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A lattice theory of the elasto-optic and electrostriction constants of crystals of the diamond structure is
presented. The results of the theory relate these constants to the derivatives of the electronic polarizability
which determine the intensity of the first-order Raman scattering of light by such crystals. Experimental
values of the elasto-optic constants are used to estimate the electronic polarizability derivatives for diamond,

germanium, and silicon.

I. INTRODUCTION

HE intensity of the first-order Raman scattering

of light by the lattice vibrations of a crystal is

determined essentially by the coefficients {P,,,o(/)}

which occur in the expansion of the electronic polariza-

bility of the crystal in powers of the displacements of
the atoms from their equilibrium positions,!

Pu=P,O43 P, (I)ua(lk)+- .

lka

(1.1)

In this expression #,(/x) is the o Cartesian component of
the displacement of the «xth atom in the /th unit cell from
its equilibrium position. In general, the expansion coeffi-
cients P, P, o(lk), ---, are functions of the fre-
quency of the incident light. However, in many appli-
cations the frequency of the incident light is small com-
pared with the frequency of the electronic transitions
in the crystal, and can be taken to be zero with little
error. A consequence of this approximation, which we
make in the remainder of this paper, is that P,, is a real
operator which is symmetric in the indices x4 and ».
Homopolar crystals of the diamond structure display
a first-order Raman effect. For such crystals symmetry
arguments show that the elements of the tensor P, q(lk)
can all be written in terms of a single parameter P as

P o(01)=P|epe| =—Pu,e(02), (1.2)

when the crystal axes and the coordinate system coin-
cide, where e, is the Levi-Civita symbol. In writing
Eq. (1.2) we have used the fact that, because of the
periodicity of the crystal, P, (k) is independent of the
cell index /, and have labeled the two atoms in a primi-
tive unit cell by k=1, 2. The calculation of the value of
the coefficient P from first principles, for a given crystal
possessing the diamond structure, while possible in
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principle, is nevertheless beset by serious computational
difficulties, and has not been done yet. The lack of ex-
perimental values for the absolute intensity of light
scattered from such crystals by one-phonon processes
prevents the value of this parameter from being inferred
from experimental scattering data. Consequently, all
attempts to obtain values of P to date have proceeded
indirectly.

In 1951, Theimer? related the parameter P to the
elasto-optic constants of crystals of the diamond struc-
ture, and obtained an estimate of the value of the
former coefficients from the experimental values of the
latter for diamond. However, Theimer’s calculation has
been criticized by Born,® who pointed out that while
the atomic coefficients { P, «(lk)} refer to a crystal with
a fixed number of atoms, the elasto-optic constants are
defined for a unit volume of the crystal, and that
Theimer had overlooked the fact that an elastic defor-
mation changes the number of atoms in a unit volume.

More recently Loudon* has derived a relation between
the Raman tensor and the deformation potential for
optical modes in homopolar semiconductors, and has
used this result to obtain an order-of-magnitude esti-
mate of the Raman efficiency for such crystals. [The
Raman efficiency is defined as the ratio of the number of
observed Raman photons produced per unit cross-
sectional area of the crystal per unit time to the number
of incident photons crossing unit area in unit time.

In this paper we relate the elasto-optic and electro-
striction constants of a crystal of the diamond struc-
ture to the coefficient P, from which estimates of the
latter can be made. In doing so we correct the error in
Theimer’s paper. We use our results together with ex-
perimental values of the elasto-optic constants, to ob-
tain values of P for diamond, silicon, and germanium.
Knowledge of the first-order coefficients {P,a(l)}
enables one to predict the absolute intensity of the
Raman scattering of light by one-phonon processes.

2 0. Theimer, Proc. Phys. Soc. (London) 65, 38 (1952).
3 Reference 1, p. 374.
4 R. Loudon, Proc. Roy. Soc. (London) A275, 218 (1963).
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The present calculations were motivated by two con-
siderations. The first is that even if the absolute inten-
sity of the Raman scattering of light by one phonon
processes were determined experimentally, this infor-
mation would yield only the magnitude of 2, but not its
sign. The calculations described in this paper yield both
the magnitude and sign of P. Second, from a knowledge
of these coefficients one can calculate the magnitude of
the static electric field which is required to induce
a measurable one-phonon infrared lattice-vibration
absorption in homopolar crystals of the diamond
structure.’

Recently, Anastassakis, Iwasa, and Burstein® have
succeeded in inducing one-phonon lattice-vibration ab-
sorption at the Raman frequency of diamond by apply-
ing a static electric field of 1.2X10° V/cm to their
sample. From the integrated absorption under the ob-
served peak, these authors were able to infer a value of
410716 cm? for the magnitude of the coefficient 2. This
result provides us with a check on the results of the
present calculations. In addition, recent measurements
of the first-order Raman spectra of silicon™® and of
germanium® have provided values of the ratios of
| Psi/Pasamona| and of | Psi/Pace|, which also serve as a
check on the present calculations.

II. ELASTO-OPTIC AND ELECTROSTRICTION
CONSTANTS

In this section we derive the formal expressions for
the elasto-optic and electrostriction constants which
provide the starting point for their calculation from a
microscopic model of a crystal.

We began by considering an elastic dielectric which
is subjected to a homogeneous deformation in the pres-
ence of an external electric field. We denote the position
of some point in the undeformed medium, referred to
some fixed Cartesian coordinate system, by the vector
X, and denote the position of the same point in the de-
formed medium, referred to the original coordinate sys-
tem, by the position vector x. The difference between
these two points is the displacement u(X), which we ex-
press as a function of the coordinates of the point in the

undeformed medium:
Fo=XaotuX), a=1,2,3. (2.1)

We define the position gradient Fos by

0%q Qua(X)
Fog= =0ast+
Xg 0Xpg
=04 €ap - (2.2)

5 E. Burstein and S. Ganesan, J. Phys. (Paris) 26, 637 (1965).

6 £, Anastassakis, S. Iwasa, and E. Burstein, Phys. Rev. Letters
17, 1051 (1966).

7J. P. Russell, Appl. Phys. Letters 6, 223 (1965).

8J. H. Parker, Jr., D. W. Feldman, and M. Ashkin, Phys. Rev.

(to be published).
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We will call the elements {e.s} the deformation param-
eters. In the present work we will consider only homo-
geneous deformations so that eqs is a constant, not a
function of X.

If the volume of some region of the undeformed me-
dium is Vo, the volume V of the image of this region in
the deformed medium is given by

V=JV,, (2.3)

where

J=detF>0. (2.4)

In terms of the deformation parameters {e.s} we de-
fine the Lagrangian finite strain parameters {n.s} by

N =3 €apt €8at2, Era€rg - (2.5)
A

Note that while e.s has not been assumed to be sym-
metric in a and B, 7as is by construction symmetric in
these indices. The tensor n describes only pure strains,
and vanishes if the deformation described by the {e.s}
is a pure rotation. Although 7.4 is defined uniquely in
terms of the parameters {e.s}, the reverse is not true:
to any set of parameters {745} there corresponds an in-
finite number of sets of {eqs}, which differ among them-
selves only in the orientation of the crystal relative to
a fixed coordinate system which they describe.

We can rewrite Eq. (2.5) in matrix form as

n=%(C-1), (2.6)
where

C=F7F. 2.7)

Since the determinant of the transpose of a matrix
equals the determinant of the matrix itself, we can use
Egs. (2.4), (2.6), and (2.7), to express J alternatively as

J2=detF detF=detF” detF
=detF’F=detC=det(I+29),
so that
J=[det(I+25)]"2.

At the same time that we introduce the Lagrangian
finite strain parameters {75} in terms of the deforma-
tion parameters, we must introduce the contravariant
components of the electric field, §,, which are defined
in terms of the true field components £, by

Eu=2 Foull,=E,+3 €,ul,.
» »

(2.8)

(2.9

The physical interpretation of the components {&,} is
that, apart from factors which depend on the primitive
translation vectors ay, as, as of the undeformed crystal
and on the Lagrangian strain parameters {75}, they
are the components of the applied electric field with re-
spect to the primitive translation vectors of the de-
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formed crystal, A;, Az, Az, which are given by

Az=az+>" epaf afB=x,,2
B

p=1,2,3.

Finally, we need the fact that the position gradient
Fpis compounded of a pure rotation of the medium and
of a pure strain:

Fag=2_ Ran(C1/2)5g
A

= Zx Ran[(I+29)' % ]sg, (2.10)

where R is the rotation tensor.

Let us denote by W =T¥(F,E,X) the potential energy
per unit undeformed volume of the medium. If the en-
ergy is invariant against rigid body rotations of the
medium, there exists a function W such that

W=W(n,8X). (2.11)

If we wish to refer the energy to unit volume of the
deformed crystal, we denote this function by %, where

w=J"W, (2.12)

so that

W(n,8,X)=J(n,8X). (2.13)

In what follows, because we consider only homogeneous
deformations, we will suppress the dependence of I# and
W on X.

That E and » together do not unambiguously de-
scribe a thermodynamic state of the system of medium
plus field follows from the fact that the strain param-
eters {n.s} give no indication of how the deformed
medium is oriented with respect to the field.® Thus, in-
stead of E, we use its contravariant components in the
deformed medium: The potential energy must be the
same for two similarly deformed specimens (i.e., de-
scribed by the same parameters 744), each of which is
subjected to an electric field whose contravariant com-
ponents are the same in both cases.

If we denote the o Cartesian component of the polari-
zation in the medium by P,, the dielectric susceptibility
tensor X,s is defined by

Xag(F,E) = 6Pa/aEg. (214)

The polarization is the dipole moment per unit volume
of the deformed medium, and is given by

oW oW
=——=—J (2.15)
EYoR OFq

9 Reference 1, p. 282.
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Therefore, the susceptibility of the deformed medium is

a

2

Xdﬁ(ltla):z —J!
IE.Es
W
=—J! 2 FapFﬁa“"'“""‘
po

p9e

= Z RuyRﬁﬂXam (7),8) ) (2.16)
uy

where

Xow(n,8)=—J' 3 [I4-29172,,
po
W
X [I+21)]1/2v0'm . (2-17)
08,08,

In Egs. (2.16) and (2.17) we have expressed the di-
electric susceptibility of a homogeneously deformed
crystal in an electric field in a form in which the effects
of a pure strain and of a rigid body rotation of the
medium are displayed separately and explicity. xs,,
X (n,8) describes the response of the susceptibility of a
pure strain of the medium. If the deformation of the
medium described by the {e,s} has a rigid body rotation
of the medium in addition to a pure strain, Eq. (2.16)
simply expresses the fact that the effect of the pure ro-
tation on the susceptibility is to transform X4 (n,8)
according to the transformation law for a second-ra:nk
tensor under a pure rotation.

