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to a symmetry coordinate representation. The sum is
over the three optically active symmetry coordinates m.
The dimensionless Green's functions of the defect lattice
can be expressed in terms of the Green's functions of the
perfect lattice G:

G'= McorsL1 —Gb]-'G.

The required complex matrix elements of G have been
calculated for this model. '

For a random distribution of impurities, the total
absorption is just the sum of the absorption by isolated
defects and by defect pairs, Eqs. (3) and (4), with

Figures 3 and 4 show the infrared absorption due to
the same number of charged impurities. In Fig. 3, the
impurities are assumed isolated. In Fig. 4, they are
assumed to occur only in pairs. A comparison of the
two Ggures shows that the AM=0 curve for defect pairs
is enhanced at low frequencies and depressed at high
frequencies. This is due to the coherent, in-phase motion
of the impurities at low frequencies and to the out-of-
phase motion at high frequencies. It is assumed that the
motion of the isolated impurities is uncorrelated.
Although the peaks of the resonance absorption for the
three optically active symmetries occur at slightly
different frequencies for DM/M= —4, they are not
resolved, and only a line broadening is observed.

Here, the fraction of defect atoms f is assumed to be
small.
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Three formally equivalent problems of crystal physics (vibrations of arrays of masses with nearest-
neighbor harmonic coupling, vibrations of arrays of coupled vibrators, and a generalization of Koster and
Stater's theory of electronic states) are considered. The moments of the energy (or frequency) bands of
pure crystals and the energy and amplitude functions of localized impurity states are expressed in terms
of the numbers of closed or open walks on the crystal lattice. The method is applicable to aperiodic as well
as periodic arrays, and is used to show that the level distribution in a pure crystal and the positions of
impurity levels due to isolated impurities are, for the models considered, the same for all close-packed
lattices, periodic or aperiodic. It is suggested that the walk-counting method is a more useful computational
resource than has previously been recognized.

I. INTRODUCTION
' ~T has been observed repeatedly that calculation of
~ - the eth moment of the frequency spectrum of a
lattice of coupled masses or vibrators can be reduced to
the summing of appropriately weighted contributions
from the various closed walks of e steps on the lattice.
The method has been applied to disordered linear
chains by Bomb, Maradudin, Montroll, and Weiss' and
by Deltour, but it has been little used in deriving con-
crete results for problems of higher dimensionality. It
is the purpose of this paper to point out that there are
contexts in which the walk-counting method is simple,
convenient, and even powerful.

*Work supported by National Science Foundation.' C. Domb, A. A. Maradudin, E. W. Montroll, and G. H. Weiss,
Phys. Rev. 115, 18 (1959}.' J. Deltour, Physica 32, 762 (1966).

Attention mill here be limited to three problems that
are formally equivalent:

(a) The vibrations of a lattice of masses with equal
harmonic couplings of nearest neighbors only. This is
treated in the approximation, common when the eGects
of imperfections in lattices were 6rst under investiga-
tion, ' in which the x, y, and s components of the mass
displacements are separable. (This is, of course, less
general than the harmonic approximation now com-
monly used. ') The equations of motion for the a com-
ponents of the displacements are, in this model,

tM,x;=n g (as—x;), all i
i(s')

E. W. Montroll and R. B.Potts, Phys. Rev. 100, 525 (1955).
4 A. A. Maradudin, E. W. Montroll and G. H. Weiss, Theory of

Lattice Dynamics in the Harmonic Approximation (Academic
Press Inc. , New York, 1963).
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the sum being over all nearest neighbors j (however
defined) of mass i.

