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The coupling between the vibrational motions in neighboring molecules in solid hydrogen and deuterium,
arising from the isotropic intermolecular interaction, is shown to be responsible for the anomaly in the
ratio of the Raman scattering cross sections of the Q1 (0) and Q1 (1) vibrational lines, observed by McKague
Rosevaer, Whiting, and Allin. The vibrational impurity states associated with molecules of one nuclear
species imbedded in a matrix of the other species are imperfectly localized, having an extent determined by
the ratio of the vibrational coupling to the difference in the vibrational resonance frequencies of the two
species. The Q1(1) intensity due to orthohydrogen "impurities" is enhanced by (in classical terms) in-phase
contributions of surrounding para molecules, whereas the Q1 (0) intensity due to parahydrogen "impurities"
is reduced by out-of-phase contributions from adjacent ortho molecules. The enhancement factors for
small impurity concentrations are expressed in terms of Green functions describing the vibrational impurity
states, and are evaluated by means of the walk-counting method, In the limit c=0 of small ortho concen-
trations, the computed enhancement factor for the Qi(1) intensity is 3.42; as c approaches 1, the Q1(0)
intensity is reduced by a factor of 2.29. Both results are in excellent agreement with experiment. In solid
deuterium the anomaly is larger because the difterence between the resonance frequencies of the two
species is smaller. In the limit c=0 of very small para (J=1) concentrations, the calculated Q1(1) in-
tensity is enhanced by a factor 55, whereas in the limit c= 1 the Q1(0) intensity is reduced by a factor 4.86.
At the lowest para concentration (c=3.7 j&) at which observa, tions have been made, the para-impurities
cannot be regarded as independent because of the poor localization of the vibrational impurity states. The
theory has been extended to a finite concentration of impurities arranged in a regular superlattice. The
calculated intensity ratio at c=3.7 ' is 49, in good agreement with the experimental value of about 50.

I. INTRODUCTION

OLID hydrogen is an ideal example of a molecular
crystal, the cohesive energy per molecule, 0.0083

eV, being very small compared with the energy, 4.48 eV,
required to separate a hydrogen molecule into its com-
ponent atoms. It is also the crystal that conforms most
nearly to the ideal of free molecular rotation. The energy
of the anisotropic intermolecular coupling is so small
compared with the separations between the rotational
levels that states corresponding to diRerent values of
the rotational quantum number J are not mixed
appreciably. Thus, J is a good quantum number in the
solid at all temperatures. This does not appear to be the
case, for all J, in any crystal except solid hydrogen and
its isotopes.

Solid hydrogen can thus be regarded as an assembly
of para and ortho molecules held together in a crystalline
lattice by weak central forces and subject to still weaker
forces depending on the orientations and internuclear
distances of the molecules. The resulting rotational and
vibrational energy levels and their infrared and Raman
spectra have been investigated extensively in recent
years, both expeximentally' 4 and theoretically. '—' The

+ Work supported by National Science Foundation.
~ H. P. Gush, W. F.J.Hare, E.J.Allin, and H. L. Welsh, Can. J.

Phys. 38, 176 (1960).' H. P. Gush, J. Phys. Radium 22, 149 (1961).
3 S. S. Bhatnagar, E. J. Allin, and H. L. Welsh, Can. J. Phys.

40, 9 {1962).

energy levels of the isolated molecules are replaced in
the solid by narrow energy bands corresponding to
travelling rotational and vibrational excitations. A
complete analysis of these levels in solid paxahydrogen
has recently been completed, " and from this analysis
accurate empirical values of the small coupling con-
stants can be obtained.

The present paper deals with the vibrational excita-
tions in solid hydrogen and deuterium, and in particular
with the structure of the imperfectly localized vibra-
tional states arising in crystals with low ortho or low
para concentrations. This work has grown out of study
of the observed" unexpectedly large diRerence in the
intensity ratio of the Qt(0) and Q~(1) Raman lines (due
to transitions s=0~ v=1, AX=0) for gaseous and solid
hydrogen. A similar but moxe pronounced eRect is
observed" for deuterium. The cross section o(J) per
molecule in the state J, for the Raman scattering arising
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The anisotropic cross section is given by

4J(J+1)
0 anis. (J)=&&0&

45(2J—1)(2J+3)

(1 3)

(1 4)

where yoi ——(1J
~ y ~

0J) may also be assumed to be
independent of J. The quantity 0, ;,, is strongly de-
pendent on J, but its magnitude is negligible compared
with that of o"„.From Eq. (1.4) we get 0., ;., (0)=0
and o,„;,, (1)/0;..= (8/225)(yoi/noi)'; for H& this ratio
has the value =0.02. Within the accuracy of present
experiments the vibrational Raman cross section is
therefore independent of J. This is conhrmed by the
measurements of Stoicheff" of the intensities of the
vlbratloDRl Raman llDcs ln gRscous Hg, RDd this shoUld

also be true in D2.
It has recently been discovered experimentally" that

in liquid and solid H2 and D2 the total cross section 0. is

quite diferent for J=O and J= i. Since the absolute
intensities of the lines have not been measured, we can
express the results most conveniently by writing

0 (1)= b'(0) . (1.5)

In solid H& the ratio $ varies from about 3 at small
ortho (J=1) concentrations to about 2 at higher con-
centrations. In solid D& the ratio $ is about 30—50 at
small para (J= 1) concentrations and falls to about 9
at 33%%u& para concentration. It is clear that these large
deviations of $ from 1 cannot be due to the effect of a
possible orientational ordering of the molecules in the
condensed phases, since the anisotropic cross section is