In studying the change in the susceptibility due to a
homogeneous deformation of the medium it is clearly
the change induced by a pure strain rather than a pure
rotation which is of interest. In a measurement of the
change of the susceptibility with deformation the effects
of any pure rotation can be accounted for by the use of
Eq. (2.16) or, alternatively, the experiment can be
carried out in such a way that the deformation is a pure
strain (Rqg=84p).

We can expand W(»,8) for a crystal of the diamond
structure formally in powers of 5,5 and &, as

W(n78)=I7V0+% Z Capﬂv"]apnﬁa

apBo

1
+5 Z Canﬂa‘rrﬂap'ﬂﬂaﬂw"f‘ cee

apBoyr

-f-% Z 8,‘8;'14;11"*‘% Z gpgvAuvapﬂap
uy

wap

+% Z gugvA#vapﬂv’?5¢+ .

wrapfo

(2.18)

The coeff}cients {Casso}, {Cappoyr}, -+ are the second-
ogdef, third-order, --- elastic constants, respectively.
W is the potential-energy density of the undeformed
crystal in the absence of the field. Terms containing odd
powers of the field components are excluded by the
presence of the inversion among the operations of the
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point group of the space group O,7 of crystals of the
diamond structure.

When Eq. (2.18) is substituted into Eq. (2.17), we
can expand X°,,(1,8) to first order in the strain param-
eters with the result that

X“,,,,('r’,a) =—4 MV"’Z B#VW"?M"' Tty (2~19)
po

where

Bupo=A wpotAuebrptAnbup—Auwdps. (2.20)

The dielectric tensor €*,,(n,8) is related to the dielec-
tric susceptibility tensor by

€ (1,8) = 8ut47X°,(1, &)

=6nv—47rAuv_47l' Z Bp,ypg?],,a-—' e (2.21)
po

The Pockels’ elasto-optic constants {pu,.} are defined
by the relation?

(e_l)lﬂ’_ (50——1)#1’= Z Pw’pa’?pa (222)

to lowest order in the strain parameters, where ¢ is the
dielectric tensor for a strained medium, while g is the
dielectric tensor for the unstrained medium. If we write
e=go+ 0¢, then to first order in de

(s_l)lw—" (SO_I)WZ _Z (So_l)npaépa(t()‘l)w. (223)

For cubic crystals g is isotropic,

(20) = Buwreo, (2.24)
and Eq. (2.23) takes the form
(e )w— (e D w=—(1/e0*) dew. (2.25)
According to Eq. (2.21) Je,, is given by
deu=—4m % Buypempe s (2.26)

so that
(&™) — (671 = (47/ €)X Buspatipe- (2.27)
po

Comparing Egs. (2.22) and (2.27), we find that for
cubic crystals Pockels’ elasto-optic constants are given

1
Ta»y:"]“‘ Z FagF'y»{BZ Curﬂa'r]ﬂa'“l’_% ﬁ}_;, Cuvﬁv'y'r'r]ﬂan'yr"!_% BZ 8ﬂg¢ABa‘/w+%
u 4 odT -
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by

Purpo= 47/ €0*) Buypo - (2.28)

For cubic crystals the coefficient 4, is isotropic, and
in view of Eq. (2.19) we write it as

A= —8,X. (2.29)

On combining Egs. (2.21) and (2.24) with Eq. (2.29), we
find the expected result that X, is given by

Xe=(eo—1)/4w. (2.30)

Combining Egs. (2.20), (2.28), and (2.29) we find
that for cubic crystals

Puvpe= (47"/502){Awpv_‘ Xo
X [5#051'9‘!" 5;;,)51:0'* 5,,.;5,,.,]} .

The fourth-rank tensors pu,, and 4 ,,,, have only three
independent elements for cubic crystals. These are pi11,
pnzz, P1212, and A1111, A1122, A1212, 1'€Sp6CtiV61y. The
relations between these coefficients according to Eq.
(2.31) are

(2.31)

pun= (4r/e®)[A1111—Xo],

puze= (4r/e?)[A1122+Xo], (2.32)
prore= 47/ e’)[ A 12— X0 ].
The inverse relations are
A= (e?/4m) priui+Xo,
A 1199=(€0?/4) p1129— Xo , (2.33)

Ai215=(€02/47) p1r212+Xo.

To obtain the electrostriction constants we proceed
in a somewhat similar fashion. The general expression
for the stress components in an arbitrarily deformed
specimen in the presence of an electric field is'

1 oW oW
Ta1=~—lZ FauF'rvl:_‘{‘*—‘]
2] 104 Nuv 67];/;1

oW oW
+Eq Z FW—_‘—Ev Z Fap—'} . (2‘34)
» 98, B 8,

When Eq. (2.18) for ¥ is substituted into Eq. (2.34),
the expression for T, becomes

Z gﬂgv/{ﬂu‘wﬁrnﬁr_,_ cr }

BodT

1 1
+':'2;Ea Z FTM{Z gvAm_"‘% gvA nvﬂu"’?ﬂu“"‘ e }+_2'}E-y Z Fap{z gvA m+§ (‘g’,,A ;.wﬁu’/lﬁa‘*“ . } . (2.35)
M v vBo " v vBo

10 Reference 1, p. 376.
1 Reference 1, p. 286.



164

If we rewrite Eq. (2.35) as
TM:% Cayssngst - _%: Egegay

-3 %.;, EgEsygsay—--+, (2.36)

the coefficients {esa,} are piezoelectric constants, and
vanish for crystal of the diamond structure; the coeffi-
cients {ygsay} are electrostriction constants. Comparing
Eqgs. (2.35) and (2.36), we see that the coefficient ygsay
is given explicitly by

1
YBéay = __{ Z FﬁpFBaFauF'yvA pouy

pouy

+16as > F..FsA yv+%6a5 Z FouFgd
7% By

+%5yﬂ Z FaprvApv"_%a‘yﬁ Z Fﬁ#Fﬂl'AIW} ) (2'37)
By i3

to the lowest explicit order in the strain parameters.
This expression can be rewritten in a form in which the
effects of a rigid body rotation of the specimen and of
a pure strain are explicitly separated. To do this we
make use of Eq. (2.10) and the fact that the rotation
matrix R is a real, orthogonal 3)X3 matrix. We are then
led to the result that

Vosay= 2. RepRooiRamBRy¥ P pioyum, (2.38)

P1O1LIV1

where

1
'Y(T)plnum= "‘_{ Z Cplpllzcnallzcnmllzcmlle pouy
pPoLY

+% Z [591V1C0171/2C”l#112+ 5Vll‘lcﬁll’ll2cvl#1/2
pr

+ 5p1vCazv112Cmn1/2+ 501vxcﬁullzcuw”2]A MV} . (2-39)

The superscript 7" denotes that these constants relate
the electrostrictive stress to the applied electric field.
Equation (2.38) is the transformation law for a fourth-
rank tensor under a rigid body rotation of the specimen.
The elements of the tensor ¥™,,,,.,, describe the re-
sponse of the electrostriction constants to a pure strain
applied to the specimen. Because we have neglected the
contributions to ygs«y Which have an explicit depend-
ence on the {7,,} in writing Eq. (2.37), the dependence
of the electrostriction constants on pure strains de-
scribed by Eq. (2.39) is incomplete. However, we are
interested in the electrostriction constants themselves,
and not in their strain dependence, which is a higher-
order physical effect than we consider here. Therefore,
setting J=1, and C=1, we finally obtain for the electro-
striction constants themselves

’YﬁBG‘Y(T) = — {Aﬁsa.},—l—%[aﬂaA 'yG+ 550“4 18

t0s1dastOsydap]}. (240)

CRYSTALS OF DIAMOND STRUCTURE

1085

For cubic crystals, the tensor ygsq,‘™ has only three in-
dependent, nonzero elements, and these are

Y111 P = —{A1111—2Xo} ,
71122(T) =—A1100 )
Y121:D = — { A 1910— X0} ,
where we have used Eq. (2.29).
For some purposes it is more convenient to consider
the stress and field components as the independent vari-
ables determining the elastic strains. For this purpose we

introduce the elastic compliances {Sag,:} which are de-
fined by

§ Sapﬁq‘cﬁryr= 6415,,,-"—-‘ % CapganB,yf . (2.42)

(241)

We can, therefore, put Eq. (2.36) into the alternative
form

77a'y=z SayﬂﬁTﬂa“_Z EnSa'yﬁﬁepﬂs
go 1B

+% Z EuEvSa7138’Y(T)uVB5+ trte

pvBé

(2.43)

The electrostrictive strains induced in crystals of the
diamond structure are obtained from this expression by
setting Tg;=0. For crystals of the diamond structure
the electrostrictive strain is given by

77117:2 E/JEV{% :4;, Sa-yB&'Y(T)yvﬁa} . (2.44)
W

The coefficients in curly brackets in this expression are
called the electrostrictional moduli {y® g5} :}

'Y(");wa'y:% %—} S(T)avﬁﬁ'ymﬁb- (2'45)

Finally, on combining Eqs. (2.33) and (2.41), we
obtain the relations between the elasto-optic constants
and the electrostriction constants for crystals of the
diamond structure:

—v1unP = (e?/47) pri11— Xo, (2.46a)
— 11207 = (&o%/4) p1122— Xo, (2.46b)
— 12127 = (&0®/47) p1212. (2.46¢)

III. LATTICE THEORY OF THE
COEFFICIENTS {A4,,4,}

The potential energy of an arbitrary nonprimitive
crystal can be expanded in powers of the displacements
of the atoms from their equilibrium positions as

By=De+3 2. 2 Bas(li; Vi) ua(l)ug(Ue ) - - .

lxa UVx'B8

(3.1)

Here ua(lk) is the o Cartesian component of the dis-
placement of the «th atom in the /th unit cell from its
equilibrium position. The {®.5(/k; /'x')} are the atomic
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force constants. The harmonic approximation for the
potential energy expressed by Eq. (3.1) suffices for our
purposes. We subject the crystal to a deformation de-
scribed by

we(IK) =2, €apxp(IK)=do(k). (3.2)

The first term describes a homogeneous deformation of
the crystal. x(l) is the position vector of the equili-
brium position of the atom (Ix) in the unstrained, field-
free crystal. The deformation parameters {e.s} are the
elements of a real 3X3 matrix which is not necessarily