(b) The internal vibrations of an array of molecular
vibrators with centers of mass fixed in a rigid lattice,
subject to next-neighbor coupling potentials propor-
tional to (r, r,)—(r, r,), —r; and r, being the instan-
taneous nuclear separations of molecules i and j and
r, the equilibrium value of these separations. In the
first approximation, as concerns the internal vibrations
only, one may consider solid H2 as an example of such
a system. ' The ortho- and para-H& molecules may be re-

garded as harmonic oscillators with excitation energies
somewhat different because of their different rotational
states. In. discussing the infrared' and Raman spectra
due to vibrational excitation of a single H2 molecule,
one can describe the state of the crystal in which only
molecule i is vibrationally excited by

which is based on description of the perturbed wave
functions in terms of Wannier functions a(r—R,) and
neglect of matrix elements of the unperturbed one-
electron Hamiltonian H between Wannier functions
centered about atoms more remote than nearest neigh-
bors. Assuming that there are unique values for the
matrix elements

(a(r—R,) ~H~a(r —R;))=8(0), (5)

(a(r—R;)
~

II
~

a(r —R,—d)), =8(1), (6)

and that the only matrix elements of the perturbation
potential V that need be retained are

(a(r —R,) ~

V
i a(r —R„))= V(0), (7)

where R, denotes any site occupied by an impurity,
one may write

~
R,)= ~

9;(1;r') lI t 9(0; r9)), (2) h(1) g U, (R,+d;)+V(0) P S(R,,R„)U,(R,)

and a stationary state v- of the system of coupled vi-
brators by

ir)=Q U, (R)iR;),

where U, (R,) is the amplitude for excitation of mole-

cule i in state ~. Let one species of molecule, appearing
at sites R„be regarded as an impurity in a matrix of
molecules of the other species, with excitation energy
differing from that of the matrix molecules by an
amount 8'. Since coupling of the vibrators is weak in

H& and t/t/ is small, one can treat the energy band of the

singly excited states v by neglecting interaction with
states having other numbers of excited molecules. The
Schrodinger stationary state equation is then equivalent
to a set of difference equations,

——',.' g U, (R,+d,)+W P ~(R;,R,) U, (R„)

= LE—8(0)]U,(R;), all i. (8)

Equation (1) gives rise to equa, tions having the same
general form as Eqs. (4) and (8) if one restricts atten-
tion to normal mode vibrations. We identify each mass
i by its equilibrium position I;, and assume that all
masses are M, except for impurity masses M' with
equilibrium positions R, . We assume that each mass has

p nearest neighbors. Let U(R;) denote the amplitude of

the x displacement of mass i. Then

—Mco'U(Rf, ) = —p~U(R;)+~ p U(R.,+dg)
di

+yI' M)M~ g s(R—,,R,) U(R,), all i. (9)

Equations (4), (8), and (9) can all be brought to the
fol m

di

=E,U, (R~), (all i) (4)
XU(R;) =P U(R;+d, )+y() P 5(R;,Rp) U(Rp), (10)

di

where d; runs over all displacements from site i of the

lattice to its nearest-neighbor sites, e' is a constant
measuring the strength of the coupling between nearest
molecules, and E, is the energy of the state, measured

from the energy of the "pure" crystal with vibrational

coupling absent. Equation (4) forms a basis for discus-

sion of the band (or bands) of singly excited vibrational
states of the pure crystal, and of the associated im-

purity states due to presence of a second species of
molecule.

(c) A generalization of Koster and Slater's theory of

electronic states in an imperfectly periodic lattice, '

' J. Van Kranendonk, Physica 25, 1020 (1959).
V. F. Sears and J. Van Kranendonk, Can. J. Phys. 42, 980

(1964).
7 H. M. James and J. Van Kranendonk, following paper, Phys.

Rev. 164, 1159 (1967).' G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954);96,
1208 (1954).

) =p —(~'/~o'), vo=—
M GOO

where (vo2= ~/M;

(11a)

Case (b):

Case (c):
X= —2E/e', yo ———2W/e', (11b)

~= r&—h(0)]/&(1), 7 = ~(0)/h(1) (11 )

An equivalent form, to be used later, is

U(R,) =aU(R, )+P P U(R;+d, )
di

+~ g 5(R,,R,)U(R,), (12)

where the last sum is over impurities only. In the several

cases one has the following equivalences:

Case (a):
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where
n= —c/(X —c),
P =- 1/P. —c),
~=~,/P, —c),

(13)

c being an arbitrarily chosen constant that may even
vary with the state under consideration.

