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A lattice theory of the elasto-optic and electrostriction constants of crystals of the diamond structure is
presented. The results of the theory relate these constants to the derivatives of the electronic polarizability
vrhich determine the intensity of the 6rst-order Raman scattering of light by such crystals. Experimental
values of the elasto-optic constants are used to estimate the electronic polarizability derivatives for diamond,
germanium, and silicon.

I. INTRODUCTION

HK lntcnslty of thc 6rst-order RRQl.RQ scattcIiQg
of light by the lattice vibrations of a crystal is

determined essentially by the coefficients {P„., (lx)}
which occur in the expansion of the electronic polariza-
bility of the crystal in powers of the displacements of
thc RtoIQs from their cqulllbI'lun1 posltlonsy

p„„=p„„&e~+p p„„, (ltd)N (hatt)+

In this expression I (lx) is the n Cartesian component of
the displacement of the ath atom in the 3th unit cell from
its equilibrium position. In general, the expansion cocS.—
cients P„,&", P„,, (Ac), , are functions of the fre-

quency of the incident light. However, in many appli-
cations the frequency of the incident light is small com-
pared with the frequency of the electronic transitions
in the crystal, and can be taken to be zero with little
error. A consequence of this approximation, which we
make in the remainder of this paper, is that I'„„is a real
operator which is symmetric in the indices p, and v.

Homopolar crystals of the diamond structure display
a first-order Raman CGect. For such crystals symmetry
arguments show that the elements of the tensor E„„,(tx)
can Rll be written in terms of a single parameter P as

when the crystal axes and the coordinate system coin-
ride, where ~„„ is the Levi-Civita symbol. In writing
Eq. (1.2) we have used the fact that, because of the
periodicity of the crystal, E„., (lx) is independent of the
cell index l, and have labeled the two atoms in a primi-
tive unit cell by K= I, 2. The calculation of the value of
the coeKcient I' from erst principles, for a given crystal
possessing the diamond structure, while possible in
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principle, is nevertheless beset by serious computational
difhculties, and has not been done yet. The lack of ex-
perimental values for the absolute intensity of light
scattered from such crystals by one-phonon processes
prevents the value of this parameter from being inferred
from experimental scattering data. Consequently, all
attempts to obtain values of I' to date have proceeded
indirectly.

In 195j., Theimcr' related the parameter I' to the
elasto-optic constants of crystals of the diamond struc-
ture, and obtained an estimate of the value of the
former coefficients from the experimental values of the
latter for diamond. However, Theimcr's calculation has
been criticized by Born, ' who pointed out that while
the atomic coefficients {P„„,(ltd) }refer to a crystal with
a fixed number of atoms, the elasto-optic constants are
de6ned for a unit volume of the crystal, and that
Theimer had overlooked the fact that an elastic defor-
mation changes the number of atoms in a unit volume.

More recently Loudon4 has derived a relation between
the Raman tensor and the deformation potential for
optical modes in homopolar semiconductors, and has
used this lcsult to obtalQ RQ order-of-magnitude cstl-
mate of the Raman efficiency for such crystals. LThe
Raman efficiency is de6ned as the ratio of the number of
observed Raman photons produced per unit cross-
scctloQR1 RI'ca of thc clystRl pcI' uQlt time to thc nunlbcr
of incident photons crossing unit area in unit time. $

In this paper we relate the elasto-optic and electro-
striction constants of a crystal of the diamond struc-
ture to the coeS.cient I', from which estimates of the
latter can be made. In doing so we correct the error in
Theimer's paper. %e use our results together with ex-
perimental values of the elasto-optic constants, to ob-
tain values of E for diamond, silicon, and germanium.
Know1edge of the 6rst-order coefficients {P„,, (k)}
enables one to predict the absolute intensity of the
Raman scattering of light by one-phonon processes.

~ 0. Theimer, Proc. Phys. Soc, (London} 65, 38 (1952).I Reference 1, p. 374.
e R. Loudon, Proc. Roy. Soc. (London) A275, 218 (1963).
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The present calculations were motivated. by two con-
siderations. The first is that even if the absolute inten-

sity of the Raman scattering of light by one phonon
processes were determined experimcntaHy, this infor-
mation would yield only the magnitude of J', but Qot its
sign. The calculations described in this paper yield both
the magnitude and sign of P. Second, from a knowledge
of these coefficients one can calculate the magnitude of
the static electric field which is required to induce
a measurable one-phonon infrared lattice-vibration
absorption in homopolar crystals of the diamond

structure. '
Recently, Anastassakis, Iwa, sa, and Burstein6 have

succeeded in inducing one-phonon lattice-vibration ab-

sorption at the Raman frequency of diamond by apply-

ing a static electric field of 1.2X10' V/cm to their

sample. From the integrated absorption under the ob-

served peak, these authors werc able to infer a va, lue of

4&10—"cm' for the magnitude of the coefficient P. This
result provides us with a check on the results of the

present calculations. In addition, recent measurements

of the first-order Raman spectra of silicon'' and of

germaniums have provided values of the ratios of

I Ps'/P~'--sl and of II's'/Po. l, which also s«vc as R

check on the present calculatloQs.