B=80+3 L {X X Paslli; V), (l)2o ('’ }) Yeapeso

apfo Ik Vg’

+20 2 A Bag(li; V)16 (') }da(li)esot5 2

Uy’

lka Bo

It is convenient at this point to eliminate the deforma-
tion parameters {e.,} from this expression in favor of
the Lagrangian finite strain parameters {7,,}, which
are defined by

ﬂapz%{éap"{'"epa-’_% eAae)‘P}= Npe« (34)

At the same time we must eliminate the components of
the vector d(l) in favor of the contravariant compo-
nents in the deformed crystal, {d.(l)}, which are de-
fined by!?

do(l0)=da(I)+2 €rad,(Ik). (3.5)

These displacement amplitudes, as well as the strain
parameters {n.,}, make no reference to the absolute
orientation of the crystal. Equation (3.5) can be easily
inverted, with the result that

AND E. BURSTEIN 164
symmetric. The displacements {d.(/)} represent the
relative displacements of the sublattices comprising the
crystal in response to the macroscopic strain. They are
nonzero for crystals every atom of which is not at a
center of inversion symmetry. It will be seen that da(l)
is independent of the cell index /. However, it is formally
convenient to allow for a possible dependence on 7 until
a later stage in our calculations. The values of the sub-
lattice shifts {d4(/)} will be obtained eventually by
minimizing the potential energy of the strained crystal
in the presence of the field. When we substitute Eq. (3.2)
into Eq. (3.1) we obtain

Ik 1

;ﬁ Bo5(lk; V' )do(I)ds(Uk). (3.3)

do(l) =da(lK) =3 €pad,(I)+0(?). (3.6)

To carry out these eliminations we make use of the
result, which follows from the transformation properties
of the atomic force constants under an infinitesimal
rigid body rotation of the crystal, that the sum

> Bap(li; Ve )xo(Uk') = Gapo(lk) 3.7
U

is symmetric in 8 and ¢ for every value of (Je). Conse-
quently, the sum

>3 Bap(lic; Vi), (I) 2,V ) =V oG apo

ik Ve

(3.8

where V, is the volume of the undeformed crystal, is
symmetric in @ and p and in 8 and o, as well as in the
interchange of ap with So. We therefore obtain the result
that

Wi=Vi'®=Wots > Gapﬂa%(eap“'“epa)%(eﬂf*' evﬂ)'*' Vit X Gaﬁv(l")[‘ia(l/‘)—z fpatzp(l")‘*‘ to ]%(fﬂr“}‘ €05)

apfo

lka Bo p

+%V0_1 Z Z ‘Paﬁ(l’ﬁ l”‘,)[‘za(l")—z epndﬁ(l")"' T ][JB(Z’K’)_Z evﬁdv(l/",)"*' v ]

ke UVx'B P

= W0+% Z Gapﬂw"?ap”lﬂv"" Vel Z Z Gaﬁf(l")(za(l")ﬂﬂa‘l'%l/rl Z Z Qaﬂ(l"; l,",)da(l")dﬂ(l,",)_i' e

apBo lxa Bo

In writing this expression we have neglected terms of
third order in e, and d.(/). However, it will become
clear from the succeeding analysis that none of the
omitted terms contribute to the potential energy den-
sity a term of the form § 3" uap 646,4 wapte,. In the con-
text of the present problem their neglect is therefore
justified.

If we minimize the potential energy density given by
Eq. (3.9) with respect to the {da(l)}, we see that in the
approximation which this equation represents da(lk) is
a linear function of the {na,}.

12 Reference 1, pp. 139 and 281.

(3.9)

lka UVK'B

In the presence of an external electric field E, addi-
tional terms must be added to the potential energy of
the crystal. These terms in the adiabatic approximation
are given by!?

®/= _Z EPMF_% Z EuEvP‘w—' M (3.10)
13 by

18 Reference 1, p. 310. Although the field E appearing in this
equation is strictly the external field, we assume that this is also
the macroscopic field in the crystal, i.e., that there is no depolariz-
ing field. This can be achieved experimentally either by plating
the electrodes which give rise to the field to the faces of the crystal,
orlby choosing the crystal to be a thin slab parallel to the external
field.
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to second order in the field. Here M, is the u Cartesian
component of the crystal dipole moment operator, and
P, is the uv element of the static electronic polariza-
bility of the crystal. Both M, and P,, possess expansions
in powers of the nuclear displacements:

M,=M, 943 M, ()ua(l)
lka

33 2 My (s Ve ue(I)ug(Ue)+- -+, (3.11)

lka U'k'B
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Puv=an(0)+Z P#V'a(l")ua(l")
lka

T3 2 2 Puas(li; Vi )a(l)us(Vi) - -

lka V'S

(3.12)

The first two terms on the right-hand side of Eq. (3.11)

are absent for crystals of the diamond structure.
When we substitute Eq. (3.2) into Egs. (3.11) and

(3.12), we obtain for crystals of the diamond structure

1YY 3 EM,.6(k; Uk ’){Z %, (1) 25 (UK ) €apesot2 Z %s(Uk") ol a(l) +do(Ic)dp(V'k') }

p lka UVk'B

—32 P,OFE,E,—
v

w lka

XAZ @p(l)2e(V'e) eapesat2 20 0o(l's)egada(lk)+da(l)ds(k’) } — - - - .

We must now eliminate the deformation parameters
{exp} and the components of the inner displacements
{do(lk)} from this expression in favor of the finite
strains {74,} and the contravariant displacement com-
ponents {d.(l)}. However, as pointed out by Born and
Huang,'* we must also eliminate the field components
{E,} in favor of the contravariant components {8,} in
the deformed crystal, which are defined by

8,=E,+Y er,Ex. (3.14)
A

These field components make no reference to the ab-
solute orientation of the crystal.

We use the conditions imposed on the coefficients
{Mp.ap(lc; Vk")}, {Puv.a(l)}, and { Py gallk; Px’)} by the
transformation properties of M, and P,, under infini-
tesimal rigid body rotations of the crystal to eliminate
the parameters {eq,}, {de(/)}, and {E,} from & in
favor of the {74,}, {da(l)}, and {8,}. The necessary re-
sults are that the sums

> My,ep(li; Vo (UK) (3.15a)
l,K,

IZ Pw,a(ll‘)xp(lx)—ﬁuapvp (0)—'6yapyp(0) ) (3.15]))

2 P ap(lx; VK )2o(V'K') — 8ap P ur,o ()
Uk
— 08P ov,a(l) = 8,8P us,e(lx) ,  (3.15¢)
are symmetric in 8 and o, in « and p, and again in 8 and
o, respectively.
If we retain terms in @’ of no higher order than third

14 Reference 1, pp. 282-283.

Z Z E EPMP a(lx){z xp(lK)eap+d (l'{)}"—l Z Z Z E EPMV aﬁ(l", Uk ,)

w lka UVk'B

(3.13)

in 7ap, 8,y and do(lk), we can neglect the last three terms
on the right-hand side of Eq. (3.13), with the conse-
quence that

W=Vl = "‘% Z Z gnMnapﬁanapnﬁo'

bk apBo

L LEDIDIDD .M paBV(l")da(l">7)ﬂc

u lka Bo

=3Vt X X X 8uMyap(lc; Uk')
p lka Uk’

X da(l)dp(W) =+ -,
“%VO-I Z P I (0)8”(%
v

=3V 12 X L8P uastap

woap
Vet % % 8,8,Ppo(l)do(l)— - -+, (3.16)
where
VoM yapgo= % Z_:,’ My a(l; Ve )y () xe(V’),  (3.17a)
M yapo(lc)= E‘: M y,as(li; Ve )2 (UK') (3.17b)
Puap= % Py, o(lk)2,(Ik)
—04alyp 0 —8,aP,, . (3.17¢)

The coefficients {M ,a,s,} vanish for crystals possessing
a center of inversion. The first term on the right-hand
side of Eq. (3.16) will therefore be omitted in all that
follows.

The equation for du(/) is obtained by minimizing the
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sum of W, and W’ with respect to da(l):

A. A. MARADUDIN AND E. BURSTEIN

164

i)
*‘——(Wh—l- VV’)= Vet Z Ga,e,,(llc)np.,-{— Vo—l E fI)ag(lK; l/K/)(zﬂ(l,K’)"l" oo
Bo Uk'B

ad o (Ix)

~ Vi X3 EuMuapeW)nge— V' X 3 8uM yu,ap(lic; V')AV ) =5V 88, P allk)— - -+ =0. (3.18)
© Bo n Uk'B uy

It is shown in Appendix A that the solution of this equation can be written formally as

de@()=—3 Tas(li; ')Y. Goye (V) nyrt3 IZB Top(lic; Vi)Y 8u6,P s(V'k")+0(n*18)
'y uy

k'8 yT

(3.19)

where I' is a suitably truncated form of the matrix @~1, With the aid of the equilibrium condition (3.18) we can

rewrite the potential energy density as

W= M'70+% Z Gapﬁanapnﬁa'_!—%vﬂ_l Z Z Gaﬁa(lx)d-a(o)(lx)nﬁv_%VU—I Z E Z 8ﬂMﬂaﬁU(lK)(za(0)(lK)7]ﬁ7

apBo lka Bo

—'%Vowl Z .va(o)gygv—%‘VO.—l Z Z 8"8,.1),”“,,17,,,_%1/0_1 Z Z 8u8vav.a(lK)da(0)(lK)+ ttt .
uy

woap

u lka Bo

(3.20)

w lrka

When we substitute into Eq. (3.20) the explicit expression for d,®(I) given by Eq. (3.19), and collect the terms

of O(n?) and of O(nE?), we obtain

W: IVO_,"% Z Gapﬂa"lmp"'lﬁa"% Z {VO_1 Z Z Z Pu»(lK; llK’)Gnap(l")Gvﬁa(l,",)}ﬂapnﬁa

apBo apBo w Ik Uk

—‘21‘ Z Z 5u8v{V0—1Pﬂmp}77ap+% Z Z é’"é’,,{ Vit Z Z P,‘y,.,(lx)l’.,a(llc; Z/K/)Gﬁap(l,’fl)}"lap‘*‘ e

woap woap

1f we compare this expression with Eq. (2.18), we can
make the identifications
Capﬂ(T:deﬁV— I/0.—1 Z Z P,,y(lK; l/K’)

Iep Vv
XGlxap(l")Gvﬂﬂ(l,Kl) )
A wap™ T VO_IP}LVDt;J_’— VO_I Z Z PIW:'Y(ZK)
Ixy Uk’S

X Tys(lc; Vi )Goap(U'k’) . (3.23)

The identification of the coefficients {Ca,s:} given by
Eq. (3.22) as the ordinary elastic constants follows from
results of Huang,!® Leibfried and Ludwig,'¢ and Lax.}”
The first term on the right-hand side of Eq. (3.22) gives
the contribution to the elastic constants associated with
the homogeneous deformation of each of the two sublat-
tices comprising crystals of the diamond structure; the
second term gives the contribution associated with the
relative rigid body displacement of the two sublattices
in response to the homogeneous deformation of the
crystal. It should be noted that the coefficients Ga,g- are
defined by an expression, Eq. (3.8), which is a function
of the equilibrium positions x(/k) and x(/'x") of the atoms
(i) and (F«’), rather than of the relative separation of
these two atoms, x(Ik) — x(!'«’). It follows, therefore, that
the contribution to the sum in Eq. (3.8) from lattice

15 K. Huang, Proc. Roy. Soc. (London) A203, 178 (1950).

16 G. Leibfried and W. Ludwig, Z. Physik 160, 80 (1960); L. T.
Hedin, Arkiv Fysik 18, 369 (1960).

17 M. Lax, in Proceedings of the Iniernational Conference on Lai~

tice Dynamics, Copenhagen, 1963, edited by R, F, Wallis (Perga-
mon Press, Inc., New York, 1965), p. 583.

