tensor was calculated at the impurity nucleus position for the three configurations. For the
(111) configuration, the quadrupole coupling constants e2gQ for Li” in KCl and KBr were —0.1196 Mc/sec
and —0.0834 Mc/sec, respectively, and for Na2 in CsF it was 3.965 Mc/sec. An analysis of the expected
quadrupole splittings of nuclear magnetic resonance (NMR) lines for various relative orientations of
applied electric and magnetic fields indicates that such studies can distinguish between different possible
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minimum-energy configurations for these materials.

I. INTRODUCTION

OLID solutions of ionic crystals have recently
attracted considerable theoretical attention. Efforts
have been made to explain macroscopic properties,* such
as the heat of solution, or the ionic conductivity. The
interpretation of other phenomena such as nuclear
resonance? in solid solutions and electron resonance of
paramagnetic ions,? dissolved in ionic crystals to reduce
broadening effects, requires a definitive knowledge of
the ionic configuration about the impurity.*5 Recently,
by the use of several different experimental techniques,
evidence®® has accumulated that a novel type of
lattice distortion occurs when the mismatch in size
between the substituent and replaced ions is large.
Thus when the small Lit ion is substituted for the K+
ion in KCl, experiment suggests that the Lit+ ion shuttles
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around a number of equivalent off-site positions®9:1t
leading to observable dielectric,”? thermal,? and me-
chanical® effects. In this respect, the behavior of the Lit+
ion is similar to that of OH~ and CN~ ions dissolved in
ionic crystals,”® except that the entire dipole moment
which accompanies the introduction of the Li* ion
stems from the resulting lattice distortion and polariza-
tion, whereas the other two solute ions have intrinsic
dipole moments. A first-principle analysis of the origin
of off-center minima is of interest not only for the
interpretation of the experimentally observed effects
but also to test the adequacy of a model of the Born-
Mayer type for this special situation and to obtain a
basis for improvement of the theory.

The two systems which have received the most
attention are KCl:Lit and KBr:Li*. The electrocaloric
experiments of Lombardo and Pohl® indicate that a
dipole moment which can be aligned by an electric
field accompanies the introduction of a Li* ion into
KCl. The magnitude of this dipole moment can be
estimated from the degree of electrocooling. No electro-
caloric effect has been found for Li* in KBr. The
dielectric dispersion measurements of Moriarity and
Sack? provide additional support for the interpretation
that Lit is off center in KCl:Lit. The ultrasonic
propagation and attenuation experiments of Byer and
Sack® argue strongly in favor of impurity displacement
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along a (111) axis. Sack and collaborators have carried
out dielectric dispersion and absorption measurements®
in the KCl:Li+ system which can be interpreted by
assuming a tunneling motion between equivalent (111)
minima at a frequency corresponding to about 1 cm™.
This interpretation is based on the theory for the
dynamics of the problem by Bowen, Gomez, Krumhansl,
and Matthew (BGKM)." The optical absorption exper-
iments of Nolt and Sievers® indicate the presence of
broad absorption bands at 40 and 17.8 cm™, respec-
tively in the KCl:Li* and the KBr:Lit systems. The
KCl:Lit absorption has been interpreted! as represent-
ing the frequency of localized vibrations associated with
the eight potential wells which are, respectively, along
the eight (111) directions.

Several attempts*~1” have been made to explain the
origin of such off-center displacements and further to
understand qualitatively and even semiquantitatively
the observed experimental results. The earliest theoret-
ical analysis was worked out by Matthew.* In his
model the Li* ion was assumed to have a potential-
energy curve expressible as a sixth-order polynomial in
the impurity displacment along a (100) direction.
The surrounding lattice was held rigid and provided a
perfectly cubic (O;) environment at the substitutional
(central) lattice site. The calculations were repeated
for three values of the nearest-neighbor distance from
the central site. The energy of the impurity ion was
calculated by including the Coulomb and repulsive
interactions as well as the electronic polarization
induced in the surrounding lattice by the movement of
of the Lit ion. Matthew’s conclusion was that for both
KCl and KBr the Lit impurity ion could have off-center
minima along the (100) directions. Dienes, Hatcher,
Smoluchowski, and Wilson!®* (DHSW) carried out a
more elaborate calculation in which some of Matthew’s
restrictions were removed. The nearest neighbors were
still required to move radially with respect to the
central site, but three distortion parameters were used
in order to allow a Cy, environment to develop about
the substitutional site. The next-nearest neighbors were
also allowed to relax radially, but only one distortion
parameter was employed. The electronic polarization
of the ions was treated self-consistently. In minimizing
the impurity energy as a function of the Li+ion displace-
ment, which we call {, they found a catastrophic
decrease of the energy with increasing {. There was no
evidence of a minimum. They ascribed this catastrophe
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to the weakness of the Born-Mayer repulsive potential
relative to the large polarization force which develops
at small interionic separations. They then managed to
avoid collapse by fortifying the Born-Mayer potential
with an arbitrary but steep linear term. This fortifica-
tion led to an off-center minimum in the impurity
energy curve along a (100) direction.

The purpose of the work reported in this paper is
threefold. First, in order to apply the Born-Mayer
model, we wanted to study carefully the origin of the
polarization catastrophe found by DHSW and then
remove it, if possible, within the framework of the
Born-Mayer model. A careful analysis of the causes of
the castastrophe has enabled us to find prescriptions for
its removal. Thus, while it is clear that the Born-Mayer
potential is expected to be quantitatively erroneous at
short interionic separations, an equally or perhaps
more important source of error is the somewhat un-
realistic treatment of polarization. The unrealistically
large polarization force can be averted by replacing the
constant anion polarizability with one varying with
interionic separation. The Born-Mayer-Verwey repul-
sive potential, which is stronger and probably more
realistic than the Born-Mayer for interionic separations
much smaller than the nearest neighbor distance 7, in
the perfect crystal, can also eliminate the catastrophe.
This potential has been applied by several authors'® to
problems involving defects in ionic crystals.

A second aim of the present work was to determine
whether the Born-Mayer model with these modifica-
tions could provide a qualitative explanation of the
experimental data. The potential energy was calculated
for impurity displacements ¢ along three symmetry
axes, the (111), (110), and (100) directions of the
rocksalt structure, in order to study if the impurity
energy for these geometries had features indicating
that a (111) minimum was the stablest configuration
and if so, whether there could be significant tunneling
between (111) minima. In addition to KCl:Li* and
KBr:Li*, calculations were also performed on the
isomorphic CsF:Nat system, the Na® nucleus being a
convenient one to explore nuclear quadrupole effects.
We have examined the nuclear quadrupole interaction
for the impurity ion displaced in all three directions to
determine what additional information about off-center
configurations can be obtained from nuclear-resonance
studies.

Finally, a less immediate but more basic purpose of
our work is to pave the way for a more quantitative
treatment of the whole problem by a quantum me-
chanical analysis®® of the interaction between the elec-
trons of the impurity and those of its nearest neighbors.
This is important because the major inaccuracies of the
Born-Mayer type calculation arise from the choice of
the repulsive potential between the impurity ion M

18 }5 J. W. Verwey, Rec. Trav. Chim. 65, 521 (1946) ; A. Scholz,
Phys. Status Solidi 7, 973 (1964).
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and the nearest neighbor X at separations significantly
different from that in the pure M X crystal. In addition,
the treatment of polarization effects in terms of ionic
polarizabilities is oversimplified for the distorted
configurations that accompany the off-center displace-
ment of the impurity ion. A quantum-mechanical
treatment of the interaction between the electrons of the
impurity ion and those of the nearest-neighbor ions
would obviate the need for an assumed repulsive
potential and would automatically yield the polarization
energy between M and X ions. The modifications that
we have made within the framework of the Born-Mayer
model for both the polarization and repulsive effects at
short distances will have their counterparts in a
quantum-mechanical treatment in terms of the hybrid-
ization of the electronic orbitals and the two-center-
exchange and Coulomb interactions. The interactions
between the X ions and their other neighbors could
still be handled using a Born-Mayer form of repulsive
potential since the distant ions are displaced much less
from the normal lattice sites and are not as severely
polarized. A mixed calculation, quantum mechanical for
the interaction of the impurity ion with its nearest
neighbors but Born-Mayer for all other interactions,
would be rather elaborate, so one needs to be assured of
the expected quantitative success of such a calculation.
We believe that the qualitative success of the Born-
Mayer calculations reported in this paper in explaining
the KCl:Li* and KBr:Li* experimental data provides
the necessary assurance.