"G. Placzek, Handbuch der Radiologic VI, 2, 209 (1934}.
g B. P. Sto&chef'~ Can J' Phys. BS BO (1957}.

from the transitions m= 0 —+ e= 1, J~ J, in isolated H2
and D& molecules is practically independent of J. This
can be seen most easily in the polarizability approxima-
tion."For freely rotating molecules, the cross section
0 (J) is equal to the sum of an isotropic and an aniso-
tropic part,

0 (J)= rr;, (J).+ 0,„;,(J).,
which are due to the average polarizability,

Q = 3 (Qadi+2(Xi, ) &

and the anisotropy, y=~l& —n~, respectively, where +, 1

and 0,~ are the polarizabilities along the principal axes.
The isotropic cross section is given by

(J)=A. i(1JiniOJ)i', (1.2)

where
~
vJ) is a rotation-vibration state, and all factors

independent of Jhave been absorbed in the quantity A.
The matrix elements appearing in Eq. (1.2) show a
slight dependence on J, because of the stretching of the
molecule by the centrifugal forces, but this CRcct is very
small. VVhen we neglect this dependence on J, and
denote (1J~ix~OJ) by ao&, we obtain for the isotropic
closs scctlon

negligibly smRB. Moreover, such an ordering should
exist only at low temperatures and high concentrations
of the J= j. molecules, whereas the effect is also present
at low concentrations and at such high temperatures
that orientational ordering is not to be expected.

It will be shown in this paper that the anomalous
intensity ratios are due to the coupling of the vibrations
in neighboring molecules arising from the intermolecular
forces. The rotational degrees of freedom play no role in
the CGect, and it is SUKcicnt to regard the molecules as
coupled oscillators and to ignore the angular coordi-
nates. Since the vibrational frequencies of the J=o and
J=l species are slightly diGerent, a molecule of one
species in a matrix of molecules of the other species acts
as an impurity on the vibrational energy band in the
host crystal. The problem of calculating the energy and
the wave function of the resulting bound state is similar
to that considered by Roster and Slater" for an electron
in an energy band, but the treatment has here been
carried through for the cubic and hexagonal close-
packed lattices that occur for H~, whereas Koster and
Slater discuss only the simple cubic case. Consideration
of the very large intensity ratio in D& leads to a study
of the effect of 6nite concentrations of vibrational
impurities. In the present paper this discussion is limited
to a particular regular superlattice of impurities.

The effect on the intensities of the infrared Q lines

in solid H~ of the imperfect localization of the excitation
on a vibrational impurity has been discussed in a pre-
vious paper, where it is shown that this effect is quite
small (of the order of 6%). The reason for the different
behavior of the infrared and Raman Q hnes ls that the
induced dipole moments that come into play when the
vlbI'atloDRl cxcltRtlon moves to thc nclghboI'1Dg Inolc-
cules of the impurity tend to cancel each other, whereas
in the Raman transition a mutual reinforcement of the
effects of the neighbors occurs.

In Sec. II the model of solid H2 and D2 used in the
calculation of the Raman intensities is described and
the basic equations of the theory are developed. . A

calculation based on the assumption that the localized

impurity states involve only one impurity and its
immediate neighbors is presented in Sec. III. This cal-
culation brings out the physical ideas required for an
Undcl standing of thc obscl vcd lntcnslty ratios bUt

yields only poor quantitative agreement with the
experimental data. ID Sec. IV R morc accurate treat-
ment based on the counting of walks on the lattice is

applied to the case of CGectively isolated impurities.
For H~ the calculated intensity ratios t correspond well

to obscrvRtloD. Thc nature of the 1csUlts with the
parameters appropriate to D2 show that in this crystal,
even at the lowest J=1 concentration for which obser-
vations have been made, it is not satisfactory to treat
the impurities as isolated. . In Sec. V a method for the
treatment of interacting impurities is indicated, and an
illustrative calculation is made for a periodic distribu-

'4 G. F. Koster and J. C. Slater, Phys, Rev. 95, 3.167 (1954}.
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tion of J= j. molecules with concentration corresponding
to ths. t at which the highest values of $ have been ob-
served; the agreement with observation is satisfactory.

11. BASIC EQUATIONS FOR THE COUPLED-
OSCILLATOR MODEL

Since the Raman transitions do not involve any
phonon transitions, we shall ignore the lattice vibrations
and treat the crystal as a collection of interacting
molecules with centers of mass 6xed on the points of a
rigid fcc or hcp lattice, The Raman transitions involve
no rotational transitions, so that we need not consider
the excited rotational states. Neglecting the ortho-para
conversion, which is very slow in the solid, we may
regard the crystal as a permanent mixture of two species
of molecules, with J=0 and J= 1.The concentration of
the J=1 species will be denoted by c, so that c denotes
the ortho concentration in H2 and the para concentra-
tion 1B D2.

The main interaction between the molecules is due
to the van der Waals (vdW) forces, consisting of the
repulsive overlap and the attractive dispersion forces,
and the electrostatic quadrupole-quadrupole (QQ)
forces. In the absence of orientational ordering in the
crystal, the averages of the anisotropic vd% and the
QQ interactions vanish, and only the isotropic vdW
interaction remains. The potential of the isotropic
interaction between two molecules 1 and 2 can be
expanded in powers of r j—r, and r2 —r, :
V= Vs+ (r~—«.)Vi+ («s—«.)Vs+ s («i—«.)'Vu+

+ (ri r.) («s «') Vn+— , (—2.1)
where r~ and r2 are the internuclear separations and r, is
the equilibrium value of r~ and r2. The terms in the 6rst
line of Eq. (2.1) are responsible for the bulk of the shifts
in the energies of the rotational and vibrational levels
in the solid, as compared with those in the isolated
molecules. These shifts are discussed in detail else-
where, "but are of no interest here. The mixed term in
Eq. (2.1) is the main vibrational-coupling term. It will
be written in the form