(3.22)

(3.21)

Iky UVk’8

sites in the surface of the crystal is of the same order of
magnitude as the contribution from the lattice sites in
the interior of the crystal: such a sum is said to be
boundary sensitive.6:1” Consequently, Eq. (3.8) does
not provide a convenient starting point for the calcula-
tion of the elastic constants and must be transformed
into a boundary insensitive form for this purpose. The
way in which this is done is described in Refs. 16 and 17,
and we will not go into it here, as it is not with the elastic
constants that we are primarily concerned. In what fol-
lows we therefore focus our attention on the coefficients
{Aﬂvaa}-

We can simplify the expression for 4., given by
Eq. (3.23) and at the same time compare our results
with those of Theimer.? Comparing Eq. (3.20) with Eq.
(2.18), we can make the identification

Ap=—V P, ®=—5,X,, (3.24)
where the second equality is a consequence of Eq. (2.29),
and is valid only for cubic crystals. Equation (3.24),

together with Egs. (3.17¢) and (3.23), yields the result
that for cubic crystals

Auvapz Buvap(1)+Buvalz(2)+X0[5ua5w+ avaaup] ’ (3-25)
where

B;wap O=— VO-_1 Z P,w,a(llc)x,,(llc) ) (3.26&)
113
‘Blwap @)= VO—‘I Z z PIH',’Y(ZK)
ley Uk’
X Tya(l; Vid)Goap(l'6) . (3.26b)
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If we combine Eq. (3.25) with Eq. (2.31) we obtain for
the elasto-optic constants

Puwvap= (47"/‘502){Buvap(l)'l"Bﬂmp(2)+X06uv5ap} ) (3-27)
or alternatively
prap(1)+prap A= (502/477')P;wap"‘ Xoa‘waa’, . (328)

The physical interpretation of the coefficients
{Bue,V} is readily seen. The atoms comprising a crys-
tal possess electronic charge distributions of finite
spatial extent surrounding their nuclei. As two atoms
are brought closer together than their equilibrium sepa-
ration in the crystal the overlap of their electron clouds
increases. However, because of the exclusion principle,
the electrons try to avoid the region of maximum over-
lap, and the electronic charge distributions on the two
atoms accordingly distort. The degree and nature of
this distortion is a function of the relative separation
and orientation of the two atoms. The distorted charge
distributions respond differently to an external electric
field than do the undistorted charge distributions, so
that the electronic polarizability of the crystal is a func-
tion of the displacements of the atoms from their equi-
librium positions. The coefficient Py,,o(lk) gives the
first-order change in the uv component of the electronic
polarizability of the crystal when the atom (/) is given
a unit displacement in the x direction, all other atoms
being kept fixed at their equilibrium position. The co-
efficients {Bua,} and {Bue,®} therefore give the
change in the polarizability of the crystal (strictly, the
susceptibility) when the atoms comprising the crystal
are displaced from their equilibrium positions in the
pattern associated with a homogeneous deformation of
the crystal. In particular, the coefficients { B, ™} give
the change in the polarizability due to the atomic dis-
placements associated with the homogeneous deforma-
tion of each of the sublattices comprising the crystal.
However, in crystals of the diamond structure every
atom is not at a center of inversion symmetry, so that
a homogeneous deformation of each sublattice is ac-
companied by a relative displacement of the two sub-
lattices. The change in the electronic polarizability of
the crystal associated with the latter displacement is
described by the coefficients {Bua,®}.

The relation between the polarizability derivatives
and the elasto-optic constants obtained by Theimer
[Eq. (3.24) of Ref. 2] differs from the result given by
Eq. (3.28) only by the absence of the term in X, from
the right-hand side of the latter. The presence of this
term on the right-hand side of Eq. (3.27) has its origin
in the change in the volume of a crystal accompanying
a homogeneous deformation. That is, even if the atoms
comprising a crystal were not polarizable and deform-
able, and the constituent sublattices did not undergo
any relative displacements on the application of a strain
or electric field to the crystal so that Bue, = Bua,®
=0, the dielectric polarization, which is the dipole mo-
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ment per unit true volume, would still be a function of
the strain parameters simply because the crystal volume
is a function of the strain parameters. On the basis of
this argument the elasto-optic constants in this artificial
case would clearly be given by

Plﬂ'ap= (477/602)X06uv6ap (329)

for cubic crystals, and this is just the expression into
which Eq. (3.27) degenerates for this case. Theimer’s
theory, on the other hand, predicts that the elasto-optic
constants vanish in this case.

IV. DETERMINATION OF THE COEFFICIENTS
{B.r2,®}{FOR CRYSTALS OF THE
DIAMOND STRUCTURE

The translation vectors for a crystal of the diamond

structure are
x(0)=hai+las+la;, (4.1)

where Iy, Iy, I3 are three integers which can be positive,
negative, or zero, and to which we refer collectively as
1. The three primitive translation vectors are given by

31=%ao(0,1,1), a2=%00(1;071); a3=%00(1:1,0) ) (42)
where g is the lattice parameter. The basis vectors are
x(1)=0, x(2)=1a,(1,1,1). 4.3)

In what follows we assume that the crystal which we
study contains V primitive unit cells. Consequently the
volume V), of the undeformed crystal is given by N,
where v, is the volume of an undeformed primitive unit
cell, which for crystals of the diamond structure is
9= 00%/4. This assumption means that the cell index /
takes on only NV values.

We consider first the coefficients {B,¥}, which
according to Eq. (3.26b) are given by

Buvap(2)= VO—I Z Z ‘PIW.'Y(ZK)

Iky Ux’8

XTys(le; Ve )Goap(Uk').  (4.4)
The coefficient Gag.(lk) appearing in this expression is
defined by Eq. (3.7) as

Gapo(l) =2 ®os(lic; Vi), (Uk’). (4.5)
U

It follows from Eq. (4.5) and from infinitesimal transla-
tion invariance, as expressed by Eq. (A6), that

; Gapo(lk)=0. (4.6)

The evaluation of the expression (4.5) for Ga.g.(k) is
greatly simplified if we use the condition of infinitesimal
translation invariance, Eq. (A6), to rewrite Eq. (4.5)
in the form

Gapo(lt)=—2 Bag(li; U)o (Ik; U'x’) . 4.7
I
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With the expression for Geg,(ik) written in this bound-
ary-insensitive form we can take advantage of the fact
that the atomic force constants depend on ! and /' only
through their difference. This fact enables us to change
the summation variable from / to a new variable [=/"—1
to obtain

Gapo(l)=—2_ Pap(Ok; I (Ox; I (4.8)

14

The right-hand side of this equation is independent of /,
so that the only coefficients we have to consider are
Gaps(01) and G,.p,(02). However, these coefficients are
not independent, for in view of Eq. (4.7) the following
relation must hold:

Gapo(01) = —Gaps(02). (4.9)

Because Gag,(01) enters into the expression for the
relative displacement of the two sublattices comprising
the diamond structure when the crystal is homogene-
ously deformed, it might be thought that only the
atomic force constants coupling atoms on different sub-
lattices should contribute to the sum (4.8). That this
conjecture is correct is shown by the following argument:

In terms of the sums

Gapo(kk) =3 Baplic; Uk )xo(l; V'), (4.10)
—

the expressions for Gag,(01) and Gas,(02) become
Gapo(01)=—[Gapo(11)+Gape(12)],  (4.112)
Gapo(02)= = [Gupo(21)+Gaps(22)].  (4.11D)
From the symmetry of the atomic force constants,
B os(lic; V') = Pog(lic; U’ , (4.12)

and the fact that ®.5(l; I'x’) depends on / and I only
through their difference, it is straightforward to estab-
lish the general property

Gapolin) == Gpao(K'x). (4.13)
In particular, we have that
Gaﬂ,(KK) = _Gﬂav(KK) . (414)

To proceed farther we need to establish the transfor-
mation law for Gg.(kx’) under an operation of the space
group of the crystal. In the Seitz!® notation a space-
group operation is written in the form {S|v(S)+x(m)},
and is defined through its effect on the position vector
x(l):

{S[v(S)+x(m) }x(k)
=Sx(l)+v(S)+x(m)=x(LK). (4.15)

In this equation S is a real, orthogonal, 3X3 matrix
representative of one of the proper or improper rotations
of the point group of the space group, v(S) is a non-
primitive displacement associated with certain rota-
tional elements of nonsymmorphic space groups, that

18 F, Seitz, Ann. Math. 37, 17 (1936).
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is, space groups which contain screw axes and glide
planes among their symmetry elements, and x(m) is a
translation vector of the crystal. The second equation in
Eq. (4.15) expresses the fact that inasmuch as {S]v(S)
+x(m)} is a symmetry operation of the crystal, it must
send the lattice site (k) into an equivalent lattice site,
which we denote by (LK). In what follows we will use
the convention of labeling by capital letters the lattice
site into which a given lattice site, labeled by lower case
letters, is sent by a space-group operation.

Under a space-group operation the atomic force con-
stants transform according to'?

Bos(LK; LK) =2 SapSePu(lc; Uk’).  (4.16)
w

Combining Egs. (4.10) and (4.16), we find that
Gaso(KK)= Y ®as(LK; L'K')x,(LK; L'K’")
LK’
=3 > SauSsPulic; Ve')S orx-(li; Vi)
L'K’ vt

=3 SauSsG (k).

uwr

(4.17)

In going from the second to the third line of this equa-
tion we made the change of summation variables
x(Uk")={S|v(S)+x(m)}~w(L'K").