In Sec. II the model, the choice of repulsive and
polarization constants, and the algebra for deriving the
impurity energy expression will be described. In Sec.
IIT we consider the results of minimization of the
impurity energy with respect to the lattice distortion
parameters and analyze their relationship to experi-
mental results. In Sec. IV the nuclear quadrupole
interaction of the impurity ion will be considered and
the information which such interactions can provide
about the lattice configuration will be discussed.

II. MODEL AND PROCEDURE

To determine the actual direction of impurity
displacement, one needs the spatial variation of the
Impurity energy as a function of the impurity displace-
ment ¢ and accompanying lattice distortion. This
distortion will be different for each inequivalent position
of the Li* ion so that the energy for a given position
must be found by minimization with respect to variation
of the displacements of all other ions in the lattice.
Obtaining the desired energy variation by a continuous
mapping over impurity positions would thus be an
expensive project if more than the immediate surround-
ings of the impurity were allowed to relax and even when
only the nearest neighbors are given complete freedom
for displacement the calculation would still be rather
laborious. The potential-energy variation obtained this
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way would be useful in the analysis of the three dimen-
sional motion of the impurity and its surroundings, but
the quantitative accuracy would be debatable in view
of the inherent weaknesses of a point ion model. We
have therefore chosen the three most plausible displace-
ment directions for examination, namely, the (111),
(110), and {100) axes of a perfect fcc lattice having the
rocksalt structure. An off-center position along these
axes has Cs,, Cyy, and Cy symmetry, respectively. In
these three directions the energy is studied as a function
of the impurity displacement ¢ and the configurations
giving minimum energy are examined. The configura-
tion of lowest energy is taken to be the physically most
likely one. The energy curve in the vicinity of this
minimum would provide the potential for the vibra-
tional spectrum observed by Nolt and Sievers.'?

The geometries corresponding to the three directions
of impurity ion displacement are illustrated in Figs. 1-3.
All displacements are measured in units of the nearest-
neighbor distance 7, in the perfect crystal. The displace-
ments of the nearest neighbors are assumed to be radial
with respect to the displaced position of the impurity
lon. Ideally, a greater degree of freedom should be
allowed, but this choice seemed the best compromise
between the requirements of computational economy
and physical realism. A similar choice of displacement
direction has also been made in earlier calculations of
lattice distortion around impurities.!* In the present
case, it is certainly more realistic than requiring dis-
placements to be toward the substitutional site. Again
in the interests of simplicity and economy, only the
impurity ion and its nearest neighbors were allowed to
relax. We believe that the nearest neighbors are by far
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FiG. 2. Displacements {, 8, and v, and induced electronic dipoles
v, u, and X for the (111) geometry.

the most important agents producing off-center impur-
ity displacement. Unfortunately, it is for the nearest-
neighbor interactions that the Born-Mayer model is
least applicable owing to the large displacements and
polarizations which occur. We thus expect that the
errors made in the evaluation of the nearest-neighbor
contributions will overshadow the error resulting from
neglect of contributions from the rest of the lattice.
Consequently, the additional effort and computer time
necessary for incorporation of more extensive lattice
relaxation did not seem justifiable. Various second-
nearest-neighbor effects were tested to determine if they
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F16. 3. Displacements ¢, 8, v, and 8, and induced electronic dipoles
v, u, \, and w for the (110) geometry.
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might play a critical role. Thus in the (100) case, a
calculation was tried which included repulsion between
all pairs of the displaced ions (including next-nearest-
neighbor repulsive forces) in order to determine if this
could prevent the polarization catastrophe. The results
showed that the catastrophe was not significantly
affected. In the (111) case the influence of the (1,1,1)
cation in KCl:Li* was estimated by allowing it to
move and be polarized. Its influence was found to be
negligible when a mesh size of 0.05 ¢xc1 was used and
¢ was limited to 0.45 (axc: is the perfect crystal nearest-
neighbor distance in KCl). It is conceivable that if the
(1,1,1), (1,1,0) (1,0,1), and (0,1,1) ions all were allowed
to relax and polarize, a significantly larger (111)
impurity-ion displacement might result. But without
a surer treatment of the interactions at large displace-
ment, there is no assurance that such a larger value of ¢
would be any more realistic. The next-nearest neighbors
of the impurity will, however, play an important role
in the calculation of electric field gradients at the
positions of the nearest-neighbor nuclei.# In the present
work, the field-gradient components at the position of
the impurity ion are of most interest, so the neglect of
next-nearest neighbors should be of little importance.
The repulsive potential between a pair of ions
was taken to be of the Born-Mayer form, Rpwm ()
=4 exp(—r/p), where r is the interionic separation.
Ideally, one would like to have a Lit-Cl~ repulsive
potential appropriate for the environment and interionic
separations which exist in KCl:Lit. However, such
information does not currently exist and rather than
make arbitrary adjustments we have simply chosen
the repulsive constants derived from experimental
work on LiCl. In view of this uncertainty, one cannot
express a particular preference for any one of the
various sets of repulsive constants available for LiCl
and KCl. We have employed the repulsive parameters
of Born and Huang,® since these have been used by
several authors in the past. The values are listed in
Table 1. The Born-Mayer-Verwey potential was also
used in the (100) KCl:Lit calculations to ascertain the
influence of a repulsive potential which is stronger than
the Born-Mayer potential at small interionic separa-
tions. The form of the Born-Mayer-Verwey potential is

Remv(r)=A exp(—r/p), 1210
=B+C/r2, r<r. v

The repulsive constants 4 and p are the Born-Mayer
values, while B and C are obtained from them by
imposing continuity of the potential and its slope at
70, the sum of the ionic radii. The repulsive energy was
measured relative to that of a perfect KCl crystal.
Only the repulsive potential between nearest neighbors
was considered.

The polarizabilities were taken from the paper of

20 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954).
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TasLE I. Constants used in the calculation of lattice distortion.

Nearest- Repulsive- Repulsive- Polariz- Polariz-
neighbor  force® torces ability ability
distance parameter parameter of positive of negative

Crystal (A) A (10%erg) p (A)  ionP (A%) ionP (A3)
KCl 3.147 3.63 0.324 1.33 2.96
LiCl 2.570 0.782 0.332 0.029 2.96
KBr 3.293 3.93 0.334 1.33 4.16
LiBr 2.751 0.821 0.348 0.029 4.16
CsF 3.005 8.09 0.284 3.34 0.64
NaF 2.317 1.11 0.288 0.41 0.64

s The repulsive parameters are taken from M. Born and K. Huang,
?ysvgmicaé‘sTheory of Crystal Laitices (Oxford University Press, London,
954), p. 26.
b The polarizabilities were taken from J. R. Tessman, A. H. Kahn, and
W. Shockley, [Phys. Rev. 92, 890 (1953)].