V(rg, rs) = —s'(rg —r,) (rs —r,)/P, (2.2)

where 1= (k/t5(os) i ls the amplitude of vibration ln the
state v=0, ns being the reduced mass and u0 the reso-
nance frequency of the v=0 —+ v=1 transition. This
coupling is appreciable only for nearest neighbors, and
e' is the coupling constant for nearest neighbors. An
empirical value of ~' can be obtained" from the diGer-
ence in the frequencies of the Q~(0) infrared and Raman
lines for c=O, and from the concentration dependence
of the Q~(0) and Q, (1) Raman lines. 4 From the measured
frequencies' —' for H, we obtain s'(Hs)= (0.49&0.01)
cm—'. For D2 only the 6rst method can be used, since
the data on the concentration dependence are too scarce
to be useful. From the measurements of Crane and
Gush" in 97%%uz Ds, we obtain s'(D s) = (037+0.01) cm '.

"A. Crane and H, P. gush, Csn. J. Phys. 44, 373 (1966).

A theoretical estimate of s'(Hs) can be obtained by
assuming that the coupling LEq. (2.2)j is due entirely
to the dispersion forces. This assumption is not un-
reasonable, since solid H~ is blown up considerably by
the zero-point lattice vibrations. Assuming an exp-6
potential, one finds' that the zero of the potential comes
at 3.10 A and the lattice constant for the classical
crystal would be 3.41 A, whereas the observed lattice
constant is 3.75 A. Assuming that only the E ' dis-
persion forces contribute to Eq. (2.2), we get s'(H&)
=0.4 cm ', in good order of magnitude agreement with
the experimental value. The ratio s'(Ds)/s'(H~) for
the R ' forces is given by (nuosV)H, /(euosV)n, ——0.90,
where V is the volume per mole, whereas the empirical
value of this ratio is (0.37/0. 49)=0.'76. The discrepancy
is presumably due to the fact that in D~, which is less
blown up by the zero-point lattice vibrations, the over-
lap forces make a larger contribution to the couphng
than in H2. In the present calculations we shaH adopt
the values «'(H2)=0. 49 cm ' and s'(Ds)=0.37 cm ',
which will be seen to give excellent agreement between
the observed and calculated Raman intensities.

The Hamiltonian for the internal vibrational motion
of the molecules in the solid is

H=P B;(r;)+P V(r;,r;), (2 3)

where V is given by Kq. (2.2) and is assumed to be
independent of the rotational states of the molecules;
the sum over (i,j ) runs over all pairs of neighbors, and
H; is the vibrational energy of molecule i, which depends
on J because of the rotation-vibration interaction. The
diBerence in the vibrational excitation energy of a J=0
and a J=1 molecule, AE(J)=Eg(J) —Es(J), can be
obtained from the Raman spectra in the gas," and is
given by

DE(0)—AE(1)=6.0 cm ' for Hs,

AE(0) —dE(1)=2.1 cm ' for D&.
(2 4)

In the absence of vibrational coupling the wave func-
tions are products of single-oscillator wave functions,

fyo ~ of'g ps e pe~ f s (2.5)

(ri r ~R;)=y;(1;r;)gy, (0;r,). (2 6)

In the presence of the vibrational coupling the ground

In the ground state all e; are equal to 0, and this state
will be denoted by ~

0). In the erst vibrationally excited
states one e; is equal to 1, giving two closely spaced
levels, corresponding to J= 1 and J=O, separated by
the energy in Eq. (2.4) and with vibrational de-
generacies equal to cX and (1—c)cV, respectively. We
denote the state of the crystal in which the molecule at
R;is in the state s;=1 by ~R;), the wave function of this
state being
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state ~0} will be unaltered, if we neglect mixing of
states corresponding to different values of P, p;, but
the erst group of excited states will be linear combina-
tions of the states

~
R,).Denoting one of these states by

~ r}, we write
t r) =P U, (R;) i R;}, {2.&)

+W P b(R;,R,) U, (R,) =E,U, (R,). (2.8)

The flrst sum runs over all the vectors d; connecting
molecule i to its nearest neighbors, and the second sum
extends over all molecules of one species (7=0 or J= 1)
regarded as impurity molecules in a pure crystal of the
other species. E, is the energy of state g relative to that
of the pure crystal in the absence of the vibrational
coupling, a.nd 5' is given by

W =AE(impurity) —AE(matrix) . (2.9)

For a pure crystal the second sum drops out, and if
there is one molecule per unit cell, as in the fcc lattice,
the solutions of Eq. (2.8) with periodic bound. ary condi-
tions are the Bloch waves,

U {k R,)=S—'~' exp {ik R,) (2.10)

with energy
h:{k)=——,'p'P cos(k. d). (2.11)

To calculate the Raman intensities, we neglect the
anlsotl oplc scattcI'lng alld assulTlc that the polaI'lzablllty
of the crystal is equal to the sum of the polarizabilities of
the molecules. Assuming further that the matrix element
npi= (1J

~

n
~
07} is independent of J, we obtain for the

Raman transition element between the ground state
~0) and the Bloch state

~
k),

{k)Pn, [0}=Xi~Pa(k)«,. (2.12)

Thus only the k=O sta, te of the vibrational band in a
pure crystal is Raman active and the intensity is Ã
times that for a single molecule. (We have assumed that
the wavelength of the exciting radiation is large com-
pared with the size of the crystal. ) The total intensity
of the Raman scattering per molecule is therefore the
same as in the gas.