The space group of diamond is 0,". If we ignore the
invariant subgroup of translations through the lattice
vectors {x(m)}, this space group consists of 48 elements
{S|v(S)}, in which the purely rotational elements {S}
comprise the point group O;. The 24 symmetry elements
whose purely rotational parts comprise the point group
T, contain no nonprimitive translations and do not
interchange the two sublattices of the diamond struc-
ture. The remaining 24 symmetry elements have a non-
primitive translation through the vector %ao(1,1,1)
associated with them, and interchange the two sublat-
tices. The use of the first group of 24 symmetry opera-
tions in Eq. (4.17) yields the result that the elements of
the third-rank tensor Gag,(xx’) are given by

GA,,;;,(KK’) = é(mc') | €apol s (4.18)

where G(xk’) is a coefficient which is independent of
a, B, 0. However, we see that the results expressed by
Eqs. (4.14) and (4.18) are compatible only if G(xk)=0.
Moreover, the presence of a center of inversion in crys-
tals of the diamond structure has the consequence that

G12)=—-G(21). (4.19)
Using these results in Eqgs. (4.11) we find that
Gapo(01) = —G(12) | éaps| = — Gaps(02)

. —%: ®,5(01; I'2)x,(01; 1'2).  (4.20)

1 G. H. Begbie and M. Born, Proc. Roy. Soc. (London) A188,
179 (1947).
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In obtaining Eq. (4.20) we have established two re-
sults. We have shown that the coefficients Gag,(01)
= —Gap,(02) are expressible only in terms of atomic
force constants coupling atoms on different sublattices
of the diamond structure. At the same, time we have
shown that G.s,(01). has the form

G,x,a,,(()l):Gl eag,,[ 5 (4.21&)

where

=—G(12)= =3 $15(01; I'2)x3(01; '2).  (4.21b)
=

The preceding results enable us to rewrite the ex-
pression for the coefficient B,q,?, Eq. (4.4), in the fol-
lowing form:

PG
Byvap A= Z l 6I“"Y| [ 65"47[

[T

X{To(11) = To(12) = Tos(21) +T45(22)},  (4.22)

where M(=M1=M,) is the mass of one of the atoms
comprising the crystal. The elements of the 3X3 matrix
I'(xk«’) are defined by Eq. (A10) of Appendix A as

% PQB(ZK; Uk ):ml‘aﬁ(m ) y (4.23)
so that according to Eq. (A19),
ea(k|07)es(k’[07)
Tap(rn’) =22 ey (4.24)

i ;*(0)

In Eq. (4.24) »;(0) is the frequency of a normal mode of
infinite wavelength (k=0) labeled by the branch index
7, and e(k]0j) is the corresponding unit polarization
vector. The prime on the sum means that it extends
over the optical branches only. The form of e4(x|05)
is determined by symmetry in crystals of the diamond
structure, and is?

ea(1]07)=27""50;= —ea(2[07), (4.25)

where j=1, 2, 3 labels the three optical branches. The
frequencies of the three optical vibration modes at k=0
in crystals of the diamond structure are all equal, and
equal wg, the Raman frequency. Putting these results
together, we find that

Tap(11) =T,5(22) = — I'45(12)

= —Tus(21) = 6ap/ 2077,  (4.26)

It follows, therefore, that the coefficient B,yq,® is
given by

~

prap(2)=;):MwR2P ; leuwl levaa! .

(4.27)

20 M. Lax, Symmetry Principles in Solid State Physics (to be
published).
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The only nonzero elements of this tensor are

Bi912® = By15® = B1391 P = By191 ® = By315»
= B3113® = B1351® = B3151® = Bi3s3® = Bygg3®

= Basss® = B ® = (2/0,) (G/Mwr?)p. (4.28)
Equations (3.28) consequently simplify to
BV = (eo®/4m) prin—Xo, (4.292)
Bi2e® = (eo*/4m) pr1sa—Xo, (4.29Db)
B121: V4 (2/0,)(G/Mwp?) P= (€o®/47) p1212.  (4.29¢)

These equations are as far as we can go toward evaluat-
ing P without adopting some specific model for the lat-
tice dynamical and optical properties of crystals of the
diamond structure.

The vibrational properties of the crystal enter Egs.
(4.29) through the parameter G and through the Raman
frequency in the combination Mwg?. The expression for
the former is given by Eq. (4.21b); the combination
Mwp? can be expressed in terms of atomic force con-
stants by?!

Mog?=—23 &,,01;12). (4.30)
l/

That only force constants coupling atoms on different
sublattices appear in this expression is a reflection of the
fact that the Raman frequency is the frequency of a vi-
bration mode in which the two sublattices beat rigidly
against each other.

Sophisticated force-constant models for crystals of the
diamond structure have been developed. Herman?? has
written down the force-constant matrices for interac-
tions between atoms which are first, second, - - -, fifth
neighbors. Pope?® has extended Herman’s results to ob-
tain the sixth-neighbor force-constant matrix. The
force-constant matrices for first-, third-, and fifth-
neighbor interactions have the forms

(1 p1 p1)

— ‘I’ag(OOO; 111)= pPL a1 p1], (4313,)
P11 p1 Q)
_ (as ps  ps)

—®,5(000; 311)=|ps Bs 73|, (4.31b)
ps T3 [3)
(s ps 05

——<I>,,g(000; 331)‘—‘ pP5s Q5 O; (431C)
\05 05 Y5

On the right-hand side of each equation we have ex-
pressed the argument (01; /'2) of each force-constant
matrix in terms of the components of the vectors x(01)
and x(/'2) in units of @o/4. The remaining first-, third-,
and fifth-neighbor force-constant matrices can be ob-

# S, Ganesan and A. A. Maradudin (to be published).

2 I, Herman, J. Phys. Chem. Solids 8, 405 (1959).

% N. K. Pope, in Proceedings of the International Conference on
Lattice Dynamics, Copenhagen, 1963, edited by R. F. Wallis
(Pergamon Press, Inc., New York, 1965), p. 147,
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tained by applying Eq. (4.16) to the results given by
Egs. (4.31).

Substituting Egs. (4.31) into Egs. (4.21b) and (4.30)
yields the expressions

G=—ad pi+(2ps—373)+(ps+605) ],
Mwr?=8[ a1+ (es+283)+ (vs+2as5)].

The coefficient (2/9,)(G/Mwg?) appearing on the right-
hand side of Eq. (4.29¢) is therefore given by

2 G 3 1 p1+(2p3—373)+ (p5+605) (4.33)
ve Mor?  ai® ot (as+285)+(vs+2es)

At the present time the only crystal of the diamond
structure for which all of the force constants appearing
in Eq. (4.31) are known is germanium.? The results
(in units of 10* dyn/cm) are

(4.32a)
(4.32b)

a1=3.910, p1=3.044, «;=—0.781, B;=0.733,
p3=0.378, 73=—0453, a;=0.490, p;=0.514,
and

o5="v5=0. (4.34)

The value of (2/7,)(G/Mwz?) obtained by combining
Eqs. (4.33) and (4.34) is given in Table 1.

For silicon and diamond no such extensive force-
constant data exist, and we are forced to use a much
cruder force-constant model to evaluate G and Mwpz?.
Because of its simplicity the model we chose to use is
a nearest- and next-nearest-neighbor force-constant
model in which the nearest-neighbor interactions are
still described by the force-constant matrix (4.31a),
while the next-nearest-neighbor interactions are as-
sumed to be of the central-force type, and are described
by the force-constant matrix

Qg Q2 0\;
—®,4(000; 220)= |as a OJ . (4.35)
0O 0 O

The three elastic constants of the crystal can be ex-
pressed in terms of the three force constants a1, p1, and
Q9 by
aCui=a1+8az,
aCr2=2p1—ai+4as,

aCuu=art+dae— (m?/as).

From Eq. (4.33) we obtain the result that on the basis of
the present simple model

2 G 1p1

e Mwr?  a¢® o

(4.36)

(4.37)

Values of ai, p1, and ap obtained from experimental
values of the elastic constants are given in Table I for
diamond, silicon, and germanium, together with the

AND E. BURSTEIN 164

TasLE 1. Values of physical constants and of derived quantities
used in this paper.

Diamond Silicon  Germanium
ao(A) 3.567 5.430 5.657
C11 (102 dyn/cm?) 10.762 1.662 1.29=
Ciz 1.25 0.64 0.48
Cu 5.76 0.80 0.68
S11(107 cm2/dyn) 9.55 76.8 96.4
Si2 —0.99 —21.4 —26.0
S 17.35 126 149
€ 5.86 11.6 16.0
X, 0.386 0.854 1.193
gu—q12(1072 cm?2/dyn) 21b 3e
Gas 7 14
1dn
- —(10"7 cm?/Kg) 3d 7d
ndl
¢11 (1072 ¢cm?/dyn) +1.71e +25 +10
12 —0.74 —4 +7
o +0.95 +7 +14
711 (1078 cm?/dyn) —0.51 -1 —0.4
m1g +0.22 -+0.3 —0.25
Tas —0.28 —0.5 —0.55
pun —0.49 —0.2 —0.07
puze -+0.20 —0.003 —0.06
pra12 —0.16 —0.04 —0.04
11— prisa—2p112 —-0.37 —0.07; -+0.06
yuu® 1.72 3 3
Y1122T) —0.16 0.9 2
Y1217 0.44 0.4 0.7s
71111(7’)[10—17 (cm/V)2] 0.093 0.3 0.7
Y1122 —0.017 —0.03 0.6
Y1212 0.021 0.15 0.3
P (A%)f 10
P (A%e —3.8 -7 12
;1 (10* dyn/cm) 149.4 14.9 8.16
p1(10¢ dyn/cm) 104.7 10.7 5.66
«3(10* dyn/cm) —13.9 —0.736 —0.108
— (8G/aoMwg?)t 1.17
— (8G/acMwg?)® 0.701 0.715 0.694
L (ro) (A3) 6.448 25.5 15.8
T (ro) (R3) —1.57 0.674 12.4
roL (ro) (A%) 9.62 63.6 116.5
70T (ro) (A3) 1.17 34.1 70.3

a H. B. Huntington, Solid State Phys. 7, 213 (1958), Table 4.1, p. 93.

b K. J. Schmidt-Tiedmann, J. Appl. Phys. 32, 2058 (1961) ; Phys. Rev.
Letters 7, 372 (1961).

