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Charge Density of Diamond
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I'ourier transforms of the charge density of diamond are calculated using the orthogonalized-plane-wave
OPW method. The full OPW wave function is used in calculating the charge density in contrast to previous
calculations using only plane waves. The results are in excellent agreement with experiment.

I. INTRODUCTION

~CALCULATIONS of x-ray scattering form factors~ in diamond have evolved from primitive calcula-
tions using superpositions of atomic charges to more
re6ned calculations based on a variety of diGering ways
of treating the electronic structure of diamond, '—' Two
of the more reined calculations, that of Kleinman and
Phillips' and that of Bennemann' are more closely
related to the present calculation than the others.
Kleinman and Phillips constructed a local pseudo-
potential as an approximation to the nonlocal ortho-
gonalized-plane-wave (OP W)" method previously used
in calculating the electronic band structure in diamond. '
Kleinman and Phillips also used pseudowave functions
based on only the plane-wave parts of orthogonalized
plane waves (OPW's). Bennemann' used the Kleinman-
Phillips local pseudopotential, and he too considered
only pseudowave functions. However, Bennemann's
actual calculation differs vastly from that of Kleinman
and Phillips, and his methods, though sharing a number
of drawbacks with those of Kleinman and Phillips, may
be used to attack a wide range of problems which are
outside the realm of more conventional band theory. '
Bennemann's results for this problem are presumably
more self-consistent than those of Kleinman and
Phillips and do not contain the same sampling errors
(See Sec. V); however, they do contain a spherical
average over the Brillouin zone.

The present work. diGers in several respects from
these two previous calculations. I'irstly, we do not use
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a local pseudopotential; rather the full nonlocal OPW
method is adopted. Secondly, the full OPW wave func-
tion, including the orthogonalization terms, is used to
calculate the charge density. Other improvements over
the Kleinman-Phillips calculation are a fourfold finer
sampling of the Brillouin zone and an expansion of the
wave function in a larger portion of the complete basis
set; both of these improvements are allowed by major
advances in the speed of computation which have taken
place in the last six years.

IL SOLUTION OF THE OPW EQUATIONS

The orthogonalized plane wave method of Herring4
has received much attention in the literature. ' The
derivation of the OPW equations is well known, but the
method of solving these equations, to give both eigen-
functions and eigenvalues, is not common in the OPW
literature, although it wdl enough known in molecular
and atomic physics.

We write our wave functions as a linear combination
of OPW's

where the superscript refers to a particular eigenstate of
the equations haivng the energy E„, and the b's are
chosen real. The &'s are defined by (4.1).

The OPW equations may be written for diamond as
follows:

g b;"b;"{H&, ,t
—E,A(k;)A(k~) cosLs (k, —k;)7)

=P b;"bt."E„(b,„A(k;)A(k;) cos$~ (—k;—k;)), (2.2a)

where I/tu, u,.~ is the (k, —k,) Fourier transform of the
Hamiltonian seen by the valence electron, E, is the
energy of the corelike eigenstate of the valence Hamil-
tonian, A(k) is given by (4.3), and the two atoms in a
unit cell are located at %~ from the lattice point, with

87878
We now wish to write (2.2a) as a matrix equation.

That which is in the curly brackets on the left-hand side
of (2.2a) we call H; .Tha, t which is in the curly brackets
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on the right-hand side of (2.2a) we call G;;. We combine
the column vector eigenfunctions into matrices,
X; —=b;", and write the eigenvalues as a diagona, l matrix,
E;;= E;8;;.Eq. (2.2a) is now written as

charge density becomes independent of the assumed
initial charge density.

The exchange contribution to the potential is ob-
tained from the Slater model. "The Slater formula gives

X~V'X= X~GXE. (2.2b) V'x'~(r) = —6L(3/8n-) p(r) j'1', (3.2a)

The 6rst step in the solution is to transform G into the
unit matrix using a nonunitary transformation; (2.2b)
is transformed into

XrW 1Wa'-Wr(mr) 1X=X-rW 1(W &-) 1XZ -(2 2c)

where 5'GS"~=1. Then a unita, ry transformation is
made to diagonalize 8'H'8'~.