The notation in Eqs. (4), (8), and (10) is chosen to
permit consideration of cases in which not all sites of
the lattice are equivalent, and the set of displacements
d, is different for different i. This includes cases in which

(quite aside from the presence of impurities) the lattice
is not a perfectly periodic one. In these latter cases one
can not derive Eq. (8) using arguments involving
Wannier functions, but must regard Eq. (8) as defining a
mathematical model for the variation of the amplitudes
U, (R,) of electronic states in the lattice.

Special attention will here be given to close-packed
lattices. This term will comprise all lattices formed by a
compact stacking of hexagonal-close-packed planes of
molecules, whether they occur with the ABABAB
alternation of the hexagonal-close-packed lattice, with
the ABCABC alternation of the cubic-close-packed
lattice, with a periodic stacking having a longer period,
or with an aperiodic alternation such as ABACACBAC

, subject only to the condition (essential for com-
pact stacking) that like plaes should not follow each
other. For all such structures p= 12.

II. LATTICES WITHOUT IMPURITIES

If the lattice is periodic and impurities are absent,
standard methods lead quickly to a full description of
the energy (or frequency) bands. If all sites are equiva-
lent, the set of displacements d, is the same for all i.
Equation (10), with po ——0, then has solutions

U(R;)= Uo exp(ik R;),

X(k)=P exp(ik d).

(14)

(15)

XC,=Q C„S,„, (all r) (17)

with
S„=Pexp(ik rI„), (18)

the sum being over displacements from a site on sub-
lattice r to all its nearest-neighbor sites on sublattice v.
The requirement of compatibility for Eqs. (17) leads to
the familiar secular equation

/S, „—~a,„ f
=0,

If the sites are inequivalent, but can be divided into
sublattices 7. of equivalent sites, one has solutions of the
form

U(R, ) =C, exp(ik R;), (R, on sublattice r) (16)

where

from which one obtains the energies or frequencies for
given k.

These methods fail if the lattice is aperiodic, as is the
most general close-packed lattice. One must then be
content with calculation of the moments of the energy
or frequency distribution. A direct calculation of these
moments is also desirable for some purposes, even when
the lattice under consideration is periodic. For such
calculations it is convenient to use the following
approach. We note that Eq. (10) ca,n be reduced to the
matrix form

xU=xU, (20)

where U is a column matrix of the U(R,), and A. is a
square matrix in which the element A,; is 1 if sites i and

j are next neighbors, and is 0 otherwise. If these
matrices are 6nite, one has the familiar theorem that

&2 &n

The terms on the right with given i contribute 1 to the
sum for each walk of e steps on the lattice that begins
and ends on site i. We denote the total number of such
closed walks by P„(R;;R,). Dividing both sides of this
equation by E, which is at the same time the number
of lattice sites and the number of eigenvalues 'A„we
obtain

(X-)= (P„(R,; R,)), . (22)

That is, the eth moment of the distribution of values
of X is equal to the average, over all sites i in the lattice,
of the number of closed walks of e steps beginning and
ending on site i.

As an application of this theorem it will be shown
that, for the models here under consideration, all close-
packed lattices give rise to the same over-all distribution
of energies or frequencies. This is somewhat surprising,
since the energy levels in question may be associated,
in the ordinary approach, with one energy band (fcc
lattice) or with two bands (hcp lattice), or with many
bands. ' In the aperiodic cases, the association of energy
levels into bands through the propagation vector falls
away, but there remains a band of energies (in the sense
of a distribution of finite width) that is the same as for
the periodic structures. Band structure, in this latter
sense, need not be lost, or even seriously modified, by
loss of certain types of periodicity in the system.