II. ELASTO-OPTIC AND ELECTRGSTRICTION
CONSTANTS

In this section wc derive the formal expressions for
the elasto-optic and electrostriction consta, nts which

provide the starting point for their calculation from a
microscopic model of a crystal.

We began by considering an elastic dielectric which

is subjected to a homogeneous deformation in the pres-

ence of an external electric held. We denote the position

of some point in the undeformed medium, referred to
some 6xed Cartesian coordinate system, by the vector

X, and denote the position of the same point in the de-

formed medium, referred to the original coordinate sys-

tem, by the position vector x. The difference between

these two points is the displacement u(X), which we ex-

press as a function of the coordinates of the point in the
undeformed medium:

a„=X.+ N.(X),

We defjQc thc position gladleQt J ~p by

We will call the elements {s s) the deformation param-
eters. In the present work we will consider only homo-
geneous deforma, tions so that e„p is a constant, not a
function of X.

If the volume of some region of the undeformed me-
dium is Vo, the volume V of the image of this region in
the deformed medium is given by

V= JVO, (2 3)

(2.4)

In terms of the deformation parameters (s s) we de-
fine the Lagrangian finite strain parameters (rl p) by

n-s= sos.s+ss ++ sl sos].

Note that while ~ p has not been assumed to be sym-
Illctl'lc III n Rnd p, Ii p ls by collstl'llctloll sy111111ctl'lc lll
these indices. The tensor q describes only pure strains,
and vanishes if the deformation described by the (e p)
is a pure rotation. Although q p is defined uniquely iQ

terms of the parameters {e s}, the reverse is not true:
to any set of parameters (ri s) there corresponds an in-
finite number of sets of (s s},which di8er among them-
selves only in the orientation of the crystal relative to
a fixed coordinate system which they describe.

We can rewrite Eq. (2.5) in matrix form as

(2.6)

C —P&P (2.7)

J=Ldet(I+2g)]'". (2 8)

At the saIQc time that we lIltloduce thc I aglanglan
61lltc strain pRI'Rnlctel's {7/~s} 111 tcl'Ills of tile dcfollllR-
'tloll pRI'Rlllctcl's, wc Illllst introduce the colltlRvarlRnt,
components of the electric 6eld, h„, which are defined.
in terms of the true 6CM components E„by

Since the determina, nt of the transpose of a matrix
equals the determinant of the matrix itself, we can use
Eqs. (2.4), (2.6), and (2.7), to express J alternatively R.s

J'=detF detp=detF'detF
=detF'F =detC= det(I+2@),

so that

(2 9)

s E. Btlrsteilr slid S. Galresalr, I Phys. (Paris) 26, 63"I (t965)*
6 E. Anastassakis, S. I~asa, and E.Burstein, Phys. Rev. Letters

17, 1051 (1966).' J. P. Russell, Appl. Phys. Letters 6, 223 (1965).
8 J.H. Parker, Jr., D. %. Peldman, and M. Ashkin, Phys. Rev.

(to be published).

The physical interpretation of the components {8,) is
that, apart from factors which depend on the primitive
translation vectors ai, a2, @3 of the undeformed crystal
and on the Lagrangian, strain parameters {q s}, they
are the components of the applied electric 6eld with re-
spect to the primitive translation vectors of the de-



formed crystal, Al, Al, Aa, which are given by Therefore, the susceptibility of the deformed medi~ ls

8'5'
x-e(F,E)= —J-'

Finally, wc nccd thc fRct that thc position grRdlcnt
Ii p is compounded of a pure rotation of the medium and
of a pure strain:

J'"-e=2 ~-1(&'")le

= —J I Q Jr sFe,
88pg,

= Q R „Re„x'„,(g, p), (2.16)

=Z &-1L(i+2~)'"joe (2 1O)
x'. (»~)= J 'Z Li+2~jl"

where R is the rotation tensor.
Let us denote by W= W(F, E,X) the potential energy

Per urus undeformed volume of the medium. If the en-
ergy is invariant against rigid body rotations of the
medium, there exists a function 5' such that

W= W(»a, X). (2.11)

W(11,8,X)= Jw(rf, S,X). (2.13)

In what follows, because we consider only homogeneous
deformations, we will suppress the dependence of lV and
N'on X.