(XTgr 1UT)(U1Vv-II gj'TUT)(U(IVvr) 1X)-
= (XrW 'Ur)(U(lvV") 'X)E. (2.2d)

Since (UWH'W~U") is diagonal, (U(Wr) 'X) is also
diagonal, and, by normalization is the unit matrix.
Therefore

X=8"~U~.

The eigenvectors given by (2.3) are appropriately
normahzed,

p f, my n(x x.)—g

The matrix of eigenvalues is

Equation (2.4) is not relevant to the results of th1s

paper, which depend only on the eigenfunetions.

III. THE CRYSTAL POTENTIAL

The potential seen by the valence electrons is com-
posed of'a Coulomb part and an exchange part. The
Coulomb contribution is calculated from Poisson's
equation, written in atomic units as

where p(r) is the total electronic charge density at r. It
is almost impossible to know the valence part of p(r) at
enough points in the crystal to calculate V'"~(r) accu-
rately; however, it is still possible to calculate V'"'"(r) in
a rather diferent way.

We write p(r) as a sum of three terms.(r) =n,1,(r)+u..1.,1h.(r)+u.. (r) . (3.3)

As we shall discuss in Sec. IV, the valence charge density
is composed of two different types of terms. p, 1, (r)
L—= (R(r) in Sec. IVj is that part of the valence charge
density due to plane-wave plane-wave terms. There are
terms in p,I, which can not be represented by spherical
charge densities centered at nuclear sites. p, ~ „t,h„ is that
part of the valence charge density (called 8+6 in
Sec. IV) due to plane wave-orthogonalization and
orthogonalization-orthogonalization terms. p„,& „&h, may
be represented as a superposition of spherical charge
densities, each centered at a nuclear site, a character-
istic it shares with p„„." We rewrite (3.2a) to take
advantage of this

V~*~(r) = 6(3/—8~)»3

X(p- -'"()+rp'"()- - -"'()]) (32b)

We do not need to know p„,1, (r) in order to calculate
its contribution to V' '~(x). The term proportional to
p„1, 'I'(r) calculated using a power series expansion
takes one term further than is customary to gain higher
accuracy. In order to simplify the following expressions
we write 8(r) in place of p,1, (r) and 8(x) in place of
p,1. (x). If we write

V '"'(x) = 81rp(L)/a' (3.1) 8,(r) = 80+ g e(x)e'"' (3 4)
where L' ls a 1'eclpl'ocal lattice vectolq allcl V (8c) and
p(x) are the xth Fourier transforms of the Coulomb
potential and charge density, respectively. The charge
density p is composed of three terms, nuclear, core, and
valence charge densities. The nuclear charge density is
just a 6+ charge at each nuclear site. The core charge
density is taken to the same as that of an a.tom centered
at each nuclear site. Calculations of Herman have shown
that this is an excellent approximation in dia, monds;
is wave functions calculated by Herman in the diamond
crystal are essentially the same as those calculated by
Herma, n and Skillman' for the free neutra, l carbon atom.
The valence charge density is calculated self-con-
sistently. After a few itera, tions the calculated valence

8 F. Herman (private communication).
OF. Herman and S. Skillman, Atorlic Structure Calculations

(Prentice-Hall, Inc. , Englewood Clips, New Jersey, 1963).

«80

then
g —2/3

6"'(r)= 80'13+-— Q S(x)t, '"'"
3 «&0

2—80-'~' Q n(x) e(x')e'&~"'~'". (3.5)
9 «, «'WO

Kleinman and Phillips and others have used the &st
two terms of this expansion. Quelle questioned its
validity, " and Herman estimated that the two term
power series might be in error by as much as 20%."We

'0 J. C. Slater, Phys. Rev. Sl, 385 (195&)."F. Herman, Proceedings of the International Conference on the
Physics of Semiconductors, Paris I'Dunod, Cie., Paris, 1964), p. 3."F.QueHe, I:nergy Band Calculations, Tech. Rept. No. 295,
Lincoln Laboratory, January j.963 (unpublished)."F.Herman (private communication).
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would expect that the three-term expansion is consider-
ably more accurate than that with an error of about 4/o.
The exchange potential due to the smooth part of the
valence charge density is written as follows: e(r) = P b;b; expi(k; —k;) r

Ea' s.~

(4.6)

where 0',(r) is due to plane-wave plane-wave terms.