To prove these statements it is only necessary to
supplement Eq. (22) by a proof that P„(R,; R;) is the
same for every e and for every site R, in any close-
packed lattice. " Let us choose an arbitrary starting

f' The near but not exact equality of the frequency distributions
for hcp and fcc lattices of masses with a somewhat diferent coup-
ling has been studied by C. Isenberg and C. Domb, in Lattice
Dymamzcs, edited by R. F. Wallis (Pergamon Press, Inc. , New
York, 1965), p. 141.

It has been noted by C. Domb and M. F. Sykes, )Proc. Phys.
Soc. (London) $70, 896 (1957)j, that this equality exists in the case
of hcp and fcc lattices, but the author is not aware of any pub-
lished proof.
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for all close-packed lattices. (This is not necessarily the
case if the localized state is associated with several inter-
acting impurities. )

We approach this problem by considering Eq. (12).
Let G(R, ; R,) be a solution of

G(R. ; R,) =nG(R, ; R,)+P P G(R,+d, ; Rp)

Fio. 1. o, sites on hexagonal-close-packed plane A. +, sites on
plane B, above plane A. Arrows indicate walks from central A site
to plane 8 and back to plane A.

+S(R, ; R,) (23)

such that G(R, ; R,) ~ 0 as
~

R,—R,
~

—+ 0. This func-
tion, which plays the role of a Green's function, will in
general depend on I, and R; separately; it may be
simply a function of R;—R, for impurities at equiva-
lent sites R„ in a periodic lattice. ln any case, one can
write a formal solution of Eq. (12) as

U(R„)=y P G(R;; R,)U(R,), all i

point R,, and consider all walks that involve l steps
within the same hexagonal plane, m steps up to planes
above, and m steps down, in some specified order. "
Such walks will always end on the plane on which they
began; they will contain equal numbers of A —+ 8 steps
up and 8 —+ A steps down, A ~ C steps up and C ~ A
steps down, and so on. Let us consider the possible re-
sulting displacements within the hexagonal plane. An
A —+ 8 step up followed by a 8 —+ A step down can be
realized in nine ways (see Fig. 1), of which three produce
no net displacement and the other six produce net dis-

placements equal to those from a site to each of its six
neighbors in the same hexagonal plane. The result will

be the same whether the 8 ~ A step follows the A —+ 8
step immediately in the sequence or not; it will also be
the same for any pair of adjacent planes (BA, AC, CA,
etc.). The set of possible displacements will thus be the
same regardless of the starting point and the alterna-
tion of A, 8, C planes; in particular, the number of
closed walks will be independent of these factors. We
now add up the number of closed walks for all orderings
of the l in-plane steps, ns steps up and m steps down,
and for all choices of / and m such that I+2m= n Since.
these last-named processes involve no reference to the
ordering of the planes, the final result, P„(R,; R,), will

be independent of R; and of the alternation of planes.
QFD

III. LOCALIZED STATES DUE TO
ISOLATED IMPURITIES

The counting of closed or open wall-s on the lattice
can be a useful means for calculating the energy and
characterizing the spatial behavior of localized impurity
states. It also provides an easy means of proving that,
for the models here considered, the energy of a localized
impurity state due to an isolated impurity is the same

The constants U(R, ) associated with the impurity sites
must satisfy the conditions

U(R„)=p P G(R~; R~')U(R~'), all p. (25)

Consistency of these conditions determines the values
of E or ~ (on which n, P, y depend) for which the solu-
tions given by Eq. (24) exist. If there is only a single
impurity, this condition becomes

1=KG(Rp, R,). (26)

To determine 6, one can use an iterative process. For
simplicity, consider erst the case n= 0. We construct an
nth approximation to G(R, ; R,) a,s

G„(R,; R,) =P P G„,(R,+d, ; R,), R;&R„(27a)
ds

G„(R,; R,)=P g G. ,(R,+d„R,)+1
Ei p

taking as the zeroth approximation

Go(R;; Rp) = 8 (R;; Rp) .

(27b)

(28)

If G„(R,; R,) approaches a limiting form as n ~~, this
limit will be a solution of Kq. (23).