°V. 1. lextenko and G. P. Martynenko, Fiz. Tverd. Tela 7, 622 (1965)

[English transl.: Soviet Phys.—Solid State 7, 494 (1965)].
(ldéwl) Cardona W. Paul and H. Brooks, J Phys. Chem. Solids 8, 204

9

¢ G. M. Ramachandran, Proc. Ind. Acad. Sci. A25, 171 (1950).

f Equation (4.33).

¢ Equation (4.37).

values of (2/v,)(G/Mwr?) obtained by substituting
them into Eq. (4.37).
We now turn to a discussion of the tensor Bya,®

V. DETERMINATION OF THE COEFFICIENTS
{B,,«,} FOR CRYSTALSYOF THE
DIAMOND STRUCTURE

We have seen in the preceding section that the only
nonzero components of the tensor By.a,® are propor-
tional to the parameter P which is being sought. How-
ever, from Eq. (4.29) we see that in order to obtain P
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from experimental data we need to know the compo-
nents of the tensor By, ", in particular the component
Bi212®, since BV and Bise™ can be obtained from
experimental data. In obtaining these values we are
faced with the following problem. We see from Eg.
(3.26a) that the first-order electronic polarizability co-
efficients {P,«(lk)} enter into the expression for
Ba,V, just as they also enter into the expression for
Bye,™®. However, in the case of By,.,V they do so in
a boundary-sensitive manner, unlike the boundary-
insensitive manner in which they enter into Byy.,®.
The expression (3.26a) for B,,., must therefore be
rewritten in a boundary-insensitive form, and this re-
quires a microscopic model for the electronic polariza-
bility of the crystal. A consequence of this is that B,,q,®
is not simply proportional to 2, but instead is a com-
bination of the microscopic parameters in terms of which
P,,o(lk) or P is expressible. The equation (4.29) must
therefore be regarded not as an equation for P itself but
for the parameters in the microscopic model of P. It is
to the establishment of a microscopic model for the elec-
tronic polarizability of crystals of the diamond structure
that we now turn.

If we are to use experimental values of the elasto-
optic constants and the static dielectric susceptibility
to determine the value of the polarizability derivative
P, the model of the electronic polarizability we choose
must contain as many parameters as there are pieces of
experimental information, no more, no less. The model
we have chosen to use in our work has this property.

This model assumes that the electronic polarizability
of a crystal of the diamond structure can be expressed
as the sum of the electronic polarizabilities of the bonds
between nearest-neighbor pairs of atoms in the crystal.

The motivation for our choice of this model is the
fact that physical chemists have long described the
polarizability of molecules in terms of the polarizabili-
ties of the atomic bonds comprising the molecules.?
In particular, the concept of the polarizability of a car-
bon bond is well established. We exploit this concept by
regarding a diamond crystal as a very large molecule
made up of carbon atoms, whose polarizability is there-
fore given by summing the polarizabilities of the bonds
between all atom pairs. Because the atomic bonding in
silicon and germanium is of the same type as in diamond,
it is not unreasonable to expect that if our model has any
validity for diamond, it will have the same validity for
these two crystals.

As an atomic bond does not have spherical symmetry,
but rather possesses cylindrical symmetry with respect
to the line joining the atomic centers, we attribute to
each bond a longitudinal polarizability and a transverse
polarizability. Let us denote by Lyw(r)=Le(r) and
Ty w(r) =Tu\(r), the longitudinal and transverse elec-
tronic polarizabilities, respectively, of the bond between

24 See, for example, S. Glasstone, Texthook of Physical Chemisiry
(D. Van Nostrand Company, Inc., New York, 1946), p. 537.
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two atoms of types k and «” separated by a distance 7.
The total electronic polarizability of the crystal can
therefore be written as

, R, (Ix; Vk")R,(Ix; Vi)

P,=%i> Lo (R(x; U’
e e R2(Ik; U'k’) ( )
Ru(k; V') R,(Ik; Vk')
2T ]
Wk U R2(lK, l’K/)
X Tuw(R(Ik; Vx)),  (3.1)

where the factor of  corrects for the double counting of
bonds, and the primes on the sums denote that the
terms with (J)=(/x’) are omitted. In writing Eq. (5.1)
we have introduced the notation

R, (k) = x,(Ik)+u,(Ik) (5.2a)

and
R, (Ie; V") =R, (Ix)— R, (Vk'). (5.2b)

The functions L,(R(lk; k) and T(R(lk; I'’)) in
Eq. (5.1) are nonzero only if the two atoms whose posi-
tions are given by R(lk) and R(/'’) are nearest neighbors.

Expanded to first order in the atomic displacements,
the electronic polarizability takes the form

an=an(O)+% 2 ZI fuva(l"; V')
Ik Ux'
X[ va(l) V) ]+ -+, (5.3)
where
2u(lcy Vi)l V')

PO=}T ¥
* x2(le; Uk")

I UV«

L (x(lc; V')

wu(lic; Vi) (s Vil
HE o2 -
I Ux' x2(lk; Vr')
XTKK'(x(lK; l,"l)) (54)
and
X XuXyXe
fum(l"; l’K,)z {pr—T',,,/(r)—l—
7 7
2Lm¢'(”) Tu’(")
X[L’xx' (7‘)"' - T/KK'(7)+2 :l
v
x,.ém-l—x»aua
+_"—2—'—'[LKK'(7) - TKK' (7’)]] ' 1) (55)
r r=z(lx;l'x’)

where primes denote differentiation with respect to
argument.
Equation (5.3) can be rewritten conveniently as

me;Puv(O)"‘Z Z Puﬂ,a(l)(l’(; l,"/)ua(ll'(’)'i' Ty

Ik UKo

(5.6)
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where

Prya(lie; V)= =5 fua(li; V') (W)= V), (5.7a)

P ol 1) =3 X! fuli; 11). (5.7b)

It follows from Eq. (5.7) that the coefficients {P,, @
X (Ik; V')} satisfy the condition

2,2(lk; Vi)
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> PuaPUk; U)=0,

Uk

(5.8)

which ensures that the electronic polarizability of the
crystal does not change when the crystal is subjected to
an arbitrary rigid body displacement.

For cubic crystals, which is all that we consider in
this paper, the expression (5.4) for P,,©® can be sim-
plified to

PL®=216,,> 3 ————[Lelal; U's))— T oo (a(lk; ")) ]

e v x(lk; Uk’)

+30w 2 2 Tow (s V))=30 2 L [Luw((lic; Vi))A-2T e(e(li; ') ]
Uk

ik Uk’ 173

Comparing Egs. (3.24) and (5.9) we find that for cubic
crystals

Xo"—"%?)u,_l Z, [le'(x(01y Z,K/))
U’
2T 1(x(01; 7K)) ] (5.10)

From Eq. (5.6) we see that the coefficients we have
called {P,,,.(lx)} are given by

PualK)=2" Puya®Uk'; I)

U

=Pua®(lk; 1)+ Py o @k ; Ik)
U
=% 2;: fnva(lK; l’x’)_% ;: f,“,a(l’l{’; lK)

=5 fuall; VK, (5.11)
Uk

In writing the last line of this equation we have used the
result, which follows directly from Eq. (5.5), that

Juva(li; V&)= — fua(Vk’; Ik). (5.12)

The result given by Eq. (5.11) can be simplified if we
note that

Buyep

Lply¥ap

=—p,1 Z

vk

Xakp
{5[411 Tllx’(7)+

4 ¥

For cubic crystals this expression simplifies to

[L’u'(r)~

=18y 7 [Lao(x(01; 1))+ 2T10(x(01; 1K) . (5.9)
Uk

f/\—‘_,,’ Swall; V') = —VZ” Jura(Vk’; I)
=5 falli 20—TK)
Uk
= —'Z/ f,uva(l’(; l/K’)ZO- (5.13)
I/KI

Combining Eqs. (5.11) and (5.13) we obtain

P ,o(01)=3"" fua(01;12), (5.14a)
ll

Pua(02)=3"" f,,a(02; I'1)=—P,, o(01). (5.14b)
ll

We are now in a position to calculate the coefficients
{Buap®}. Substituting Eq. (5.11) into Eq. (3.26a) we
obtain the result that

B“yap(l): - VO——I Z Puv,a(l")xp(l'{)
113
==V 2 X Puo P k), (k)
U Ik

=Vt 2 2 PP W), (Vs Ik)

Uk Ik

(5.15)

where we have used Eq. (5.8) in writing the last line of
this equation. Finally, making use of Egs. (5.72) and
(5.12) we find that

W=—=3V5 12 2 fualli; Uk )ac,(lk; V') = —v™1 3 Suwa(01;5 V"), (015 U'k")

e Ux! e

2L1K' (1’) 2T1,,' (1')

=
r 7

2ZuX pOyat 2% 50 pr

'r N [ngl(f)—Tl,;l(f)] ] (5‘16>

r r=x(01;1'¢’)

Buyap®M=—0s"1 2 {%6,‘,,5.,,,77‘/1,(' (7)+f‘1§(3upava+5wsup) [L1w(r)—T1e(r)]
Uk

XpXy¥all p

¥3

| Zact)

2L1,‘r(i’) 2T1,‘l(7)
Tllx’(r) ;

r 2

:l} . (5.17)
r=z(01;1'«")
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Our assumption of nearest-neighbor bond polarizabili-
ties is computationally convenient because it leads to
four independent microscopic parameters, which is the
number of macroscopic parameters in this problem, viz.,
Xo, p1111, Puise, prore. If we denote the nearest-neighbor
separation in crystals of the diamond structure by
ro=1312ay, the microscopic expressions for the quanti-
ties Xo, P, B1int ™, and Bie1s™® take the following forms:

Xo=(4/3v,)[ L12(r0)+2T15(r0) ], (5.18a)
P=(4/3%)[ L1y’ (r0)—[2L12(r0) /0]
- T121(70)+[2T12(70)/7’0]] , (5-13b)
B1111(1> =— (4/37)a){1’oT12/(1'0)
+2[ Lia(ro) — T1a(ro) I} — ao™2P, (5.18¢)
Bi12oW=—(4/3v,)r0T 1 (r0) — a¢~2P, (5.184d)
Bl212(1) = (4/31)a) [Lm(?’o)— le(fo)]— 00‘21) . (5186)

Lis(ro), T12(ro), L1d'(r0), and T1y'(ry) are the values of
the longitudinal and transverse bond polarizabilities
and of their first derivatives evaluated at the equili-
brium separation between nearest-neighbor atoms in
crystals of the diamond structure. The subscripts 12
emphasize the fact that in each nearest-neighbor pair
in such crystals one of the atoms is on sublattice 1 while
the other is on sublattice 2.