That E and rg together do not unambiguously de-
scribe a thermodynamic state of the system of medium
plus 6eld follows from the fact that the strain pararn-
eters {sf e) give no indication of how the deformed
medium is oriented with respect to the field. Thus, in.-
stead of E, we use its contravariant components in the
deformed medium: The potential e~ergy must be the
same for two similarly deformed specimens (i.e., de-
scribed by the same parameters sf e), each of which is
subjected to an electric held whose contravariant corn-
ponents are the same in both cases.

If we denote the n Cartesian component of the polari-
zation in the medium by P, the dielectric susceptibility
tensor I p is defined by

If we wish to refer the energy to unit volume of the
deformed crystal, we denote this function by Co, where

(2.12)

so that

O' N'
XLI+2rljl&'„—. (2 Iy)

88pgg~

In Kqs. (2.16) and (2.1l) wc have exp«sscd th, d;
electric susceptibility of a homogeneously deformed
crystal in an electric fieM in a form in which the effects
of a pure strain and of R rigjd body rotation of the
Incdlurn RI'c disp].aycd separately and expll 't
)((It/, g) describes thc lcspollsc of the susceptlblllty of a
pure strain of the medium. If thc deformation Qf th
medium described by fhe {e &) has a rlgld body rotation
of the medBlm ill addltlon fo a pure stl'alll Eq (2 16)
simp}y expresses the fact that the effect of the pu
tatloll oil 'tile susccptlbilify is to transform Xs ( g)
according to thc transformation Jaw
tensor under R pure rotatjon.

In studying the change ln thc susceptibility due to a
homogeneous dcformatlon of the med;um
thc change induced by a pure strain rather than a pure
rotRtlon which ls Qf interest. In
change of the susceptibility with deformatlon the egccts
of Rny pure rotation can be accounted for by the u
Eq. (2.16) or, alternatively, the cxp«imcnt can
ca«lcd out 1»uch a way that the deformation is a pu
Stl'Mll (Roe= Ss,e).

We can expand W(ri, p) for a crystal of the d;am
structure formally in powers Qf & & Rnd g as

W(q, s) = W,+;P C.„,.„.,-».
apPo

+e + ~sSPsVsIf~SSfesSfvs+ ' '
rx pP0'f 7

x e(F,E)=OP /OEe. (2.14)

' Reference 1, p. 282.

Thc polarization is the dipole moment, pcr unit vo]ume
of the deformed medium, and is given by

+& ~ ~~@ ~1 se 9s+ . . (2.18)
@vcrpPer

Tile COCKClents {CsSe ) {Q e j
ordcI' third order clRstlc const, Rnts I'cspcctlvcl
N", is the potential-energy density of the undeformed
crystal in the absence Qf the held. Terms containing odd
powers of the 6eld components are excluded by the
presence of thc lnvcI'sion RIIlong thc opcI'Rtlons Qf th{
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Pprprr= (4~/« )B'prpp ~

For cubic crystals the coef6cient A~„ is isotropic, and
in view of Eq. (2.19) we write it as

point group of the space group O~' of crystals of the by
diamond structure.

When Eq. (2.18) is substituted. into Eq. (2.17), we
can expand X'p„(21,8} to first order in the strain param-
eters with the result that

x „„(~,a) = —A „,—g B„...~,.—", (2.19) (2.29)

where
On combining Eqs. (2.21) and (2.24) with Eq. (2.29), we
find the expected result that Xo is given by

Bprpp A ppprr+A prr8pp+A rrr8pp A pr5pp, 2 20

The Pockels' elasto-optic constants {p„„„}are defined

by the relation"

(e ')p.-(00 ')p.=Z p;p.~p. (2.22)

The dielectric tensor 0'p„(21,8) is related to the dielec-

tric susceptibility tensor by

0 „„(~,a) = b„„+4~X„.(q, a)

= op, 42rA„„—4n. Q B—p„,qp, . (2—.21)

xp= («—1)/42r. (2.30)

Combining Eqs. (2.20), (2.28), and (2.29) we find

that for cubic crystals

Pprpp'= (42r/«){Aprprr XO

XP„,8„,+8„,8„,—8„„8„]}.(2.31)

The fourth-rank tensors p„„„andA„„„have only three
independent ClCIYICllts fol' cilblc cl'ystalS. ThCSC al'C piiiir
p1122 p1212 and A 1111 A 1122 A 1212 respectively. The
relations between these coefFicients according to Eq.
(2.31) are

to lowest order in the strain parameters, where e is the
dielectric tensor for a strained medium, while ao is the
dielectric tensor for the unstrained medium. H we write
e= «+8c, then to first order in 8C

pi 111= (4'/«) LA IIII—xo],

p1122—(41r/«) LA 1122+xpj
p1212 = (4m'/00 )LA 1212 Xp].