One can. think of G„(R,; R,) as representing the nth
step in the generation of a distribution of weights

G(R, ; R,). For any R; it is constructed as the sum of
weights at the sites neighboring R; in the (n —1)st step,
multiplied by P, plus an added. weight 1 at the impurity
site R,. This added weight will, in the next step, con-
tribute an amount P to the weight at each site neigh-

boring R„after v- steps it will contribute to the weight
at R; an amount P' for each of the P, (R, ; R,) distinct
walks of r steps from R, to R;. The quantity G„(R;;R,)
will be the sum of weights resulting from introduction
of weight 1 at R, in steps 0 to e:

"This proof can be expressed in the language of generating
functions, but that does not seem to add anything essential to the
following statement of the ideas involved.

G„(R,; R,)= g P P, (R;; R,) . (29)
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Passing to the limit, e —+, one obtains'2

G(R, ; R,) = g p Z, (R, ; R,). (30)

The convergence properties of this expansion can be
inferred from the known properties of random walks.
If each site has p neighbors, there will be in all p' dis-
tinct walks of v. steps. The distribution of the endpoints
of the walks will approach Gaussian form, for not too
large R;—R„as r becomes very large. One thus has,
for large r,

P, (R;; Rs) P'(Es) s~s exP( —ss
~
R,—R~ ~s/(Rs)}, (31)

where (Rs) is the mean square displacement due to a
walk of z steps, and is proportional to v. For any fixed
R, and R„as r becomes large,

We interpret these equations again in terms of weight
distributions. The weight at R; at any given iteration
will, on the next iteration. , add P to the weight at any
site R; reached from R; by a single nonzero step, and a
weight e at any point reached by R step of zero length;
after 7 interations it will contribute to the weight at R;
an amount a P~~ for each walk of r steps of which sa
are of zero length. Let P, , (R;; R,) be the total number
of wRlks f10m Rp to R2', In T steps) of which fg RI'c of zcl 0
length. Unit weight added at R~ will, after r iterations,
contribute to the weight at R, an amount

P &mph mP (R.. R )

Summing such contributions from unit weights added
Rt Rp 1D RD 1D6nltc DumbcI' of lteratlons7 oDc 6nds

P, (R;; R,) p'/r". (32)

Thus the series in Eq. (30) converges if and only if

~ pP ~

& 1. If the series converges for R,=R, it converges
for all R;, and. approaches 0 as ~R;—R,

~
increases; thus

U(R~) =yG(R;; R,)U(Rp) (33)

G(R;; R„)= P P a"P'—"J',„(R,; R,).
7=0 mM

Noting that

(35)

describes a localized state of the system, provided, of
course, that Eq. (26) is satisfied.

Unfortunately, the series in Eq. (30) does not con-
verge in the whole range of interest. In the case of a
cubic-close-packed lattice it is easily seen that 'A(k)

LEq. (15)j ranges between 12 and —4. This, with
Eq. (11), defines the range of energies (frequencies) of
the unperturbed problem outside of which the energies
of localized states will lie. In the present case (n=O) it
is evident from Eqs. (13) that localized impurity states
can occur for

s&P= 1/)—«r's
whereas convergence of Eq. (30) is limited to the range

A solution with more favorable convergence proper-
ties can be obtained by making an appropriate nonzero
choice of c and n. This corresponds to a change in the
origin from which X is measured. In seeking an iterative
solution of Eq. (23), Eqs. (27) must be replaced by
more general equations

G„(R,; R,)=rrG„.t(R;; R,)

+p P G„,(R;+d, ; R,), R,~R,

G (R, ;R,)=rrG. r(R„R,)
+p P G. ,(R,+d„R,)y1.

dp

12An equivalent form has been obtained by M. Toda, T.
Kotera, and K. Kogure [J. Phys. Soc. Japan 17, 426 (1962)g in
considering the vibrations of simple cubic lattices anth a single
impurity. See also T. Kotera, Progr. Theoret. Phys. (Kyoto),
Suppl. No. 23, 141 (1962).