The nature of the solutions of the set of difference
equations, Eqs. (2.8), for a single impurity in a simple
cubic lattice has been discussed by Koster and plater. "
H

l
IP

l
is sufliciently large, there is a localized impurity

state for which U(R~) decreases rapidly with increasing

where U, (R;) is the wave function' describing the
motion of the ~= 1 excitation through the lattice in the
state 7.. In the subspace of Hilbert space corresponding
to P; p;=1, the Schrodinger equation, H~ r}=8~r),
reduces to the set of difference equations' "
——,'p' P U, (R,+d,)

distance of R; from the impurity. The energy of this
bound state lies below or above the energy band of the
pure crystal, depending on whether TV is negative or
positive. The remaining states are scattering states and
are not localized [in fact, U(R;) for these states de-
creases near the impurity', and their energies form a
band which in the limit of an infinite crystal has the
same density of states as in the pure crystal. The Raman
transition element to either the localized or the scatter-
ing states is given by

(r~P n;~0)=npig U (R;), (2.13)

where we have again neglected the small dependence of
aog on J. The ratio of the Raman intensity for this
transition to that for a transition in one isolated mole-
cule ls therefore glvcn by

n'= IZ U.(R')I' (2.14)

Thus a principle of spectroscopic stability holds: The
total intensity of the Qi(0) and Qi(1) lines is indepen-
dent of the ortho-para concentration and of the strength
of the vibrational coupling.

It the impurity concentration is very small, it is
clearly sukcient to regard the impurities as isolated
from each other. The intensity of the matrix Qi line,
per molecule, will then be little affected by the im-
purities and may be assumed to be the same as for an
isola, ted molecule. If / denotes the localized state for one
impurity in an in6nite matrix, the intensity of the
impurity Qi line, per impurity molecule, for very small
concentrations, is equal to

nP=
I Z «(R') I' (2.16)

times that of a single molecule. For very small concen-
trations of the 5=1 species, c=0, the ratio $=$(c)
defined by Eq. (1.5) is

(2.17)

where /=1 refers to the localized state due to a J= j.

impurity in a J=O matrix. For very snlall concentra-
tions of the J=O species, c=1, this ratio is given by

where 1=0 refers to the localized state due to a, J=O
impurity in a J= 1. matrix. In the next section, a simple
calculation will be given to show that both $(0) and j(1)
are larger than 1, in agreement with the observed en-
hancement of the Qi(1) line relative to the Qi(0) hne for
all cog.centr@tiong.

Since the quantities U, (R,) are the coefficients of a
unitary transformation, Eq. (2.7), we have the sum rule

(2.15)
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V, (R,)= (1—12p)'/',

U, (R,+a) = ap'/', (3 1)

where + corresponds to W= w
~
W

~

. In either case, p is

given by
p = (2'/2W)'

From Eq. (2.16) we then obtain

(3.2)

~
2 [(1 12p)1/2+12pl/2]2

2/2'= [(1—12p) ""—12p"']'. (3.3)

For H2 we assume 2'=0.49 cm ' and
~
W~ =6.0 cm ',

and get p'"=0.041 and p=0.0017. The enhancement
factors [Eqs. (2.17) and (2.18)] then have the values

t(0) =2.2,
5(1)=4o

(3.4)

These large factors result from the fact that, although

p is small, the quantity 12p'" is not particularly small.
Thus, although the excitation spends only a fraction
12p=0.02 of its time away from the impurity, the
resulting increase in the intensity ratio of Q1(1) and

Q1(0) Raman lines is about a factor 3. The correspond-
ing change in the intensities of the infrared lines
amounts to only about 6%%uo,

2 since the term 12p"' in

Eq. (3.3) is replaced for the infrared lines by ap'/2,

where u is of order 1. This different behavior is due to
the fact that in the Raman case one sums a scalar
quantity, the isotropic polarizability, over the 12
neighbors, with the probability amplitude as weight
factor, whereas in the infrared case one sums vector
quantities, the induced dipole moments, and these tend
to cancel each other.

We remark that a simple classical interpretation of
the enhancement effect can be given. During a Raman
scattering process from a J=1 molecule in a J=O
matrix, the J= 1 molecule vibrates at its resonance fre-
quency, which is just below the resonance frequency of
the surrounding J=O molecules. In the presence of the
vibrational coupling, the J= 1 molecule drives the J=0
molecules, and, since the coupling constant e' in Eq.
(2.2) is positive, the J=O molecules respond in phase
with the central molecule. The result is an enhancement

III. A PRELIMINARY ILLUSTRATIVE
CALCULATION

The degree of localization of the bound impurity
states is determined by a balance of conQicting tenden-
cies: that of the vibrational coupling, measured by e', to
transmit the excitation from the impurity to its neigh-
bors, and that of the energy difference t/t/ between the
two species of molecule to localize the excitation on the
impurity. In this section we assume that the excitation
will not be found beyond the nearest neighbors of the
impurity. This is true for small values of (2'/W), for
which one can carry out a perturbation calculation. ' If
p is the probability of finding the excitation on one of
the neighbors, we get for a fcc or a hcp lattice

of the modulation of the total polarizability associated
with the vibration in the J=1 molecule, leading to an
enhancement of the Q1(1) line. For a J=0 molecule in a
J=1 matrix, the surrounding molecules are driven by
the central molecule just above their resonance fre-

quency, and their response will be out of phase with the
central molecule, resulting in a reduction of the Q1(0)
intensity. In the quantum theory, the in- and out-of-
phase response corresponds to the + sign in Eq. (3.1).