Tessman, Kahn, and Shockley? (TKS). The polariza-
tion catastrophe was found to be avoidable by use of a
variable CI~ polarizability, dependent upon the distance
of the polarizing charge from the Cl~ ion. This choice of
polarizability is reasonable because when a polarizing
charge is inside a polarizable charge distribution it is
much less effective than when it is outside. Quantum-
mechanical calculations of the contributions to the
polarizability from the various electronic states for
both the CI~ion and the isoelectronic argon atom show?
that nearly the entire polarizability of these systems
comes from the 3s and 3p shells. In a semiclassical
model, the 3s and 3p charge distributions can then be
considered to constitute an outer shell in which all the
polarizability of the ion resides. As the Lit ion pen-
etrates this shell it will not be able to so completely
polarize the shell as when it is outside. Thus a varying
Cl~ polarizability was chosen, which is just the TKS
polarizability for Li*-Cl~ separations greater than the
sum of the jonic radii and reduces to zero for very short
interionic separations. For simplicity, a linear variation
was taken for the intermediate region:

a'(r)=0, r<n
r—ri
=< )acr, n<r<r (2)
Yo— 71
=aQac1”, r>7g

in which 7, is the sum of the ionic radii and 7, is the
radius of the outermost maxima (nearly coincident)
of the 3s and 3p anion valence electron wave functions.2s
In the actual calculations, the Cl~ ion was polarized by
both the Lit ion and the rest of the lattice. Let E; be
the field due to the Li*+ ion and E, that due to the rest
of the lattice and suppose the Lit ion to be in the
intermediate region (r;<7<ro). Then ay=a'(7) is the
polarizability of the fraction 4; of the anion inside the
radius 7, and as=aci-—a/(7) is the polarizability of the

2 J. R. Tessman, A. K. Kahn, and W. Shockley, Phys. Rev.
92, 890 (1953).

22 M. Yoshimine and R. P. Hurst, Phys. Rev. 135, A612 (1964).

% D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A156, 54 (1936).
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remainder of the anion, 4,. The dipole induced in 4, is
w=azE, and that induced in 4, is yi=a1(E1+E»), so
that the total dipole moment is y=u;+u,. The corre-
sponding self-energies are

Ur= a3 (Byt+Eo)?= o/ ()3 (Eit E2)?, 3
Us=%0:E2=%[aci-—d/ (r)JE2. 4)

The total self-energy can then be written
U= Ut Us=[p?/2d (1) JH3usLaci—' (1)]. ()

If the Li* ion is completely outside the Cl~ ion, then
o ()=acr, s0 a=0, ar=acr, p2=0, p=p;, and
U=p2/2ac1-, as would be expected. By this partition of
the polarizability, the polarizing fields due to both the
Lit+ jon and the surrounding ‘“‘nonpenetrating” lattice
are then taken into account more realistically.

The dilute solid solution will be idealized as the
limiting case of a lattice with a single impurity ion. In
accordance with the conventions adopted in earlier
literature on solid solutions, the energy will be measured
relative to that of the perfect crystal and will be divided
into three parts: the electrostatic energy AE, arising
from Coulomb interaction between all point charges;
the polarization energy AE, representing the sum of
contributions from dipole-dipole interactions, dipole-
monopole interactions and from the self-energies of the
dipoles; and finally the repulsive energy AE, from the
nearest-neighbor repulsive interactions.

The ions of the lattice for the three cases displayed
in Figs. 1-3 are grouped into two sets: D, the set of
ions which are displaced, and L, the surrounding fixed
ions of the lattice. The impurity ion will be designated
by O'. The D ions were allowed to polarize but the
surrounding L ions were assumed to be nonpolarizable.
Since the impurity O’ has the same charge as the ion it
replaces, long-range polarization effects are expected
to be small. Further, we use P to denote the set of
dipoles associated with the ions of D, and primes will be
used to indicate that the ion in question is displaced
from the lattice site.

The electrostatic energy can be separated into three
parts arising from three types of point-charge interac-
tions: D<> D, D<> L, and L<> L, where no “self-
interactions” are considered. The third type can be
disregarded since it is independent of the displacements.
The set of position vectors r; of the lattice sites of the
D ions will be denoted by Rp, and the set of displaced
positions by Rp’. Then the change in electrostatic
energy AE, resulting from displacement of the D ions
from lattice sites Rp to positions Rp is given by

AE,=E(Rp/)—E.(Rp),
=3 X QKQJ(l/rJ'K—'l/fJK)

JED KEL
+ 2 2 qugx(/ryx—1/r;5), (6)
g

and
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in which g is the charge onion J, ryx= |ty—rk|, trx
= |rp—1g/|, etc. All distances are measured in units
of the nearest-neighbor distance 7, of the perfect lattice.
Charges are measured in units of the proton charge |e|.
To convert the expression for AE, into a more usable
form, we superpose upon the distorted crystal virtual
charge pairs (#¢s). These pairs are placed at the lattice
sites Rp left vacant by the lattice distortion. Half of
these superposed charges will have the right sign to
restore the perfect lattice, and this set of charges will
be denoted by Qp; the other half, denoted by the
collective name (Qp, will also be located at the Rp
sites, but will have signs opposite to those of the corre-
sponding D ions. Then, after some manipulation (shown
in the Appendix), Eq. (6) can be split into a sum of
interactions D <> D, D <> (Qp, Op <> Op, and a second
sum over interactions ¢; <> Ly, where the sum is over
the D ions and L, represents a nearly perfect lattice
whose one imperfection is the absence of ion J. Then

‘ o111
AE,=3 X (IJQK( -+ —~>
7.

jSIngED K YJE YK VUK

qm

+2X ¢ X

JED  MELiryy

M

The last summation (over M) gives the potential in the
vicinity of site r; due to the surrounding perfect lattice
L. This potential, which we will write as V(¢5,04,6.),
is measured with respect to the Madelung potential at
the lattice site ry (£7=0). It can be evaluated by
various means such as those of Ewald,* Evjen or
Nijboer and de Wette.?” The Madelung potential itself
is notoriously slow in its convergence, but the change in
potential which occurs when the field point is moved
off-center is much more rapidly convergent. One can
take advantage of the symmetry of the cubic crystal
and expand V; (£7,05,¢7) in the following manner:

Vilentsg)= 3 ro®0sgs),  ®)
where -
e (O,6s)= Zl: a"Ym(05,67) s ©
and ) " V(60,60
T X" (04,04
azm=2l+1 a ! :,iz+1 , (10)

in which the sum on ¢ is over the surrounding perfect
lattice of charges ¢;. We have excluded the /=0 term
since it just gives the Madelung potential. Cubic
symmetry restricts the summation over [ to I=4, [=0,

24 P, P, Ewald, Ann. Physik 64, 253 (1921); C. Kittel, Introduc-
tion to Solid State Physics (John Wiley & Sons, Inc., New York,
1966), 3rd ed., p. 95.

% B, R. A. Nijboer and F. W. de Wette, Physica 23, 309 (1957).
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and higher even terms. The /=4 and /=06 terms give
the potentials which have commonly been used in
crystal field calculations for paramagnetic ions.?® Since
the coefficients @4 depend on lattice sums falling off as
#—3, the convergence is expected to be much better than
for the 1/ Madelung potential. This convergence is
even better for higher / coefficients. The Evjen method,
which for a sum over the first two Evjen cubes yields
the Madelung constant to three significant figures,
should give the /=4 and /=06 coefficients to at least
four or five significant figures when a two-cube process
is used. In our calculations the contributions of these
lattice potentials V1, ordinarily constitute less than 109,
of the total electrostatic energy. The /=6 term was
found to be only 109, of the /=4 term and higher-order
terms would be correspondingly less significant. We will
therefore keep only the /=4 and /=6 terms in V.
Since the potential V1, will be referred to frequently we
write it down both in spherical polar and Cartesian
coordinates:

VL(£)0:¢)
=7/16(—1.0275)£ 35 cos'—30 cos?+3
15 cosde sin®d 43 /64(—1.3339)£9
X [231 cos®®—315 cos*9+105 cos®—35
—21 cosde sin®d(11 cos®9—1)], (11)

and

VL (xayyz)
= 35/4(—1.0275) [wt+yi+ 2 — 31— 21/2(— 1.3339)
X {20490+ 28415 /4 wty*+ a2yt ata?
+a2gi -yt 9224 ]— (15/14)r%) . (12)

Expressions (11) and (12) apply in the vicinity of a
vacant cation site, giving Vy due to the surrounding
perfect crystal. For an anion site an over-all negative
sign has to be introduced on the right-hand side of
expressions (11) and (12). The numbers in parentheses
would be just —1 if only the nearest neighbors were
summed over in the evaluation of the coefficients. The
final expression for the electrostatic energy is

1 1 1 1\
8B E 5 quge( )

JED KED ry'kr YK YrK TIK
J#K

+ X qiVilErbrnes). (13)
JED

The polarization energy can be broken down into
four categories: P« P, the dipole-dipole interaction;
P <> D, the interaction of the dipoles with the displaced
ions; P« L, the interaction of the dipoles with the
lattice ions L; and the self-energies of the dipoles. Using
the same technique of superposition of virtual ion pairs
(Op+Qp) at the vacated sites Rp which was described

26 W. Low, Paramagnetic Resonance in Solids (Academic Press
Inc., New York, 1960). See also R. S. Knox and A. Gold, Sym-
metry in the Solid State (W. A. Benjamin; Inc., New York, 1964).
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earlier in conjunction with the electrostatic energy, one
can restore the perfect lattice around a given vacant
site ry and find the interaction of the dipole with the
lattice potential Vi (£5,8s,65). A compensating sum
over P« Qp interactions must then be included, but
is simple to carry out since it is over a finite number of
dipoles and charges. Thus the ion-dipole interactions are
reduced to the sum of three types of terms: P« D,
P« (Qp, and ws<> V(J), where J ranges over the
D ions. On adding the dipole-dipole energy and dipole
self-energy to the ion-dipole energy, the total polariza-
tion energy is given by

11
AE,= % ZquK'V< ——)

Ke&D J&ED YK'J' YE'J
K#J

s uK
+ 2w VViErbnen)+ X2 X l:

JED Kep JepLryigd
S x27 J

2

1
+¥ =

JED 20y

—~3(UJ‘1'J'K’)(UK'[J'K'):| (14)

rJ’K’5

The repulsive energy change is obtained by taking the
difference between the pairwise sum of nearest neighbor
repulsive energies in the distorted KCl:Li* lattice and
the perfect KCl lattice. On carrying out this difference
procedure one ends up with a summation over repulsive
interactions associated with the set of ions D and their
nearest neighbors N ;:

AE,= 3 3 R(ryx)— 2 X R(rix).

JED KENy JED KENS

(15)

In Eq. (15), R(rsx) refers to the pairwise repulsive
potential in the host lattice; R(ryx)=A4 exp(—7sx/p)
for the Born-Mayer approximation. In the first summa-
tion, one uses host lattice repulsive potentials in inter-
actions not involving the impurity ion O’, but for
interactions involving 0’, the Born-Mayer parameters
of the impurity-halide perfect crystal are used. A corre-
sponding expression holds for the Born-Mayer-Verwey
case.

The total impurity energy is then

AE=AE,+AE,+AE,. (16)

We next turn to the process of minimization of AE.
The dipole moments in the energy expression AE appear
only as linear and quadratic terms. By differentiating
this expression with respect to each of the dipole
moments and setting the results equal to zero, one can
obtain a system of equations which are linear in the
dipole moments and which are necessary conditions for
an extremum in the energy relative to variation of the
dipole moments. The solutions give the dipole moments
as functions of the displacement parameters ; (shown
in Figs. 1-3). In order for these solutions to yield a
minimum in the energy relative to variation of the
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moments, it is necessary for the determinant
A?AE
| M 3| = (17
OuOpji

and its principal minors to be greater than zero. For
all sets of displacement parameter values ; investi-
gated, this condition was met. The dipole moments were
thus found in terms of the displacement parameters ;
and AE could then be expressed completely in terms of
these parameters. This reduced the problem to one
involving only four minimization parameters in the
(100) and (110) calculations and three in the (111) case.
This procedure is equivalent to a self-consistent evalua-
tion of the dipole moments given by the equationst

(18)

The equilibrium ‘configuration was then determined
by a direct minimization of AE(wr;). The numerical
minimization procedure was essential, since a simple
expansion in quadratic powers of the impurity displace-
ment parameter { which would have led to linear
equations on minimization, cannot yield off-center
displacement. The minimization procedure itself was
straightforward: the energy was evaluated for (10)7
ionic configurations corresponding to likely values of
the p displacement parameters, and the lowest energy
for each value of the impurity displacement ¢ was
plotted. The number of parameters p was four in the
(100) and (110) cases and three for the (111) calculations.
The procedure was first carried out for mesh size
increments of 0.05 7, in the parameters. Subsequently,
the mesh size was reduced to 0.01 #,. Still further
resolution could have been gained, but it was not felt
that the results would be of any greater quantitative
significance. In the KBr:Li* case a 0.05 7, mesh gave
the same minimum energy, —0.673 eV, for all three
directions and a mesh size of 0.01 7, was necessary in
order to distinguish between the energy minima for the
three directions.

I»Li=01¢'Ei(7r1,"' ",Ili,"')~

III. RESULTS ON EQUILIBRIUM CONFIGURA-
TIONS AND DIPOLE MOMENTS

The results for the three impurity-displacement
directions are given in Table II for the KCl:Lit
KBr:Lit, and CsF:Na* systems and are plotted in
Figs. 5-7. In all three systems the (111) axis has the
deepest minimum, the (100) axis the most shallow,
and the (110) a minimum which is intermediate. One
can attempt to justify this order of the minima in the
three directions as follows. The components of electric
fields due to “4”” ions (see Figs. 1-3) in the displacement
direction are in the ratio of 1:1/v2:1/V3 for (100),
(110), and (111), respectively, for small displacements.
However, the number of 4 ions in the three cases are
in the ratio of 1:2:3. Taking the products of these
two factors, one obtains the ratio 1:v2:v3, While there
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Tasre II. Displacements and dipole moments of minimum energy configurations.

Total
Displacement  Dipole moment  Total energy  dipole moment
Material Direction Ion type Number (7a (le]ra) (eV) (debye)
KCl:Li*+ (111) (0,0,0) 1 0.19 0.0005 —0.780 6.23
1,0,0) 3 —0.09 0.0216
1,0,0) 3 0.01 —0.0284
(110) (0,0,0) 1 0.16 —0.0005 —0.772 5.53
1,0,0) 2 —0.10 0.0266
0,0,1) 2 —0.04 —0.0132
(1,0,0) 2 0.01 —0.0285
(100) (0,0,0) 1 0.12 0.0005 —0.762 4.14
(1,0,0) 1 —0.10 —0.0322
(1,0,0) 1 0.01 —0.0295
0,1,0) 4 —0.05 —0.0120
KBr:Lit (111) (0,0,0) 1 0.17 0.0004 —0.684 5.90
(1,0,0) 3 —0.08 0.0221
(1,0,0) 3 0.00 —0.0329
(110) (0,0,0) 1 0.14 —0.0002 —0.680 4.81
(1,0,0) 2 —0.09 0.0132
(0,0,1) 2 —0.04 —0.0129
1,0,0) 2 0.00 —0.0281
(100) (0,0,0) 1 0.10 0.0003 —0.675 3.56
(1,0,0) 1 —0.08 0.0268
(1,0,0) 1 0.00 —0.0328
0,1,0) 4 —0.05 —0.0126
CsF:Na* (111) (0,0,0) 1 0.21 0.0094 —0.952 6.72
(1,0,0) 3 —0.13 0.0070
(1,0,0) 3 0.03 —0.0081
(110) 0,0,0) 1 0.18 —0.0138 —0.936 5.58
(1,0,0) 2 —0.14 0.0084
0,0,1) 2 —0.03 —0.0040
(1,0,0) 2 0.03 —0.0073
(100) (0,0,0) 1 0.12 0.0102 —0.886 4.37
(1,0,0) 1 —0.15 0.0118
1,0,0) 1 0.02 —0.0076
0,1,0) 4 —0.04 —0.0036

is no direct experimental evidence to check the relative
depths of the (100) and (110) minima, the fact that
they both come out more shallow than (111) is in
qualitative agreement with the ultrasonic measurements
of Byer and Sack.®