V .i. (~)'"'~= —6(3/8m)'~'eo-'~' —e(x)
$(r) is due to cross terms,

3 1 t8
2 $(r) = —2 R;

~

— g g {b;b;exp[i(k; —k;) R„$
e(~') 0:(x")b(x'+x"—x) . (3.2c) "2g (,~

go" "'zo
Xe»[ik; (r—R.)y„((r—R, ))A(k;)), (4.7a)

We consider the rest of the exchange potential, that pa, rt
proportional to [p'~'(r) 8,—'~'(r)] next. Of the three
terms which sum to give p(r) in (3.3) only p, &,„,(r)
X(—= Q(r)) is not easily obtained as a function of r.
However, a small error in R(r) gives rise to a much
smaller error in [p"'(r)—8'"(r)j. We are therefore

justified in using a spherical average of 8(r) about each
atomic site in this tenn clove, which we do. Kith the
spherical average of 8(r), the rest of the exchange
potential is easily evaluated.

and 8(r) is due to the atom-atom like terms,

e(r) = (1/2A') g b,b,A(k;)A(k, )

&&g exp[;(k,-k,).R„j&& [y„ (~r-R„~)~, (4.8)

where we assume no overlap of P~, wave functions of
neighboring atoms.

We take the Fourier transform of 8(r)

0,(~)= (8/~') Z b,4~(k;—k;—~). (4.9)

I or the particularly simple case of diamond we ma This term is readily evaluated from information used

wr;te an OpW as previously in the calculation. The Fourier transform
of 8(r) is also reachly obtained

Xp(r) = (4/1Va') "' expik r—A (k)P,"(r), (4.1) 6x ={ b;b;A k;» k, cos k, —k,
where E is the number of unit cells in the crystal, two
atoms per unit cell,

P.~(r)=(1/+2&V) P |tq,(~r—R„I) expik R„(4.2)

where R, is the location of the sth atomic site and

f~,(~r—R„~) is an atomiclike 1s wave function centered
on the vth site,

Xcosx ~ ~P~, (r)
~

' expiL rd'r, (4.10)

where the bracketed sum as well as the integral are
easily calculated with information used in other parts
of the calculation.

The Fourier transform of $(r) is easily written down

A(k)=(8/0')'" f~,(r) expik rd'r

= (8/g') '~'(4m. /k) P~,(r) sinkr rdr. (4.3)

These 2's a,re real numbers in diamond.
A wave function of an electron is composed of a linear

combina, tion of OP VPs

P=Q b;xg, , (4.4)

where the b's are real. The normalization condition is
that (PpP) is one. Since the f's are not an orthonormal
set, g b 2 is not necessarily equal to one.

Ke now write the charge density due to one electron.

~(r) —=0*0=O'(r)+ +(r)+&(r),

+A(k»(lk+x~) j cos[(k —k —x) r7). (4.11)

Unfortunately, although (4.11) is easy to write down
it is very difficult to compute numerica, lly, requirin
exorbitant amounts of computer time. This is because
ea,ch term in the sum must be calculated sepa, rately for
each diferent value of a. Instead of calcula, ting the sum
directly, we make an approximation which we feel is
well justified. Let us look once more at Eq. (4.7). We
now restrict our attentio~ to one a,tomic cell, the pth,
and we ignore the overlap of is functions centered on
diferent atoms. We transform coordinates so a= r—Rp.

1/2

$(a) 2 Re — {P b;b; exp[wi(k; —k;) rg
0

)&A(k;) expik; aug, (u), (4.7b)
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when a is within the pth atomic cell. Until this point we
have made no approximations. Now, however, we take
the spherical average of $(a); i.e., we replace $(a) by
$(a) where $(a) = (1/4m-) J'$(a)dQ, . Everything but
the expik, 'a term is independent of angle.