In the case of D2 we have 2'= 0.37 cm ' and
~
W

~

= 2.1
cm ', giving 12p"'= 1.06. The contribution of the
twelve neighboring molecules to the Raman transition
element is hence greater than that of the central mole-
cule. This is a clear indication that the approximation
on which the calculations in this section are based is
inadequate for the case of D2. In the next section we
shall therefore apply a more accurate theory of the
impurity states.

IV. RAMAN INTENSITIES DUE TO
ISOLATED IMPURITIES

In this section attention will be limited to such low
impurity concentrations that the impurities may be
regarded as effectively isolated from each other. At the
low temperatures at which the Raman intensities of
solid H& and D2 have been measured, the lattice is
hexagonal close-packed when c=O and the molecules
with J=1 are to be regarded as the impurities, but is
cubic close-packed when c=1 and the molecules with
J=0 are the impurities. Fortunately, this change in the
lattice does not complicate matters. It has been shown

by one of us" that, for the model considered here, the
energy level distribution in the pure crystal and the
energy levels due to the isolated impurities are deter-
rnined by the number of closed walks of 22 steps (all 22)

on the lattice, and that the number of such walks is the
same for all close-packed lattices. It will here be shown
that this is also true of all quantities that enter the
calculation of the Raman intensities. It is therefore
possible to do all calculations for the simpler fcc lattice,
knowing that the result will be valid also for the hcp
lattice.

In the fcc lattice, the displacement vectors d from
any molecule to its neighbors are given by (+a, +a, 0),
(&a, 0, &a), (0, &a, &a), where a is half the cube
edge and the signs are to be chosen independently. Since
all molecules are equivalent, the erst excited vibrational
states of the pure crystal form a single band' with
energies [Eq. (2.11)]
E2 —22'[cos(k, a) cos(k„a)+——cos(k„a) cos(k,a)

+cos(k,a) cos(k a)]. (4.1)

This band extends from —62' at k=0 to +22' attained
for many nonequivalent choices of k; for instance, for

"H. M. James, preceding paper, Phys. Rev. 164, 1153 (1967).
In the hcp lattice there are two bands, two energies for each

k, but the over-all level density is the same as for the fcc lattice.
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cosh, u= —cosh„a=~i and arbitrary k, . Since e'&0,
the bottom of the band corresponds to a nondegenerate
level, the top to a degenerate one.

For a fcc lattice with a single impurity at the origin,
Eq. (2.8) can be written as

U(R,)=nU(R, )+P P U(R+d)+qc(R;, 0)U(0). (4.2)

Eq. (4.9) yields the results

Q U(R )= (W/E)(1 —12P) '=W(E+6«') ' (4 12)

urn=+ ~
U(R;) ~'= (W/P. )'

&&2 K Z P.(R;;0)P. .(R;;0)jP". (4»)
n=0 i k=0

n= —c(X—c)
—',

p= (!—c)-',

y = —(2W/«') P.—c)-'

2E/«', —

(4.3)

The sum over k is the total number of times that all
closed walks of e steps beginning and ending at the
origin pass through R;. Summing over all the sites i,
one counts each such walk II+1 times to obtain
(n+1)P (0; 0). Thus we obtain

The energy E, which is involved in the parameters n, P,
y, is determined by the condition

1= yG(0; 0) . (4 7)

One of us" has expressed the solutions of Eq. (4.2)
111 'tc1111s of thc qualltltics Pp(R;; 0), tllc number of
distinct walks of k steps from the origin to the lattice
poiIlt R;. Tile slInplcst fol'111 Is obtained by clloosillg
@=0.=o:

G(R;;0)=g P, (R;;0)P~.
k=0

Within its range of convergence, this series goes to zero
if

~
R;~ goes to infinity. The wave function given by

Eq. (4.5) will thus represent a localized impurity state,
provided Eq. (4.7) is satisfied. It will be convenient for
the moment to normalize U(R;) by taking U(0)=1.
Then

U(R,)= (w/P)g P, (R;; o)P&. (4 9)

The condition (4.7) for the energy can be written as

- ("/2W) = 2 P"(o; o)p"'.
Is=0

(4.10)

and g is an arbitrary numerical constant, corresponding
to a change in the zero of energy in Eq. (2.8), which
has been introduced for later use. The solutions of
Eq. (4.2) can be written in the form

U(R~) =yG(R;; 0)U(0),

where G is the Green's function belonging to Eq. (4.2),
which ls a sohltlon of the equation

U(R;) =nU(R~)+p p U(R;+d)+b(R;; 0). (4.6)

&'= (W/~)' 2 (II+1)P.(0; o)P".
n=0

(4.14)

~-'= (1—12P)' P (k+1)P,(0; 0)P&. (4.15)

Equations (4.10) and (4.15) provide a parametric rela-
tion between the relative coupling strength «'/W and the
enhancement factor g'.

Since PI (0; 0) increases about proportionally to
(12)"/k't2, the above equations diverge if

~
12P

~
)1, or

~E~ (6«'. They can be used for impurity states every-
where below the band described by Eq. (4.1), but not
for the imputity states in the range 2e'&8&6~' above
the band, One of us has shown" that series expansions
valid for all localized impurity states can be obtained by
choosing as the zero of energy not the band origin but
the energy midway between the bottom and the top of
the band. This corresponds to the choice c=4, giving

n= 2«(8+2«)
P/n= —0.25,

7=W(E+2«') '

where

U(R;) = W(E+2«') ' Q Qi(R;; 0)n~, (4.1/)

Q (R' 0)=Z P (R 0)(P/) (4»).=o s!(k—s)!