If all that we wish to obtain is the coefficient P, we
can bypass the calculation of the parameters Lis(ro),
Liy'(r0), T12(r0), and T/ (7o), and can solve directly for
P. Combining Egs. (5.18¢c), (5.18d), and (5.18¢) with
Eq. (4.29c), we obtain the relation

p 2602 pinr— prize— 2p1012
8r 1— (8G/(10Mw132>

(5.19)

which expresses P entirely in terms of experimentally
determinable quantities.

From the numerical values for the parameter G
presented in Table I we see that it is negative for dia-
mond, silicon, and germanium. It follows, therefore,
that, on the basis of the present model, the sign of P is
determined by the sign of the combination pi111— pi1ee
—2p1919.

VI. NUMERICAL RESULTS

In Table I we have listed the values of the primary
physical constants which either enter directly into the
expression (5.19) for the electronic polarizability deriva-
tive P, or determine the values of derived quantities
which appear in this expression. Among these primary
physical constants are the stress derivatives of the di-
electric tensor, ¢;;= d¢;/97T;, and the pressure derivative
of the refractive index, #n~'dn/dT, from which the
values of the elasto-optic constants quoted in this
Table were derived. We have also listed the stress de-
rivatives of the dielectric permittivity tensor, i
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=9B;/9T;, where the permittivity tensor is the inverse
of the dielectric tensor. [In defining these constants we
have used the contracted Voigt notation for the various
tensors rather than the full tensor notation. The rela-
tions between the constants in the two sets of notations
are given, for example, in the book by Nye.25]

From Table I we see that in the only case where a
comparison can be made at the present time, viz., that
of germanium, the value of the quantity — (8G/acMwg?)
computed on the basis of Eq. (4.37) with values of the
atomic force constants oy and p; obtained from the elas-
tic constants through Eq. (4.36) is 419, smaller than
the value computed from the more elaborate (and pre-
sumably more accurate) expression given by Eq. (4.33).
It is perhaps not unreasonable to think that the values
of —(8G/asMwr?) computed for diamond and silicon
from Eq. (4.37) may be in error by corresponding
amounts. This possibility should be kept in mind in as-
sessing the reliability of the numerical results obtained
in this section, and it points up the desirability of having
the values of the atomic force constants for diamond and
silicon obtained from the fit of at least a fifth-neighbor
general tensor-force model of such crystals to experi-
mentally determined phonon-dispersion curves.

The values of P for diamond, silicon, and germanium
calculated from Eq. (5.19) are presented in Table I.
Two values of P are quoted for germanium correspond-
ing to the two different expressions, Eqs. (4.33) and
(4.37), used in calculating the quantity — (8G/aoMwz?).
The value of P=—3.78 A2 calculated for diamond com-
pares very favorably with the experimental result of
Anastassakis et al.5 that | P|=24 A2 While the experi-
mental results can tell us nothing about the sign of P,
the theoretical results obtained in this paper predict that
the sign of P is the sign of pi111— prisa— 2p1210, Which is
negative for diamond.

Although at the present time no experimental values
are available for even the magnitude of P for silicon and
germanium, experimental results are available which
enable us to make an indirect assessment of the reli-
ability of our theoretical results for these two crystals.
From a comparison of the intensities of the first-order
Raman scattering of light by silicon and diamond,
Russell” has estimated that

| Psil/| Pc| =~2.7 (expt.). (6.1a)

From Table I the corresponding theoretical value is
found to be
[Psil/’PC{ =1.84 (theor.). (6.1b)

The theoretical value of this ratio is within 359, of the
experimental value, and the agreement between theory
and experiment in this case must be considered as
satisfactory.

A second, indirect, check on our theoretical results is
provided by the recent experimental result of Parker

% J. E. Nye, Physical Properties of Crystals (Oxford University
Press, New York, 1957).
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et al.,® who found that

| Psi| /| Pge| =0.5—0.8 (expt.). (6.2a)

From Table I the corresponding theoretical value is
found to be

IPSi[ /|P(;,el =0.58, 0.70 (theor.) y (62b)

where the two values quoted are associated with the two
values of — (8G/aMwz?) calculated for germanium.
Again, the agreement between theory and experiment
for this ratio must be considered as satisfactory.

From the expressions given by Egs. (5.18) and (4.29),
and the values of the physical constants we can solve
for the values of Lia(ro), T12(70), 7oL 12(r0), and 70T 15(70)
for each of the three crystals considered in this paper.
The values obtained for these parameters are given in
Table 1. From these values we see that although the
values of P are negative for diamond and silicon, and
positive for germanium, the values of L'1a(re) and
T15(ro) are positive for all three crystals. That is, for
values of the nearest-neighbor separation close to the
equilibrium value the longitudinal and transverse bond
polarizabilities increase with increasing bond length.

Turning now to the relations between the elasto-
optic constants and the electrostriction constants, we
find on combining Eqgs. (2.41) and (3.24) that

V111D = — {(eo?/4m) p1111— Xo}
Y1122 D = — {(€o2/4m) p1122— X0} ,
12120 = — (&o®/4w) pr1a-

Values of the electrostriction constants computed on
the basis of Eq. (6.3) are given in Table I. From these
values and Eq. (2.45) we have also computed the values
of the electrostrictional moduli v, and these are
also given in Table I. In carrying out the latter calcu-
lations we have used the relations?®

6.3)

Cu+Cis
Sun=3Su= )
(Ci—C19)(C1a+2C12)
—Cys (6.4)
51122= SIQZ

(Cri—C12) (Cui+2C1)”
S1o12=1Su=1/4Cu,

between the elastic compliances regarded as the ele-
ments of a fourth-rank tensor and expressed in the two
suffix Voigt notation.

An attempt to measure the electrostriction constants
of germanium has been made recently by Gundjian.?
His experimental results are seven orders of magnitude
larger than the theoretical values reported here. This
discrepancy strongly suggests that the effects measured

26 R, F. S. Hearmon, An Introduction to Applied Anisotropic
Elasticity (Clarendon Press, Oxford, England, 1961), p. 25.
27 A, Gundjian, Solid State Commun. 3, 279 (1965).

AND E. BURSTEIN 164
by Gundjian do not have their origin in electrostriction
but reflect some other physical process.

In summary, we have presented in this paper a micro-
scopic theory of the elasto-optic constants of crystals of
the diamond structure which corrects an earlier theory
of Theimer,? which relates the elasto-optic constants to
the electronic polarizability derivative P, and which
yields values of P for diamond, silicon, and germanium
which are in satisfactory agreement with such experi-
mental results for these coefficients as are available at
the present time. In addition, the relations between the
elasto-optic constants and the electrostriction constants
for crystals of the diamond structure are established,
and experimental values of the former have been used
to calculate values of the latter for diamond, silicon, and
germanium.

APPENDIX A

It has been shown? that the solution of the equation

2 Pag(lk; V')dp(V'x') = Callk) , (A1)
V'8

when the coefficients {C,(l)} satisfy the condition

2 Co(l)=0, (A2)

can be written in the form

3
do(l) =2 astta®@+ 2 Tap(lc; U )Ca(l'k’). (A3)
Uk'B

8=l

In Eq. (A3) the {@;} are three arbitrary constants, while
the vectors {u(®} are given by

uO = /()15 (A9
where e, e®, e® are any three mutually perpendicu-

lar unit vectors and M ¢ is the total mass of the crystal.
The elements of the matrix I are given by

Ba () By (')
Tap(l; V') = > , (AS)
(Mlle'x’)1I2 & wa2

where M, is the mass of the atom (/x) and the sum over
s is a sum over all the normal vibration modes of the
crystal except for the three zero-frequency modes which
describe pure rigid body translations of the crystal. w,
is the frequency of the sth normal mode and B¢ (lk)
is an element of the corresponding unit polarization
vector.

Because the solutions of Eq. (A1) appear in this paper

8 S, Ganesan, A. A. Maradudin, and E. Burstein, Phys. Rev
(to be published).
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only in sums of the form

Z @al...aﬂ(hm; crey lnlcn)(]a"(lnlcn) ,

Inknan

Z Puv,ax---an(ll"l; S ln"n)dan(ln’fn) )

Inknan

the conditions which follow from infinitesimal transla-
tion invariance

Z (I)gl...a,,(lﬂq; vy l,,K,.)=0,

Inknan

Z Puv,al"'an(ll’cl; t .; lﬂK”)=0 )

Inknan

(A6)

have the consequence that the part of dq(lk) associated
with pure translations of the crystal makes no contribu-
tion to such sums. Therefore for the purposes of this
paper we can set the coefficients {e,} in Eq. (A3) equal
to zero, so that the solution of Eq. (A1) is effectively

do(l)= 2 Tap(l; V" )Co(l'r’). (A7)
k'8

The expression for T'ws(lk; I's") given by Eq. (AS) is
valid for an arbitrary crystal, either perfect or imper-
fect. However, for perfect crystals, which are all that
are considered in this paper, a convenient representa-
tion of T'ng(lk; Vk') is provided by expanding it in terms
of the eigenvectors {e.(x|kj)} and eigenvalues of
{w(k)} of the 3rX3r Fourier transformed dynamical
matrix:

D’ | k) = 2 Dap(lic; ')

X g~k xM—x@1 - (A8a)

% Do’ | K)es(’' | k) = wi(K)ealk|k7) ,  (A8D)

2 ea*(x l kj)ea(" | kf) = 0jj’ (A8c)
Z ea™(x I kj)eﬁ("l l k]) = Oxx0af« (A8d)

The allowed values of k are uniformly and densely dis-
tributed throughout the first Brillouin zone for the
crystal, and the index j(=1, 2, - - -3r) labels the 37 solu-
tions of Eq. (A8b) corresponding to each value of k. In
this representation Tus(lk; k") has the form

ealk|k7)es* (x| k)
N(M M )2 x5 w;?(k)

e (1
xezk [x(M)—x()] s

Tas(lx; V)=

(A9)

where the prime on the sum means that the three terms
for which k=0 and for which j refers to the three acous-
tic branches of the phonon spectrum are excluded. [For
these terms, w;(0)=0.]

In the text we require the 3X3» matrix whose ele-

CRYSTALS OF DIAMOND STRUCTURE

1097
ments are given by
2. Topllc; V)= Tas(kk’).  (A10)
w (M M )2

An explicit representation for T'xs(xx") follows on insert-
ing Eq. (A9) into the left-hand side of Eq. (A10):

ea(ic|07)es(x’| 07)
Tapk’) =2 —————
i w;*(0)
[recall that e,*(x|07)=eq(x]|07)]. The prime on the
sum on the right-hand side of this equation means that

it extends over the optical branches of the phonon spec-
trum only.