$(~)=2(8/~') "Vr.(~) 2 b'b~~ (h*)

sink, a
)&cosl (k, —k,) ~] . (4.12)

kg'c

Equation (4.12) may not look. computationally more
convenient than (4.11),but it is very much so. Further-
more, it is a simple matter, once possessing $(a), to
calculate $(r) for any number of x's, whereas (4.11)
requires a fresh start for each x,

$(x) = (4x./z) (cosx ~) $(a) (sin~a) ada. (4.13)

V. SAMPLING THE BRILLOUIN ZONE

In this calculation it is necessary to replace an average
over all states in the Brillouin zone by a discret. e sum
over a 6nite number of states. We use a sampling
procedure based upon one used by Kleinman and
Phillips. "

The method used has a procedure for successive
approximations. In the first-approximation reciprocal
space is divided into its unit cells. The average over all
sta, tes is replaced by a sum over the reciprocal lattice
points located at the centers of its unit cells. In diamond
we may most easily represent the electronic states by
"folding them back" into the first Brillouin zone.
Therefore, the average of a function is replaced by a
weighted sum over the occupied states at F, the weight
corresponding to the degeneracy of the state.

f=-;(1f(r,)+3f(r„.)). (5.1)

In the second approximation we introduce new points
midway between each pa, ir of points sampled in the first
approximation, in this case between each pair of points
of the reciprocal lattice. Upon some reQection one can
see that resulting set of points forms another body-
centered cubic lattice with a lattice constant half as
large as the reciprocal lattice and with a unit cell volume
one-eighth the volume of the reciprocal unit cell. If we
once again consider the first Brillouin zone, we see that
this procedure has introduced points at the X and L
points on the boundary of the first Brillouin zone.
Recognizing that only half of each of the volumes these
points represent lie in the erst Brillouin zone, we write
the result of this approximation as

{Il If(r )+3f(I' )]+3L2f(x,)+2f(x,)]+4LIf(L )+1f(L,)+2f(L )])
1+3+3(2+2)+4(1+1+2)

(5.2)

where the 3 is for the six I points and the 4 is for the
eight L points.

In the third approximation we introduce new points
midway between each pair of points sampled in the
second approximation. The new sample points represent
volumes one sixty-fourth the size of the volume used in
the first approximation. In the first approximation we
sampled only at all points which were located in the
erst Brillouin zone only at all even or all odd integer
values of h~, h2, and h3 where k is (2m/u)(h~, h~, h3). In
the second approximation we sample at all points in

the 6rst Brillouin zone for which hi, h2, and h3 are either
all even or all odd integer multiples of one half. In the
third approximation we sample at all points in the first
Brillouin zone for which h~, h~, and h3 are either all even
or all odd integer multiples of on quarter. In addition
to r, X, and L we get (lhrl, lhml lh~l) «(~»xs~o) «

twelve Z points, six W points, and twenty-four (f,~,4)
points lying within the first Brillouin zone. The third
approximation gives

1f(r)+3f(X)+4f(L)+6f(A)+8f(h)+12f(Z)+24f(-,';,', ',)+6f(W)-
1+3+4+6+8+12+24+6

(5 3)

where f(r) = 4(f(r~)+3f(r2; )), etc.
Because of insufhcient computer time we have been

unable to carry through this third approximation as is.
Herman has used a variation of this third approxima-
tion, which we also adopt. " Instead of considering all
sixty-four bcc sublattice sites, we consider only those

' L. Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959).

on a cubic lattice, i.e., only half of these sixty-four
points. In this way we avoid calculating the band struc-
ture at the very low symmetry (4,4, ~) points in the
Brillouin zone. The calculation of the band structure at
these points would involve diagonalizing matrices
larger than 80)&80, a very time consuming feat, since
the computer time for matrix diagonalization goes as
the cube of linear size of the matrix (i.e., ~ 80'). As a
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result we use the following

If(l')+3f(x)+4f(L)+6f(~= s, s,0)+6f(II')+12f(~= s, s 0)

32

where f(I') = (f(i't)+3f(I'ss )/4), etc.