In the (100) KCl:Lit calculations using the Born-
Mayer potential and a constant polarizability, the
minimum was found to be shallow with a depth of
0.013 eV relative to the on-site energy and was found at
a reasonable distance, {=0.12, off-center, but for larger
values of { a catastrophic decrease of the energy
occurred which resembled that found by DHSW in
their original calculations for KCL:Lit (100). As
explained in an earlier paper,'” the catastrophe was
found to be avoidable by use of the varying anion
polarizability described in Sec. II. The results of the
(100) KCl:Lit calculations are plotted in Fig. 4(a).
It is seen that use of either the variable anion polariz-
ability or of the Born-Mayer-Verwey potential will
eliminate the catastrophe, but that adoption of the
Born-Mayer-Verwey potential results in a steeper
energy curve than use of the varying polarizability
does. An important point is that all of the curves which
incorporate polarization have nearly identical minima

which demonstrates that the minimum is insensitive to
the measures employed to remove the catastrophe.
To demonstrate the general nature of the polarization
catastrophe, the lattice energy in pure KCl was calcu-
lated as a function of the (100) displacement of a single
K+ ion. In Fig. 4(b) the (100) KCl:K* results are
plotted for the case of Born-Mayer repulsion with TKS
polarizabilities (curve A’) and with zero polarizabilities
(curve B’). The KCllattice is thus seen to be metastable
according to the unmodified (constant polarizabilities)
Born-Mayer model, although the minimum predicted
is at the lattice site.

We encountered no catastrophe in either the (111)
or (110) calculations for KCl:Li*, KBr:Li*, and
CsF:Nat, out to impurity ion displacements of §<0.45
7. One could suspect that the absence of catastrophe
may partly be attributed to the exclusion of the (1,1,1)
ion from consideration in the (111) calculations and
correspondingly the (1,1,0) ion in the (110) calculations.
In the (111) KCl:Lit case, an estimate of the influence
of the approached (1,1,1) ion was made by allowing it
to relax and polarize as freely as the D ions, and again
no abrupt polarization increase occurred for <0.45 7,.
These results can be rationalized by examination of the
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geometries of the three displacement direction con-
figurations, shown in Figs. 1-3. Thus in the (111)
case, the three 4 ions can effectively shield the (1,1,1)
ion from the approaching impurity, thus safeguarding
against a polarization catastrophe; a similar argument
applied to the two 4 ions in (110) geometry. Since for
small displacements, the O’C directions are effectively
perpendicular to the (100) displacement directions 0’4,
the C ions cannot substantially shield the (1,0,0) ion
from the impurity and are ineffective in preventing
polarization catastrophe.

Since the (111) and the (110) minima are deeper than
the (100), it appears reasonable that some sort of
tunneling mode® may enable the impurity ion to
shuttle back and forth from say the [111] minimum to
the [111] minimum by a route which is contained in
the x=y plane, and which passes through the [110]
minimum. The KBr:Li* minima for all three directions
were shallower than those of the KCl:Lit+ system. In
the calculations carried out over a 0.05 7, mesh, the
energies of the three minima were nearly identical, the
differences being less than 0.001 eV. For the 0.01 7,
mesh calculations, the energy differences were uniformly

(b)
-.52 2.6 B'
~.56 2.2
< -60 1.8
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Fi16. 4. Lattice energies as a function of the displacement of
the impurity ion. (a) KCl:Li* energies for the (100) cases:
A—Born-Mayer repulsion and fixed Cl1~ polarizability ; B—Born-
Mayer repulsion but no electronic polarization; C—Born-Mayer
repulsion and varying CI~ polarizability ; D—Born-Mayer-Verwey
repulsion and-fixed CI~ polarizability; E—Born-Mayer-Verwey
repulsion and varying anion polarizability. (b) KCl:K* energies
for two corresponding (100) cases: A’—Born-Mayer repulsion
and fixed Cl~ polarizability ; B/—Born-Mayer repulsion and no
electx(';)r}&if: polarization. The polarization catastrophe occurs in
A an .
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F16. 5. Comparison of the KCl:Li* lattice energy curves for
impurity displacements along three symmetry directions: A’'—
(111) case; A”"—(110) case; C—(100) case [which is identical
to curve C in Fig. 4(a)]. The (111) and (110) results plotted here
are for Born-Mayer repulsion and fixed Cl~ polarizability. No
polarization catastrophe occurs.

very nearly one-half the corresponding values in
KCIL:Lit, as also were the depths measured relative to
the energy of the centrosymmetric configuration. All
barriers for angular motion in KBr:Li* therefore appear
to be a factor of two lower than for KCI:Lit+. Thus the
tunneling frequency between adjacent (111) directions
for KBr:Lit is expected to be substantially larger than
for KCI:Lit. This, at least approximately follows the
experimental trend, since no electrocaloric effect has
been observed in the KBr:Lit system.$

The results for CsF:Nat, on the other hand, suggest
that tunneling will be less pronounced, since the
barriers are about twice as high as those calculated for
KCl:Li*, and the mass of the Na* ion is about three
times that of the Li* ion. One might therefore expect
the electrocaloric effect to be more pronounced and
perhaps observable at higher temperatures than liquid
helium.

The calculated dipole moments for the entire dis-
torted lattice are given in Table II, for each material
and each geometry. In KCl:Lit, the dipole moment
along the (111) direction for ¢ along (111), is 6.23 D.
This is only in order of magnitude agreement with
Lombardo and Pohl’s value of 2.54 D which was
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Fie. 6. Comparison of
the (111) results for the
KCl:Li* and KBr:Li* sys-
tems, illustrating the greater
depth of the KCl:Li* min-
imum. In Fig. 7 the still
deeper Na*:CsF (111) en-
ergy curve is plotted. The
impurity displacement { is
measured in units of 74, the
perfect crystal nearest
neighbor distance.
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derived using a Lorentz local field. Our dipole moment
value comes mainly from the ionic displacements of the
Li* ion and its nearest neighbors, the contribution from
the electronic dipoles being in some cases an order of
magnitude smaller.

One can make a rough estimate of localized mode
frequencies by fitting our calculated energy curves to
parabolic (harmonic oscillator) potentials. For KCl: Lit
we find that for oscillation along the (111) direction,
the potential can be fitted quite well in the form V()
=zka? where k=mw? and «x is the displacement from
the minimum. Using for the mass of the oscillating
particle the lithium mass, we get v/c= (1/2mc) (k/m)*
=154 cm™t. The analogous frequenciy for KBr:Lit is
119 cm™. These values are considerably higher than
the experimentally observed absorption frequencies®®
of 40 and 17.8 cm™. An even rougher estimate can be
made of the frequency of vibration transverse to the
(111) direction. The presumed potential well extends
from the (111) minimum to the adjacent (110)
minimum; we assume it to be a harmonic oscillator
potential centered at the (111) minimum and determine
its curvature by a fit to the (110) energy. This gives for
the KCl:Lit system a vibrational frequency of 72 cm™!
and for KBr:Lit 51 cm™. These frequencies are closer
to the experimental values and suggest that a precise
treatment using a realistic potential may give values
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Fie. 7. Lattice energy
curve as a function of
impurity displacements ¢
for CsF:Na*, with ¢ along
the (111) direction. The
energy scale is the same as
that of Fig. 6.
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near those observed experimentally. For this one needs
the local potential about the (111) minimum fairly
accurately. Tunneling frequencies could then be found
through the procedure of Bowen, Gomez, Krumhans,
and Matthew,° using three-dimensional harmonic-
oscillator functions appropriate to the energy curves.
We do not believe that our present energy curves are
sufficiently quantitative to justify carrying out such a
procedure, even though doing so might enable us to
adjust the results to agree with experiment and thus
work back to a better repulsive potential. As pointed
out in the Introduction, the basic aim of our program is
to obtain a first principle quantitative interpretation of
the properties of these systems. We feel that quantita-
tively reliable results would require quantum mechan-
ical calculations involving the explicit inclusion of
covalency and overlap effects. Since the aim of our
present semiclassical work was primarily to test the
over-all features of the model, we have chosen not to
parametrize the repulsive potentials to fit experimental
results.