The function U(R;) represents a localized impurity
state if the energy condition

To normaHze the function U(R;) in the usual way one
must divide it by K. Then Eq. (2.16) yields, on use of
Eqs. (4.12) and (4.14),

PP (R 0)=12' (4.11)

(2"/W) = Z Q«(0 o) '+' (4.19)

is satisfied. By summing Eq. (4.2) or Eq. (4.17) over i,
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one easily finds

Q U(R)=W(E+6e') '
TssLE I. The number of closed walks of unit steps on

a close-packed lattice, P (0;0), and the function Q (0; 0) for

(4 20) P/a= 0 25

in accord with Eq. (4.12). A calculation similar to that
leading to Eq. (4.14) yields

W
Xs=

I g (I+1)Q (0' 0)n" (4 21)
48+2e'

on usc of thc relation

n kI (n —k)!
&=o s!(k—s)! (v—s)!(n—k —v+s)!

also

0
1
2
3

5
6
7

10

P„I'0,0)

1
0

12

540
4320

42 240
403 200

4 038 300
40 958 400

423 550 512

0 (0,0)

1.0
1.0
1.75
2.50
4.609375
7.328125

13.890625
23.3125
44.900818
77.86347

151.4646

which can be derived by showing that each side gives
the coefficient of n'P" ' in Ps s"(1+n) (1+P)" . One
thus finds

B~l B~lH~l n!8(X+@+v, I)
~-(0,0)= Z Z Z

&=a ~=o =o (n —2)%.)!(n—2p)!(n—2v)!

(m+1)! X+p+v=N.
(4.22)

(v+1)!(I—v)! Summing the coeKcients of the terms goy'ss in the
various products (4.26), one obtains

r}-'= (1+2n)' P (I+1)Q„(0;0)n". (4.23)

Equations (4.19) and (4.23) now provide the parametric
relation between (c'/W) and ris

It is easy to compute P„(0;0) for a fcc lattice by
constructing a generating function, a polynomial F„in
x, y, s such that the coeAicient of x y!'s& is the number
of walks of e steps that result in a displacement aa in
the x direction, pu in the y direction, and yu in the
s direction. The generating function for a single step is

1) / 1) / 1 1)
Fr=I *+-

II y+- I+I y+- s+-
I

a& 4 y/ ( y sf

1) 1
+(s+- i

x+-, (4.24)

(») '(2f ) '(2~) '
(4.28)

(g!~!p!)s

Since the summand is invariant under permutations of
the values of A., p, v, the number of terms to be con-
sidered is relatively small, and the calculation is simple. '8

Values of I'„(0;0) and Q (0; 0) for e up to 10 are
given in TabIC I. Table II summarizes the results of

Tanrz D. The intensity ratio )=o(1)/o(0) of the Rarnan
scattering cross sections, for vanishing impurity concentration, as
a function of the eBective coupling (2e'/W). )=vj for W&0 (J=1
impurity in a J=O matrix), and g=y ' for 8')0 I,'J=O impurity
in a J=i matrix).

I!.Q~(1)0/c(~= 1)Intensity ratio: $=
~~ (0)j/ (

and for a walk of e steps it is

(4.25)

In this product of e factors, the terms arising from tak-
ing the 6rst term in Ft p times, the second term q times,
and thc third tclGl t' times glvc a contllbutlon to F
equal to

I! 1)" '( 1)" "(
. . .

*+-
I I

y+-I
I
s+-

I (426)
P!q!r! ~& ( y&

The coeKcient of x'y'so in this expression will be zero
unless the exponents are all even. Let

(4.27)

0.0—0.05—0.10—0.15—0.20—0.25—0.30—0.35—0.40—0.45—0.50

0.05
0.10
0.15
0.20
0.25
0.30
0.35

2e'/W

0.0—0.048—0.092—0.132—0.171—0.211—0.245—0.282—0.320—0.367—0.42

0.053
0.112
0.180
0.260
0.357
0.481
0.647

8/2e'

—21—11.0—7.67—6.00—5.00—4.33—3.86—3.50—3.22—30

19
9.0
5.67
4.00
3.00
2 33
1.86

1.00
1.'35
1.85
2.57
3.67
5.44
8.54

14.6
28.8
81

1.35
1.82
2.48
3.43
4.87
7.20

11.3

0&X, p, , v&[-',Nj,

where [s'rsj denotes the largest integer not exceeding ~~e;

'SAn alternative expression for P (0,0) has been given by
C. Domb, Advan. Phys. 9, 149 (1960), in Appendix II. Domb also
tabulates P (0,0) for a up to 9.
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calculations using Eqs. (4.19) and (4.23). Values of
terms in the series with e) 10 have been estimated by
taking note of the smooth approach of Q /Q„~ to its
limiting value 4 as e increases inde6nitely. The value
of the intensity ratio $ is given by g' or q

' according
as 8" is negative or positive. The two sections of the
table show how $ increases as the impurity state
approaches the band edges at E= —6~' and E= 2e' and
becomes less and less localized.

For negative W the band edge is reached, and $ goes
to infinity, for a finite W, (2e'/W) = —0.42, as obtained
by an extrapolation that may be in error by ~0.01. For
positive 8' a plot of E against 8' suggests that the
localized state disappears only when W goes to zero.
This can be verified by a more formal argument. One
of us has shown" that the impurity level will approach
a band edge for a finite t/V or as t/V goes to zero according
as the level density at that band edge is zero or finite.
In the present case, by Eq. (4.1), the lower band edge
corresponds to one point in k space; the surfaces of
constant Ei, approach spherical form near this point and
the level density goes to zero proportionally to k. Thus
the discrete level vanishes for finite t/t', and a finite
minimum value of H/" is required to produce a discrete
level. On the other hand, the energies at the upper band
edge are attained along lines in k-space, the surfaces of
constant E& approach cylindrical form nearby, and the
level density remains finite as the band edge is ap-
proached; thus the impurity level vanishes only as t/t/'

vanishes.
In the case of H~, for which ~2e'/W~ =0.163, inter-

polation yields (=3.42 for low J=1 concentrations
(W &0), and j= 2.29 for low J= 0 concentrations
(W)0). The experimental values" are 3.5~0.4 and
2.4+0.4, respectively, and the agreement between the
theoretical and experimental values seems to be entirely
satisfactory.