TAsLz I. The calculated Fourier coefficients of the valence
charge density. The units are eiectrons/atom. x= (2s/o)h.
p =I+II+III.

(000)
(111)
(022)
(311)
(222)
(400)
(133)
(422)
(333)
&511)

—4.160
1.098
0.298
0.013

—0.105
—0.074

0.016
0.080
0.087
0.056

0.320
—0.196
—0.221
—0.138

0.000
—0.130

0.102
0.122
0.0/9
0.079

—0.160
0.109
0.144
0.098
0.000
0.130

—0.089
—0.118
—0.081
—0.081

—4.000
1.011
0.221

—0.037'
—0.105
—0.105

0,029
0.084
0.085
0.054

"S.Gotlicher and E. Wolfel, Z. Klektrochem. 63, 891 (1959).
I6 M. Renninger, Acta Cryst. 8, 606 (1955).

VI. RESULTS AND CONCLUSIONS

The results of the present calculation are listed in
Table I.Although we calculated the Fourier transforms
of the charge density for the forty lowest reciprocal
lattice vectors, we list here results for only the lowest
ten reciprocal lattice vectors as the reliability of the
results probably decreases with lsrl for a vartety of
reasons concerning the results in Table I.

Several comments shouM be made at this point. The
contribution of the orthogonalization terms $(x)+8(rr)
varies from eight per cent for x= (2m'/g)(1, 1,1) to much
higher values when ~x~ is larger than those considered
ln Table I. The calcu1atlons of Klcinman and Phillips'
and of Bennemann, ' which ignored these orthogonali-
zation terms which tend to reduce the magnitudes of the
low Fourier transforms of the charge density, usually
obtained smaller magnitudes than this calculation or
experiment. ""(See Table II.) This may be understood
from the fact that the plane-wave pseudo-wave func-
tions of Kleinman and Phillips and of Bennemann are
normalized to one, i.e., P mrs= 1, whereas, in the present
calculation, thc plane-wave part for the OP% wave
function is not normalized to one. In particular, for
I'r p brs= 1.09. Therefore, the plane-wave contribution
in this calculation is somewhat larger than in the others.
The assumptions of pseudowave functions and pseudo-
potentials also may have other more subtle effects on
the b s and, therefore, on the calculated charge density.

There are no adjustable parameters in this calcula-
tion; all parameters are determined from 6rst principles
(or reasonable approximations to first principles such as

TAM, K II. A comparison of the various calculated Fourier coefII-
cients of the valence charge density with experiment. Column 2
lists the experimental values of Gotlicher and Kolfel. Column 3
lists the calculated results of Kleinman and Phillips, Column 4
those of Bennemann, Column 5, those of Clark and Column 6
those of the present calculation. x=(2m/a)h. The units are
electrons/atom. The is contribution to the total scattering has
been recalculated using the Herman-Skillman wave functions as
opposed to the Jucys functions used by Kleinman and Phillips.
This affects the experimental results in Column 2 which differ
slightly from those listed in Kleinman and Phillips's Table II.

h GW

0.991+0.O05

(022) 0.185a0.009
(311) —0.045+0.005
(222) &0.15'
(400) —0,139&0.009
(133) 0.012a0.004
(422) 0.026+0.002
(333) 0.001&0.004b

(511) 0.001~0.004b

Kp 8
0.88
0.01

—0.14
—0.15
—0.13

0.91
0.12

—0.10
—0.13
—0.11

C

0.984
0.146

—0.022
—0.064
—0.046

1.011
0.221

—0.037
—0.105
-0.105

0.029
0.084
0.085
0.054

& Measured by Renninger, Ref. 16, with the same results as Gotlicher
and WOlfel.

b The powder method used by Gbtlicher and &51fel cannot distinguish
between (333) and t',511)rejections.