In summary, for our simple model the (111) axis
falls out naturally as the displacement direction, the
KBr:Lit potential barriers are found to be substantially
less than those of KCl:Lit, and the KCl:Li* dipole
moment value is a little over twice the experimental
value. These results lend credibility to the semiquanti-
tative validity of the point-ion model.
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IV. NUCLEAR QUADRUPOLE INTERACTION
OF THE IMPURITY NUCLEUS

In this section we analyze nuclear quadrupole interac-
tion effects due to the distortion of the lattice in the
vicinity of the Li* ion. Both the impurity nucleus and
neighboring ion nuclei should be subject to quadrupole
effects arising out of the lattice distortion and polariza-
tion. The impurity nucleus is of critical importance
since it would have no quadrupole interaction if it
remained in a position of octahedral symmetry while
the neighboring nuclei would still display quadrupole
effects.* We therefore concentrate on the quadrupole
interaction of the impurity nucleus.

The Hamiltonian for the interaction between the
nuclear quadrupole moment and the potential field in
the crystal can be written as?*”

Ho=¢’Q:VE=¢*3 04;(VE);, (19)
where
62
(VE)ijj=———, (20)
ax,-ax,-
and
eQ
Qui=————3 (L1111 ;)—517], (21)

T I@I-1)

in which 4, j stand for the Cartesian coordinate axes
and the scalar quadrupole moment Q is related to the
nuclear wave function :

Q= / W11 (47/5) 230 12V 50 (0,000 ¥ 1, ym—1dTw. (22)
7 :

In a principal-axis system for the field-gradient
tensor, the off-diagonal components are zero:
Vg;'y' = Vylzr = Vz' = O . (23)

The usual conventions for the labeling of the principal
axes is that

I Vx':c' I S I Vy’y’ l S l Vz’z’ I . (24)
Since Laplace’s equation gives
Voot Vy'y’+Vz’z’=0; (25)

only two independent components remain which can be
expressed in terms of the two quantities ¢ and »:

qg=Vaye, 7= (V:c’x'_ Vy’y’)/Vz'z’ . (26)

We next have to decide on the principal-axis systems
27 M. H. Cohen and F. Reif, in Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957),
Vol. 5.
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for the geometries of interest and calculate the approp-
riate ¢ and 7.

The choice of principal axes is often dictated by
symmetry. Cohen and Reif?” have summarized the
rules of selection of principal-axis orientation. From
consideration of the reflection and rotational symmetries
characterizing the geometries of Figs. 1-3, the unit
vectors e; for the principal axes with 7=1, 2, 3 corre-
sponding to &/, 9’, and &’ are given by

€ €9 €3
[111] 132(=101) ®7G-10) 1M3(AL1),
[110] 1/v2(1,1,0) (0,0,1) 1/v2(1,—1,0),
[100) (0,1,0) (0,0,1) (1,0,0),
27

where the components in (27) are with respect to the
coordinate system illustrated in Figs. 1-3. The direction
cosines which are most useful in the calculation of
principal components are given in Table III.

For the calculation of the field-gradient components
at the displaced impurity sites, it is again convenient
to use a superposition of equal and opposite charges
(Qp+0p) as was done in Sec. II. The surroundings of
the impurity ion can then be split up into two parts:
(1) a perfect lattice; and (2) a combination of displaced
Dions, P dipoles, and charges Qp (of opposite to normal
sign) at the lattice sites. The field gradient V% due to
the perfect lattice, is termed the lattice contribution and
is obtained by differentiation of the appropriate lattice
potential V1, which was introduced in Sec. II. From
the cubic symmetry of the perfect lattice, one expects
zero field gradient at the substitutional site, but not at
the displaced position of the impurity. The contribution
from D, P, and Qp is denoted by V;;¥ and is referred to
as the distortion contribution. For purposes of a more
detailed understanding of the origin of the field gradient,
we decompose V¥ into two parts: V¥ due to the
neighboring monopoles, and V2 due to the dipoles.

On differentiating the expression for V5 in Eq. (12)
at a point {= (x,9,2) away from the lattice site, one

TasLE III. Direction cosines between principal-axis systems
and crystal cubic axes.

[111] [110] [100]
[ —1/V2 1/v2 0
Qgry 0 1/Vv2 1
Qgp'z 1/\/—2_ 0 0
Qyrg %\/% 0 0
Qyry -3 0 0
Qyre V3 1 1
[e2 222 1/\/5 1/\/? 1
Qry 1/v3 —1/V2 0
[ 1/V3 0 0
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Fic. 8. Example of the principal axis (double-primed) system
used in evaluating the electric field gradient at the displaced
impurity position (shown here to be on the [100] axis), due to a
displaced anion, its dipole ¥, and the virtual positive charge on
the respective lattice site. The system is axial so that Virmr

—-V,Iuvn=—- e

obtains

%V 12
Vil =——=—A [ 302—1r2]

axiz 5

+ 1SBL{2xz4—I—3xq,2 (xf—l—xﬁ)
12 3 -
+35 (i) —7951:27’2_;"4J , (28)

oV, —24
Vijl'= =—A LYXj

axiax,- 5

6
+3OBLI:xi3xj+xixj3“;xixﬂz}a (29)

where (4,7,k) is a cyclic permutation of (1,2,3), 4.
=—28.9906, and B.=14.006. Equations (28) and (29)
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are with respect to the crystalline axis system, which
we can then transform to the appropriate principal-axis
system by using
Vip=2_ aviay;Vi, (30)
%]

where a;; denotes the direction cosines in Table III.

The distortion terms V¥ involve summations over
only a finite number of point charges and electronic
dipoles. Our choice of radial displacements and elec-
tronic dipoles makes the calculation of the contributions
to ViV from the displaced neighbor ions particularly
simple. Thus, the neighboring ion J produces an axially
symmetric tensor at the impurity O’ with components

2 2 Oury
Vzllzll"=q‘] —_—— ,
7o 7ol raot

Vmuz;/'fz Vyuyn"= —-%‘Vznzu‘r’

1)

the axis of symmetry Z”” being in the direction O'J.
The geometry for a particular ion J is illustrated in
Fig. 8 for the [100] case. One can then apply the sim-
plified version of Eq. (30) for any axially symmetric
tensor, namely,

(32)

to transform to the principal-axis system #'=4’, ¥/, #'.
From each of the neighbors J, one could obtain off-
diagonal components in this principal-axis system.
However, on adding all the contributions, the off-
diagonal components vanish and we have

Vg =Vttt Viu VM-V, ND, (33)

The results of our calculations for three displacement
geometries ((111), (110), and (100)) and the three
materials KCl:Lit, KBr:Li*, and CsF:Nat are given
in Table IV.