In the case of D~, the estimated va, lue of
~

2e'/W
~

is
0.352. For low ortho (J=-0) concentrations we have
H/'&0, and from Table II we get qo

' ——4.86. In the limit
c= 1 of pure paradeuterium the intensity ratio is there-
fore given by ((1)=4.86. The largest para concentration
at which measurements have been made is 50%, and
the experimental value of $ at this concentration is
f(-', )= 9.2&0.5."However the slope of the curve (= $(c)
is negative, and the theoretical value $(1)=4.86 is not
inconsistent with the data. For low para (J=1) con-
centrations, we have 8'&0, and interpolation yields
the value qi' ——55. If we assume that the intensity of
the Qi(0) line is not affected by the para impurities, the
intensity ratio is $= 55, and this is the value of $ in the
limit of vanishing para concentration. This large value
compares well with the value )=50+10 observed" at
a para concentration c=3.7%, but this agreement
cannot be regarded as significant. According to the
principle of spectroscopic stability [Eq. (2.15)], in a
mixture containing one para molecule in 27, one could
not have gP = 27 unless the Qi(0) line were to disappear

completely, and in that case one would have $= ~. The
large value, q&' ——55, calculated for a single para impurity
indicates that the impurity states in solid deuterium
are so poorly localized that the interaction between the
vibrational states due to the impurities cannot be
neglected even at the lowest concentration (c=3.7%)
for which observations have been made. Moreover, it
is evident that when the intensity of the Qi(1) line is
greatly enhanced one must take account of the reduc-
tion in the intensity of the Qi(0) line of the host lattice
in computing the intensity ratio $. These matters are
dealt with in Sec. V, in relation to D~. For H~ the cor-
rections are unimportant at the lowest concentrations
used in the experiments.

The amplitudes at the impurity sites must satisfy the
conditions

U(R, ) =y P G(Rp, R, )U(R, ),
pt

(5.2)

which determine the energies of the impurity states.
In making calculations to compare with available

measurements on deuterium it is convenient and satis-
factory to put c= 0 in Eq. (4.3) and to use the obvious
generalization of Eq. (4.8):

G(R, ; R,) = P J'„(R,; R,)P&. (5.3)

Equation (5.2) can then be written as

EU(R, ) =Q II„U(R;),
p/

where

(5 4)

(5.5)

The problem thus assumes a standard form, with
attention focussed on the impurities, except that the
eRective coupling matrix elements Jfpp depend on E,
through P= —(e'/2E), as well as on the form of the
lattice and the arrangement of the impurities, through
the J"s.

%e restrict our attention to the case of a periodic
matrix and a periodic array of impurities at equivalent
sites, one of which is the origin. Periodic boundary con-
ditions can then be a.pplied and there is a translational
symmetry in the system that assures the existence of
solutions of the form

U (R,)= exp (ik. R,) . (5.6)

V. RAMAN INTENSITIES DUE TO
INTERACTING IMPURITIES

%hen impurities are present at a number of sites Ep,
the impurity state amplitudes are given by [James, "
F.q. (24)]

U(R;) =y P G(R;; Rp) U(Rp). (5.1)
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In the state ir= 0 all U(R,) are equal, and this state is
Raman active. All other states have P, U(R,)= 0, and
are not Raman active.

We now focus attention on the Raman active state.
From Eqs. (5.4) and (5.5) it follows that

where

z=w P s„p. ,
n=o

S„=PP„(R„.0)

(5.7)

(5 8)

is the total number of walks of m steps from the origin
to any one of the impurities, including the one at the
origin. Equation (5.1) becomes

U(R') = U(0)7 Z Z I'-(R'; R.)p",
n=o p

from which it follows that

p U(R;) = U(0)yI(1—12p) '

(5.9)

(5 10)

where the sum is over all E molecules in a period con-
taining I impurities and Ã—J matrix molecules. By the
method previously illustrated, one Ands easily

X2=
i U(O)q i 'I P (n+1)S P".

n 0
(5.11)

=L(1-»P)' 2 ( +1)S-P.j-'.
n=o

(5.12)

Since there are I impurities per period, the ratio of the
intensity of the impurity line per impurity molecule
to that due to an isolated molecule is

g;2= i+ U(R;) i'/IX'

By the principle of spectroscopic stability, any increase
in the total intensity of the impurity line is matched
by a decrease in the total intensity of the matrix line.
Thus the ratio of the intensity of the matrix line per
matrix molecule to that due to an isolated molecule is

q '=(X Ig,2—)(X—I) '. (5.13)

We now consider the lowest paradeuterium concen-
tration, c=3.7%, at which measurements have been
made, " corresponding to one impurity molecule in 27.
One can arrange such a concentration of impurities in a
fcc matrix in a very symmetric way in which every third
molecule on any given line is an impurity. For a hcp
matrix it is not possible to arrange this concentration
of impurities in such a symmetric way, and the calcula-
tion of the number of walks between impurities would
be appreciably more complex. We shall calculate the
Raman intensities assuming a regular lattice of im-
purities in a fcc lattice, even though the material on
which the observations were made is hcp. The ap-
proximation of using the wrong close-packed matrix can
be expected to affect the results less than the rather
drastic assumption that the impurities form a regular
superlattice.