1~ F. Herman, R. I. Kortum, and C. D. Kuglin, International
J. Quant. Chem. (to be published).

the exchange potential presented in Sec. III) and self-
consistency. However, we did experiment with varying
some parameters in order to see how sensitive the calcu-
lation was to a small error or uncertainty in these
parameters. The parameters varied were the valence
potential and the core energy. The variation of the
valence potential over a range wide compared with its
uncertainty had almost no effect on the listed charge
densities. A 10% decrease in the magnitude of the core
energy changed Q,(x), $(x), and 8(x), each appreciably,
8 and 8 more than doubling, yet the total 8+8+8
changed by less than 10/o. The results quoted here are
based on a calculation involving from 132 to 140 OP%'s
at each point in the Brillouin zone. Although we have
not tested the convergence of the charge density with a
variation in the size of the OP% basis set, the results of
other calculations"" indicate that this number of
OPW's is more than adequate, especially for those
Fouricl transforms wc calculate. In addition to thc
question of convergence there is also the question of
self-consistency and the associated question of the
stability of the solution with respect to further iteration.
Our results are based on four iterations; however, our

starting potential was taken from a previous calculation
of ours which differed in only a few minor details from
the final calculation, and so the effective number of
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iterations is somewhat larger than four. Between the
third and fourth iterations only two of the independent
numbers of Table I changed suKcicntly to alter the
appearance of the table, and these numbers changed
only in the last decimal digit quoted. There is nothing
new or startling in that part of the band structure we
have calculated. " This calculation is the oftshoot of
another, a highly successful 6rst-principles calculation
of the bulk modulus, cohesive energy, and lattice con-
stant, of diamond, " and since the total crystal energy
(as well as the charge density) does not depend on the
energies or wave functions of the conduction dcctrons,
the only states in the conduction band considered mere
those whose location and symmetry coincided with
calculated valence band states.

In a calculation such as the present one, there is
always the question of the exchange potential. The
recent paper of Kohn and Sham, '" in which the authors
suggest that the Slater exchange shouM be multiplied by
a factor of ~„has inspired a certain amount of con-
troversy. ~' The Kohn-Sham suggestion encouraged
Herman el al.22 to try various multiplicative factors to
try to ht their calculated band structures to the more
certain of the experimental data. In their most recent
work Herman et al. '7 came to the conclusion that the
multiplicative factor which best fit the band structure
to the optical data of diamond was 7/4, "almost twice
the Slater value (of 1) and almost three times the Kohn-

"These numbers are available from one of the authors (I.G.)."I.Goro8 and I . Kleinman {to be published)."%.Koh d I.. J.Sh, Phy . R . 140, A1133 (1965)."Sister has replied to Kohn and Sham D. C. Slater, Quarterly
Progress Report No. 58, Solid State and Molecular Theory Group,
M.I.T, (1965)j.

22 I. Herman, R. L. Kortum, C. D. Kuglin, and R. A. Short,
Quantum Theory of Atoms, Molecules end the Soluf State: A Tribu/e
to J. C. Slater (Academic Press Inc. , New York, 1966).

"This is not to imply that Herman et al. , believe that the ex-
change and correlation in diamond is actually 'l/4 as large as the
Slater exchange.

Sham value. In a study of exchange and correlation in
silicon Phillips and Kleinman24 found that the Slatcr
exchange was in excellent agreement with their esti-
mated screened Hartree-Fock exchange. Rather than
try a variety of diferent multiplicative factors, we have
decided to use the original Slater exchange. This also
facilitates comparison with the earlier calculations'~;
the use of a different exchange potential would obscure
tlM cGccts of tlM other novel features of this calcQlatlon.

These rather large changes in the exchange potential
would have an effect on the calculated charge densities
but these effects are smaller than one might at hrst
expect. This is because the Slater exchange potential is
less than one fifth of the total crystal potential Dor
the (1,1,1) Fourier transform] and because there are a
variety of "restoring forces" in the calculation, e.g.,
the energy-dependent "repulsive potential" of the
orthogonalization terms.

Until the question of exchange is settled, we feel the
only improvement of any consequence to the calculation
is a 6ner sampling of the Brillouin zone which awaits
yet larger and faster computers.
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