In earlier work on nuclei adjacent to the impurity ion
in solid solutions, Vu#Z was ignored since it has a
quadratic dependence on the displacement parameters

V,;"y = Vz”z” (%ailzllz'_% 5

TasLE IV. Field-gradient components.®

Vargk Vst Vyrge Vg VargNM Yy NM Y, ND Y, ND Y7, ND Varar Varar Vo
KCI:Li"
[111] 0.965 —0.483 —0.483 1.65¢4 —0.827 —0.827 0.263 —0.131 —0.131 2.882 —1.441 —1.441
[110] —0.836 0.308 0.528 —0.794 0.111 0.682 —0.420 —0.047 0.467 —2.049 0.372 1.678
[100] —0.631 0.315 0315  —0.624 0.312 0.312 0.572 —0.286 —0.286 —0.682 0.341 0.341
KBr:Li"
[111] 0.785 —0.393 —0.393 1.278 —0.639 —0.639 0.239 —0.120 —0.120 2302 —1.151 -—1.151
110] —0.639 0.230 0.409 —0.567 0.063 0.503 —0.361 —0.055 0416 —1.567 0.239 1.328
ElOO] —0.436 0.218 0.218 —0.251 0.126 0.126 —0.398 0.199 0.199 —1.086 0.543 0.543
CsF:Na®
[111] 1.159 —0.579 —0.579 2466 —1.233 —1.233 0.109 —0.055 —0.055 3.733  —1.867 —1.867
[110] —1.060 0.401 0.660 —1.643 0.107 1.536 —0.175 —0.015 0.190 —2.878 0.493 2.386
{1007 —0.631 0.315 0.315 —1.648 0.824 0.824 —0.271 0.135 0.135 —2.549 1.275 1.275

& Units of e/a?, where @ is the nearest-neighbor separation.
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which were quite small. In view of the sizable impurity
displacement in the present work the values of VyuZ
and V¥ are comparable at the impurity nucleus as
seen from Table IV. The dipolar contributions Vg ¥P
are found to be significantly smaller than the monopolar
results V™™ but increase in importance in the order
fluoride, chloride, and bromide neighbors, as one would
expect from the increasing dipole polarizabilities.

In determining the quadrupole interaction energy of
the impurity nucleus, one must take into account the
Sternheimer antishielding effect.® The pertinent anti-
shielding factors (1—1v,,) for Lit and Nat are given in
Table V together with the Li” and Na* quadrupole
moments and their magnetic resonance (NMR) fre-
quencies, in a standard field of 10 kG. The quantities
¢2qQ/h, which determine the first- and second-order
quadrupole effects?” on the NMR frequency are listed
in Table VI. The Z'Z’ component of the field-gradient
tensor corrected for antishielding effects will henceforth
be denoted by g¢:

q= Vz'z’ (1_7w) . (34)

For the (110) case, the asymmetry parameter 7 is also
required®” for the evaluation of first- and second-order
frequencies and is listed in Table VI.

The first-order frequency splitting of the NMR line
m <> m—1 is given by

ym=— A1~V asl(m—3), (35)

where
A=3eQ/2I(2I—1)k. (36)

The second-order displacement in frequency of the
same line is given by*

Vm(2) = A2(1 —"Yoc)2{%(vz:c2+ sz2) [24m (m’— 1)
_4I(I+ 1)"‘9]" '11_2[(Vm=_' Vw)2+4’Vftu2:|
X[12m(m—1)—4I(I+1)+6]}. (37)

In Egs. (35) and (37) the field-gradient components are
referred to a laboratory system with the z axis along the
magnetic-field direction. These components can be
obtained from the principal-axis components through
the transformation relation Eq. (30). A knowledge of
€290/h, n, and of the orientations of the principal-axis
systems as listed in Tables IIT and VI is therefore
sufficient to calculate v, and »,®. The nuclei con-
sidered here, Li’ and Na2, both have =% and thus one
expects?” to see first-order effects from the 2 «»> 1 and
—3% <> —$% transitions and second-order effects from
the 3 <> —3 transitions. In analyzing the frequency
splitting and shift effects of NMR lines in these systems,
the quasirotational motion' must be taken into account.
The frequency of the latter is about 1 cm™ or 30 000
Mc/sec for KCl:Li*, much greater than the quad-
rupolar frequencies anticipated from Table VI. One
must therefore average the field-gradient tensor over all
of the equivalent equilibrium positions encompassed by

% R. M. Sternheimer, Phys. Rev. 84, 244 (1951).
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TaBLE V. Pertinent constants for nuclear quadrupole interaction.

Quadrupole Antishielding NMR frequency®
moment, Q factor for ion® H=10000 G
Nucleus® (1072 cm?) (1—7v,) (Mc/sec)
Li7 —0.05 0.744 16.547
Na +0.1 5.53

11.262

s Li"—K. C. Brog, T. G. Eck, and H. Wieder, Phys. Rev. 153,91 (1967).
Na2-—M., Perl, I. I. Rabi, and B. Senitzky, Phys. Rev. 98, 611 (1955).

b T. P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956). See also R. M.
Sternheimer and H. M. Foley, ibid. 102, 731 (1956). .

¢NMR Tables, 4th ed., compiled by Varian Associates, Palo Alto,
California (unpublished).

the quasirotational motion. Such an averaging will
yield a vanishing field-gradient tensor in all three cases
considered here. One therefore has to break the octa-
hedral symmetry by restricting the tunneling motion if
a quadrupole interaction is to be observed. Two
possible ways of accomplishing this are by the applica-
tion of an electric field or a uniaxial stress. In particular,
if an electric field is applied along the [111] direction,
the potential will be reduced to C;, symmetry. Then
rather than 8 equivalent (111) minima, there will now
be 4 distinct energies, the order [111], three (111),
three (111), and [111] configurations. For a field on the
order of 50 000 V/cm, using the calculated value of the
dipole moment g for KCl: Lit in Table II, one finds an
energy difference of about 0.002 eV separating adjacent
energy levels. This is of the same order as the calculated
difference of 0.008 eV between the field free (111) and
(110) minima, which is a measure of the barrier height
between equivalent (111) minima. An electric field of
50000 v/cm will therefore effectively restrict the
tunneling motion. This may also be seen by comparing
the interaction energy u- E in frequency units with the
observed tunneling frequency® of 1 cm= It is important
to notice that this applied field causes negligible
additional lattice distortion and therefore does not
significantly alter the unaveraged field gradients in
Table IV.

It will now be shown that the occurrence of first-order
splittings of NMR lines for different relative orienta-
tions of applied electric and magnetic fields can distin-

Tasre VI. Quadrupole coupling constants and
asymmetry parameters.

eq0/h
(Mc/sec) 7

KCIL: Li7

[111] —0.1196 0

[110] +0.0850 0.6374

[100] +0.0283 0
KBr:Li?

[111] —0.0834 0

[110] +0.0568 0.6950

[100] +0.0393 0
CsF:Na»

[111] 3.965 0

[1107] —1.789 0.6577

[100] —1.584 0
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TasLe VII. Dependence of field-gradient tensors on
E-field directions.

direction
Ion
displacement
direction [111] [110] [100]
[111] ¢ finite g#0 g=0
along [1117].
n=0 7=0 n=0
[110] q finite ¢#0 ¢ finite
along [1117. along [1007].
7=0 VEY 7=0
[100] ¢=0 q#0 ¢ finite
along [100].
7=0 PEL 7=0

guish between the three configurations namely , along
(111), (110), or (100).