and changing the index of summation, one obtains

G(R, ; R,) = P n "Q,(R;; R,),

p s

Q, (R;; R,)= g — E,(R, ; R,). (38).-o s!(r s)! n—
Discussion of the convergence of this expansion of

G(R, ; R,) will be limited to cases in which E„(R;;R;)
is the same for all i. This includes a wide variety of
periodic lattices, and all close-packed lattices. It will be
shown that by appropriate choice of the arbitrary con-
stant c one can assure the convergence of the expansion
of G(R„R,) for all energies (frequencies) outside the
unperturbed band —that is, for all cases in which local-
ized states exist. For this choice of c the condition
(Eq. (26)j that determines the energy (frequency) of
localized states due to a single impurity will always be
meaningful. Further, since P, (R, ; R,) and G(R„; R,)
are the same for all close-packed lattices, with any
choice of R„ it follows that the energy of a localized
state due to a single impurity will be the same for all
close-pRckcd LRttlccs and Rll lmpurlty sltcs.

The values of X in the unperturbed band will be dis-
tinguished by a subscript k, which may, but need not,
correspond to a value of a propagation vector k. The
extent of the unperturbed band is expressed in the
condltloD

(39)

(It has already been noted that for any close-packed
lattice X = —4, Xsr= 12.) The value of X for a localized
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1
G(0;0)=P.,——', (X +7, )j

X,—XI,(40)z, (R„R,) =(x, ).

impurity level, X;, must lie outside this range. By the the series converges to
moment theorem, Eq. (22), one has

(45)

By Eq. (38),

Q.(R. R.)=((&+p~~/~)') (4&)

The successive terms in Eq. (37) with R,=R, can thus
be expressed as ((n+PXq) '). For large r, these will vary
nearly as the rth power of the extreme value in the
spectrum of n+PX~. The expansion of G(R„R,) will
converge if both ~n+PX

~

and ~n+PX~~ are less than
1. Best convergence is attained by choosing c so as to
make the larger of these as small as possible. It is easily
seen that this occurs when

n+pX = —(n+pX+),

lf A. ; approaches any band edge at which the density of
XJ, values vanishes like a power of the distance from the
band edge, the last average will remain finite, as will

G(0; 0). By Eqs. (26) and (11) this merging of the im-

purity level into the unperturbed band, and the vanish-
ing of the localized impurity state, will occur for finite
p and for nonzero perturbation by the impurity. On
the other hand, if the density of X& values does not
approach zero at the band edge the average in Eq. (45)
will diverge as P; approaches the band edge: the dis-
crete impurity level will vanish only as p and the im-

purity perturbation go to zero.

X~+X
= —C=—

(42) IV. CONCLUSION

The expansion of G(R„; R,) then converges n.early like
a sum of powers of

n+pX =-', (X —X )/p. ;——', (X +X )j. (43)

This has magnitude less than 1, and the expansion of
G(R„R,) converges, if X, lies outside the band of values
of Xg. Q.E.D.

This argument can be carried farther, to determine
the behavior of G(0; 0) as X, approaches the band edge.
One has

Equation (37) has been. used by James and Van
Kranendonk' in making detailed calculations of the
energy and of some properties of U(R, ; R,) for local-
ized impurity states due to isolated impurity species in
H2. The simpler Eq. (30) was also applied, and found to
provide satisfactory convergence in the case at hand, in
treating a model that involved a regular lattice of inter-
acting impurities. Such calculations are so simple that
a desk calculator, while convenient, could have been
dispensed with. It appears that the walk-counting
method may be a more useful computational resource
than has previously been realized.

1 —-', (1 +X ) ')
X,—-,'(7, +X )

(44)

when Eq. (42) is satisfmd. For all X; outside the band,

ACKNOWLEDGMENTS

The author wishes to express appreciation for the
hospitality of the Department of Physics of the Uni-
versity of Toronto, and of the Quantum Theory Project
of the University of Florida, during the time in which
this work was done.