(A11)

APPENDIX B

In the text we employed a “bond polarizability”
model of the electronic polarizability as the basis for
an evaluation of the polarizability derivative P for
diamond, silicon, and germanium from experimental
values of the elasto-optic constants of these crystals.
While this model proved to be a successful one in that
predictions based on it appear to be in satisfactory agree-
ment with experimental results, it nevertheless is based
on assumptions which, while seemingly reasonable, may
in fact prove to be overly restrictive. In this Appendix
we describe briefly an attempt to construct a model of
the electronic polarizability of crystals of the diamond
structure which is based on a minimum number of as-
sumptions. The model we consider is the same one used
by Theimer? in his work, except that it is presented here
as a special case of a much more general model.

Our starting assumption is that the static electronic
polarizability of the crystal can be written as the sum of
the atomic polarizabilities of all the atoms in the crystal:

Pu=3 Pu(k). (B1)
113

The polarizability of each atom is assumed to be a func-
tion of the instantaneous positions of all the atoms in
the crystal, and to admit of an expansion in powers of
the displacements of the atoms from their equilibrium
positions:

Pou(le)=Pu @)+ 25 Puyg® (s Ve Yup(V's’)
ve'B

+% Z Z Puu,ﬁy(z)(ll(; l/K/; l’/K”)
l'K’B ‘I'K"’y

Xug(Uk Yu, (V') +---. (B2)
From a comparison of Egs. (3.12) and (B2) we see that
Puv(O)::z P;tvm)(l") 3 (B33)

173
P o(l)= Z Pm.a(l)(l,"’; Ik) ) (B3b)
l/"l

Py as(lic; V)= 32 Puyag®@('c”; I; I'’), etc.  (B3c)

1%
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The coefficients P, @O (lk), Puw,aPUK’; k), Ppuyap®
X (k"5 Ie; Uk’), must satisfy certain general invariance
conditions. From their definition as the partial deriva-
tives of the atomic polarizability P,,(J) with respect to
atomic displacements, it follows that P, .s®@(V'«"; Ik;
Vx"),- -+ are completely symmetric in the indices (lka),

(Vk'B),-- -+
Puyag® W5 s Uk) = Pro g (VK5 U5 Ie) , - (Bda)

P,w,aﬁy(g)(l’/llim; I; l/K/; l/IKI/)
=an,a‘yﬂ(3)(l/”'(m§ lK; ZNK"; l,I(l)
=Puv,ﬁa7(3)(lm"m§ Z’K'; lK; l"l{/')= vl

(B4b)

From the fact that an arbitrary rigid body displacement
of the crystal cannot change the atomic polarizability we
obtain the conditions

Z Pw,a(l)(l/’(’; lK):(), (BSEL)
173
Zz Poy,as® (V"5 I; Vi)
=3 Pu,as®PW'k"; Ie; U')=0, etc. (B5b)
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From the fact that P,,(/k) must transform as a second-
rank tensor under an infinitesimal rigid body rotation
of the crystal, we obtain the following condition on the
first-order coefficients:

2 Poy,a Vs Ui )x(Uk) — 840l p @ (Ik)

g

= 00alus O (l) = 22 Pous @ (ks Uk )aa(V')
V!

—08,8P 0 @(l)—8,6Pue @ (k). (BO6)

In addition to these general conditions, which apply
to a finite crystal as well as to an infinite one, there are
others which have their origin in the structure and sym-
metry of a given crystal, and which presuppose an in-
finitely extended crystal. Under an operation of the
space group of the crystal, the coefficients {P,,@(lk)}
and {P .oV (lk; ')} transform according to

PuOLK)=3 SupSveP e @), (B7a)
po

Pua (LK I’K) =3 S,0S00SarP poer @ (ik; I’). (BTD)

poT

If the space-group operation is a rigid body displace-
ment of the crystal through one of its translation vec-
tors, Egs. (B7) yield the result that P,,®(lk) is inde-
pendent of the cell index I, while P, (k; I'c’) de-
pends on ! and /" only through their difference.

If in Eq. (B7a) we apply the 24 operations of the
space group 0,7 whose purely rotational elements com-
prise the point group 7' to the lattice site (01) we find
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that the coefficient P,,(01) has the form

Pu®(01)=5,PO. (B8a)

The remaining 24 operations of the space group yield
the result

P, 0(02)=P,®(01). (B8b)

Because P,,@(lx) is independent of the cell index /, the
only nonzero, independent coefficients of this type are
just those given by Eq. (B8). Combining Egs. (B3a),
(B8), and (3.24), we relate the coefficient P in Eq.
(B8a) to the measurable quantity X, by

Xo=(2/v)P©. (B9)

So far in this discussion we have made no assumption
regarding the interatomic separations |x(l)—x(/«’)]
over which the coefficients {P ., P (lk; I'x’)} are sensibly
nonzero. In view of the origin of these coefficients in the
distortion of the charge distributions of the atoms ()
and (/k") through the change in their overlap as their
relative separation changes from its equilibrium value,
we would expect Py, P (k; I'k’) to decrease rapidly as
| x(l)—x(V'k’)| increases. In what follows, primarily to
keep the number of independent parameters small, we
assume that P, .(lk; I'x’) is nonzero only if (k)= (/'r’),
or if () and (/') are nearest-neighbor sites.

The independent, nonzero elements of the tensor
P,,.«M(01;02) are obtained from Eq. (B7b) if we re-
strict the operations of the space group 0,7 to those
which leave the lattice sites (01) and (02) fixed. If we
display the elements of an arbitrary third-rank tensor
according to the scheme

xXYxX XYy Xy5 YyX Yyy ¥yz  zyx zyy Yz

NEX KXY XXZ VXX YXY YNZ  2HX XY 20T
, (B10)
NI XZY X2 YIX YZY VIZ 23X 2ZY 23T

the tensor P,V (01; 02) has the form

(abb ddjf djd
P,,V,a("(OO();lll)=1d§f baZ fdd}. (B11)
dfd fdd bba

In writing the left-hand side of Eq. (B11) we have writ-
ten out explicitly the Cartesian components of the posi-
tion vectors x(01) and x(02) in units of 2a,. The elements
of the tensors P, . (000; 111), P, .0 (000; 111), and
Py o@(000; 111) can be obtained from the result given
by Eq. (B11) by the use of Eq. (B7b). The rotational
invariance conditions, Eq. (B6), are satisfied by the
form of the tensor P, V(lk; /'k’) given by Eq. (B11).
According to Eq. (B3b) we have that

Puo(l)=23 P VWUk; lk)

Uk’

=3 {Pua®(01; I—Vk)+ P o (02; I—1'x)}, (B12)
-

because Py, P (lk; k') depends on  and /' only through
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their difference. In particular, we see that

Po,o(01) = (P a®(0L; 1)+ Po,a(02; 1)}
i
=Pua®(01;01)+ > P, (025 11)
l
=—3" Pu.V(01;12)+3 P,,,.V(02; 1)
! 1

=—2% P,,..001;12). (B13)
l

The second line of this equation reflects our assumption
that P,V (lk; U'’) vanishes if (k) and (I'«’) are more
distant than nearest neighbors; the third line is a con-
sequence of Eq. (BSa), and we have used Eq. (B7b) in
writing the last line. Using Eq. (B11) in Eq. (B13) we
obtain the result that

Py, (01)= "Sfl euml ’ (B14)
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so that for this model

P=—8f. (B15)

The elements of the tensor B, take a simple form
on the basis of the present model. We can use infini-
tesimal translation invariance as expressed by Eg.
(B5a) to rewrite Eq. (3.26a) in the form

B;wap(l)= —~Vet Z le,a(l")xp(l")
113

==Vt X2 Pu,a D5 I)x,(lk)

Uk’

==V 132 2 PuoPWUK; )x,(I'k; k). (B16)

Ve Ik

We now carry out the sums over , k, and «’, keeping in
mind that P,,,.®(k; k") depends on ! and // only
through their difference, and that (/) and (I’x’) must be
no farther apart than nearest neighbors:

1
Buay®P=— X {Pu.a®(01; 12)x,(01; 12)+ Py« (02; 11)x,(02; 11)}

Va

1
=—3 {Pu,a®(01; 12)x,(01; 12) = P,y o P(01; —i2)x,(01; —12)}

Va

2
=—3 Pu,®(01; 12),(01; 12).

Vg

The second equation follows from the fact that inver-
sion is a symmetry operation which interchanges the
two sublattices in crystals of the diamond structure.

According to symmetry arguments the tensor Bya,®
has only three independent elements, e.g., Bunu®,
Bi132™, and Bis12D, for crystals of the diamond struc-
ture. An explicit calculation based on Egs. (B11) and
(B17) confirms this and yields the results

Bun(l) = — (2/‘1),,,) (aoa) N (B18a)
B119sW=—(2/v,)(acb) , (B18b)
Bmm M= (2/‘I)a) (dod) . (BlSC)

Combining Egs. (3.28), (4.29), (B15), and (B18), we
obtain finally the following relations between the micro-
scopic parameters a, b, d, f and the macroscopic quanti-
ties {puvap}, €0, and Xo= (eo—1)/4m, for crystals of the
diamond structure:

a=—(ao?/8){(eo*/4m) pr1in—Xo} ,

= —(a0*/8){(e&o/4m) pr122—Xo} ,
d+(G/aMwr?)(8f)=—(as®/8) (e0?/4T) p1212.

(B19a)
(B19b)
(B19c)

(B17)

From the results given by Egs. (B19) we see that the
generality of the model on which they are based is at
once its strength and its weakness. Other than the
restriction to nearest-neighbor interactions, no assump-
tions have gone into determining the form of the tensor
P,, .(000; 111). However, a consequence of this gen-
erality is that we have more microscopic parameters
than there are relations between them and experimental
quantities. As a result, we have no way of determining
the parameter f=—(P/8) uniquely. The value of the
present model would seem to lie in the fact that when an
accurate value of P is known, from some independent
calculation or from experiment, so that all four param-
eters @, b, d, f are known, this model can serve as the
basis for a less restrictive microscopic model of the elec-
tronic polarizability of crystals of the diamond struc-
ture than the one adopted in the test. Such a model could
then be used in calculations of other properties of these
crystals in which the electronic polarizability plays a
central role, for example, in calculations of the second
order Raman spectrum.