Thus, besides providing additional data to check
with theory, NMR measurements can lead to independ-
ent confirmation of the {, orientation deduced from
ultrasonic measurements. In this connection, it is
necessary to derive the principal axis for different
electric field directions. Let us consider as an example an
electric field applied in the [1117] direction. If ¢, is
along (111) then as discussed in the previous paragraph
the Li* ion will be trapped along [1117], leading to an
axially symmetric field gradient in this direction. If ¢,
were along (100) the electric field would make the [1007],
[0107], and [001] directions energetically favored. The
Lit ion would thus experience the average of three
axially symmetric field gradients along these three
directions. Using the relation Eq. (30) to calculate this
average it can be seen that the field gradient vanishes.
For ¢, along (110) the directions [1107], [011], and
[101], would be energetically favored, and using Eq.
(30) the net field gradient may be shown to be axially
symmetric along [1117]. By arguments of this nature one
obtains the characteristics of the field-gradient tensors
listed in Table VII for the electric field along the three
directions. Having determined the averaged field

TaBLE VIIIL Description of first-order splitting for
various E and H directions.®

Ton-displacement direction

E direction H direction [111] [110] [100]
[111] [111] Yes Yes No
[111] [110] Yes No Yes
[1117 [100] No No No
[110] [111] Yes Yes Yes
[110] [110] Yes Yes Yes
[110] [101] Yes Yes Yes
[1007] [111] No Yes Yes
[100] [110] No Yes Yes
[100] [100] No No No

» A Yes entry represents first-order splitting of NMR line is expected to
be observed, while No indicates that there should be no first-order splitting.
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gradient tensor in the presence of the electric field,
Eq. (30) can be used to transform to a laboratory
system with g axis parallel to the applied magnetic
field for the evaluation of first-order splittings »,,® in
Eq. (32). For example, if the magnetic field is applied
along the [100] direction while the electric field is in
[111], and with ¢, along (111), then from Table IIT
the requisite direction cosine is cosf=1/v3 and V.,
« (3 cos’—1)=0. Thus no first-order splitting is
expected in this situation. On the other hand, with the
electric field and {. both along [1117] one has §=0 and
V.o (3 cos?d—1)=2, leading to a finite first-order
splitting. By such reasoning one can predict the
occurrence or non-occurrence of first-order splittings in
Table VIII for the 27 possible combinations of electric
field, magnetic field, and ¢, directions when these are
restricted to [1117], [110], and [100]. It is clear that by
testing for the presence or absence of first-order NMR
splitting for the combinations of electric and magnetic
field directions in Table VIII, one can determine
whether ¢, is along (111), (110), or {(100). A similar
analysis can be applied to the second-order splitting of
the § <> —§ line using Eq. (37) and Tables TIT and VII.
Detection of these quadrupole splittings depends on two
factors: the magnitude of the splitting frequency, and
the intensity of the resonance signal. If the electric
and magnetic fields, as well as the impurity displace-
ment, are all along [1117], then the values of v3,," are
half the values of ¢%gQ/# listed in Table VI for the (111)
case. These are all sizable frequencies which are larger
than the magnetic dipolar breadth. The NMR fre-
quencies of both Na? and Li” are sizable and so are their
abundances, therefore resonances of Na2 and Li’ in
bulk systems are quite easy to detect. However, in
CsF:Na® and KCl:Li%, dilute solid solutions have to
be used if the theory of isolated impurities is to apply
and this will weaken the intensity of the expected NMR
lines for the impurity nucleus. The technique developed
by Slusher and Hahn? of detecting less abundant nuclei
through their interaction with an abundant nuclear
spin species could be a suitable means of observing the
impurity resonance when it is too weak to detect
directly.

V. CONCLUSIONS

The results of our calculations show that off-center
displacement of Li* in KCl follows naturally from the
simple nearest-neighbor Born-Mayer treatment em-
ployed. The model yields the (111) minimum as the
lowest in energy of the three directions tried: (111),
(110), and (100). This is true for all three materials
treated: KCl:Li*, KBr:Lit, and CsF:Na+, The (100)
energy was the highest in all three materials, but was still
lower than the energy of the centrosymmetric configura-
tion. Our results are in qualitative agreement with
experiment, and the dipole moments and vibrational
frequencies agree within about a factor of two with
experiment. Considering the simplicity of this model,
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it appears reasonable to conclude from its successes
that the nearest-neighbor effects are the most important
in promoting off-center displacement and in favoring
the [111] direction. Quantitative agreement with
experiment was not anticipated because of the approx-
imate treatment of polarization and uncertainties in the
choice of repulsive potential. It is believed that more
accurate results can be expected if electronic calcula-
tions are carried out to include covalent and overlap
effects between the electrons of the impurity and its
nearest neighbors. To make such calculations as
quantitative as possible, a Born-Mayer treatment for
the other neighbors could also be incorporated into the
improved model. Once reliable potential energy curves
are determined through such mixed calculations, a
quantitative analysis of motional effects could be
attempted.

Our study of the strength of nuclear quadrupole
interactions of the impurity nucleus with the field
gradients produced by the surrounding neighbors
indicates the feasibility of observing nuclear quadrupole
effects on NMR frequencies. It is proposed that
measurements of NMR spectra by conventional or
special double-resonance techniques, using an electric
field to inhibit rotational motion, would serve as an
additional confirmation of the actual displacement
direction already indicated by ultrasonic measurements.

Similar off-center minima are expected for small
divalent impurity ions in alkaline-earth oxides. Possible
examples are Mg+, Mn+t and Fettt in BaO. The
Mn*+ and Fet++ ions are expected to be particularly
interesting since an axial field term D[3S2—S(S+1)]
would occur in the spin Hamiltonian for spin resonance
and a nuclear quadrupole interaction could be detected
in the Mdssbauer spectra of Fe®”. Pure Born-Mayer—
type calculations will probably be inadequate to
determine the lattice configurations even qualitatively
in these systems, owing to the great diffuseness of the
O~ ions.
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APPENDIX

In order to derive Eq. (7), the expression for the
electrostatic energy AE,, first consider that all ions are
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fixed at their respective lattice sites, giving AE,=0.
Now consider that just one ion, say the impurity ion,
is displaced from its site and has coordinates relative to
this site of (£,0,¢). The change in electrostatic energy
is then found from the potential of this ion in the field
produced by the surrounding perfect lattice, minus the
Madelung potential this ion had when on its site. We
call this potential V1(£1,01,¢1) and briefly describe in
the main text a method for its evaluation. Now suppose
that a second ion is displaced from its lattice site. Place
a virtual charge pair (4=¢.) at its lattice site. The one
which has the normal sign will restore the perfect
lattice potential back at the first site, thus preserving
the Vi (£1,01,¢1) term. But now we must also include
the interaction energy —gqigs/rve between the first
displaced ion (at ry/) of charge ¢; and the virtual charge
—q. at the second lattice site (r). Similarly to find the
interaction of ion 2 with the lattice, we place a virtual
charge pair (4-¢;) at site r; and thus restore the lattice
to obtain a term V' (£2,02,¢2) along with an interaction
—q192/712 between the displaced ion 2 and the virtual
charge —q¢; at r;. The two displaced ions also interact
giving a term ¢igs/7vy. Finally the virtual charges of
“abnormal”’ sign interact with each other to give a term
¢192/712. The result is that for each pair of charges which
are displaced we will obtain the expression

1 1t 1 1
AE,D = 9142<—+—— —_— —“>

Yrrer Tz i Tro

Fq1Vi(£1,01,61)+q2V L (£2,0202). (A1)

Then when all of the D ions have been displaced, we sum
over all such pairs to obtain

1 1 1 1
AE,= 3 X QJQK< - -———)
jng{ KeD Yy ke Yy Yrrk VIR
+ 2 qVi(Erbres) (A2)
J&ED

which is another form of Eq. (7), namely, Eq. (13).

It should be noted that this treatment was adopted
by Das, Jette, and Knox*? in an earlier work on color
centers. Since they were only interested in up to
quadratic terms in the displacement, they did not
include the last term of Eq. (A2) in their calculations.

®T. P. Das, A. N. Jette, and R. S. Knox, Phys. Rev. 134,
A1079 (1964).