In this model the impurities occupy lattice points
separated by steps (&3@, +3a, 0), (+3a, 0, +3+),
(0, +3@,+3a). A slight generalization of the argument
used in deriving Eq. (4.28) shows that the number of
walks of rs steps from the origin to the impurity at
R,= (na, pa, ya) is

Finally, the observed quantity, the ratio of the intensity
of the impurity line per impurity molecule to the
intensity of the matrix line per matrix molecule, is
given by

&= (n"/n-') = (& I)~"—P In')—'

[$(n—~)] t4(n—P)l t4(n—v)lI.(R, ;0)= 2
v=o

n'~(~+v+ +-:&-+p+vj, n) (»+-)! (2.+p) t (2 +v)t
(5.15)

(n —n —2X)!(n—p —2p)!(n—p —2v)! ($+&) la! (p+p) Ip! (v+p)!p!

Values of I'„(R„;0) are readily computed for an im-
purity in each of the successive shells about the origin.
These numbers, multiplied by the number of equivalent
impurities in a shell, constitute the contributions of the
respective shells to S . The last-named quantities are
given in Table III for all shells contributing to S„for
z(~ 10. It will be noted that even for n =5 the contribu-
tions from walks to nearest-neighbor impurities exceed
the contribution from closed walks, and that for v=10
the third shell of impurities plays an important role in
determining S„.It is evident that 3.7% of impurities
does not constitute a small concentration, in the sense
that the impurities are effectively isolated, unless P is
so small that terms beyond m=2 make only a small
contribution to the series in Eqs. (5.7) and (5.12).This
conclusion is reinforced by the consideration that the
present model, with its regular arrangement of im-

—( '/2~) = 2 S.p"+'
n=o

(5.16)

X'/U(0)'y'I= P (n+1)S„P",
n=o

(5.17)

purities, neglects the effects of neighboring impurity
pairs having less-than-average separations. Inspection
of the values of Sn given in Table IV shows that neglect
of impurity interactions would be reasonable for 3.7%%uo

impurity in H2, for which P= (e'/2W)=0. 04, but that
it is much less satisfactory for D,, for which (as will
appear in the next paragraph) p—0.076, and for which
even the terms with m&10 contribute signihcantly,
particularly to the calculation of K'.

Table V gives the calculated values of
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TABLE III. Contributions to S„from neighboring impurities. The erst column gives the position (0!c,pa, ya) with respect to the origin
of one impurity and the number of equivalent impurities; the remaining columns give the total contribution to S for all the equivalent
impurities.

0, 0, 0
(1)

3, 3, 0
(12)

6, 0, 0'
(6)

6, 3, 3
(24)

6, 6, 0
(12)

9, 3, 0
(24)

6) 6, 6'
(8)

9, 6, 3
(48)

9, 9, 0
(12)

10

12 1 008 41 760 1 094 400 22 710 780

169 344

13 440

4 032

6 531 840

604 800

440 640

2 160

1 0 12 48 540 4320 42 240 403 200 4 038 300 40 958 400 423 550 512

12 288 4860 66 000 846 972 10 350 144 123 769 296 1 456 781 760

2 400 50 400 887 040 13 345 920 187 336 800

480 25 200 612 864 11 745 216 195 320 160

and of the intensity ratios gP and gP/g„' for a range of
values of P appropriate to D,. Table IV shows that
5„/S„, rapidly approaches the limiting value 12 as e
increases, and has effectively attained this limit at
m=10. The calculations include contributions from
terms with e)10, computed using this ratio, ranging
from 3% in (—e'/2W) for P=0.070 to 88% in. K' for

P =0.080.

TABLF. IV. Number of walks of e steps from a given impurity
to any other impurity, including the original one, for a superlattice
of impurities of 1 in 27 in an fcc lattice.

The estimated value of (—c'/2W) for D2, 0.088,
corresponds to P=0.0715 and to E= —2.59 cm ', as
compared with E=—2.44 cm ' for an isolated impurity.
The lower edge of the band in the pure crystal lies at
8= —6e'= —2.22 cm '. Thus, the interaction between
the impurity states increases the separation of the
Raman active frequency from the band edge, and
improves the convergence of the calculation with the
convenient choice of the parameter c as zero. Inter-
polation on a plot of qP against e'/2lF shows that
q,'=17.6, well below the upper limit 27 for this con-
centration, and that

0
1
2
3

5
6
7
8
9

10

0
12
60

826
9 180

111 132
1 326 780

15 930 108
191 100 060

2 293 279452

SnjSn 1

5.000
13.800
11.087
12.106
11.939
12.007
11.996
12.000

26&& 17.6
k= (n "/n-') = = 49

26—17.6

This final result illustrates the considerable effect of the
reduction of the Qz(0) intensity, along with the increase
of the Q&(1) intensity. Agreement with the observed
value, $= 50+10, is satisfactory, as would be the some-
what smaller value that would be expected to follow
from a calculation with a random distribution of im-

purities, in which the effect of impurity interactions
would be increased.

TABLE V. Results of calculations for 3.7 jo para-D2
in solid deuterium. ACKNOWLEDGMENT

p = —e'/2E—e'/2$'
m2/U(0)2& I
~,2

0.07
0.0837
2.447

16.0
37.6

0.074
0.0960
3.962

20.1
'?6

0.075
0.1003
4.715

21.2
95

0.076
0.1056
5.797

22.3
123

0.080
0.152

24.173
25.9

590
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