(2.32)

The inverse relations are
(e )pr («pr= cp pp8pprr co rrr. 2.23

For cubic crystals a{}is isotropic,

(«)„=&p,po,

and Eq. (2.23) takes the form

(e '), -(« ')"=-(1/«')&"'

According to Eq. (2.21) 80„„ is given by

(2.24)

(2.25)

A 1111 (60 /4Ã)pl111+Xo r

A 1122= (00 /4m') p1122—Xo,

A1212 (« /42I)pl212+xp ~

(2.33)

To obtain the electrostriction constants we proceed
in a somewhat similar fashion. The general expression
for the stress components in an arbitrarily deformed
specimen in the presence of an electric 6eld is"

so that

80pp 42r g Bprprr7/pp r

pK

(e ')p.—(eo '). =(4~/«')& B"p.~" (2 27) (2.34)

Comparing Eqs. (2.22) and (2.27}, we find that for When Eq. (2.18) for W is substituted into Eq. (2.34),
cubic crystals Pockels' elasto-optic constants are given the expression for T ~ becomes

1
Trr~= P EapFpr{g CprPrr'VPrr+2 E CprPrrypIIPp212rp+2 Z @P~rrAPppr+2 Z '@~rr4Prrprpr210r+ ' ' ' }J pv Pg Pole po. po. 5 r

1
+—E PF„p{QhQp, +Q h,A . gpp+p}+ E, Q I'r p{Q B,Ap, +Q h—.A . gpp+p.}~ (2.35)

2J p p pP0

'0 Reference 1, p. 376.
"Reference 1, p. 286,



If we rewrite Eq. (2.35) as For cubic crystals, the tensor gpss, {~}has only three in-

dependent, nonzero elements, and these are

VIIII' '= —{&IIII—»0},
Vin2{~}=—~ru2,

V1212 {+1212 ~0} l

(2.41)

'tllc cocfEiclcnts {80 &} Rle p1czoelcctrlc coils'tRnts RIld

vanish for crystal of the diamond structure; the coefE-
cients {v00 „}are electrostriction constants. Comparing
Eqs. (2.35) and (2.36), we see that the coeflicient vp0 I
is given explicitly by

»0-I= —{& FSPF0 F-PFI ~P".J pape

where we have used Eq. (2.29).
For some purposes it is more convenient to consider

the stress and 6eM components as the independent vari-
ables determining the elastic strains. For this purpose we
introduce the elastic compliances {5p„0} which are de-
Gned by

~ ~ » CS.~ =&-2&P =& C.PS.~S.v' (242)
po po

+-'b~s & "-Pf'0 ~P +P.0 & F-PFS.~P.} (2 32)

to the lowest explicit order in the strain parameters.
This expression can be rewritten in a form in which the
effects of a rigid body rotation of the specimen and of
a pure strain are explicitly separated. To do this we
make use of Eq. (2.10) and the fact that the rotation
matrix R is a real, orthogonal 3&3 matrix. We are then
led to the result that

VPIaY 2 ~IIPl~0al~aPl~'V&1V Pl alai&1 l (2'3g)
plolplvl

V pl pl pl pl {2 ~pl p ~ala Cpl p C&lv ~ pappJ go'pp

+2 2 L plpl alp ~&lp +~alplCplp Cplp

+0plpCp» Cplp +~alplCSlp Cplp j~pp} ~ (2 39)

The superscript T denotes that these constants relate
the electrostrictive stress to the applied electric Geld.
EqllRt1011 (238) Is tllc tl'RllsfollIIRtloII law fol' R folll'tll-
rank tensor under a rigid body rotation of the specimen.
The elements of the tensor y{~}„„„,„, describe the re-
sponse of the electrostriction constants to a pure strain
applied to the specimen. Because we have neglected the
contllbutlons to ppg~& which have an expllclt depend-
ence on the {q„}in writing Eq. (2.32), the dependence
of the electrostriction constants on pure strains de-
scribed by Eq. (2.39) Is incomplete. However, we are
interested in the electrostriction constants themselves,
and not in their strain dependence, which is a higher-
order physical effect than we consider here. Therefore,
setting 7=1, and. C=I, we finally obtain for the electro-
striction constants themselves

VP0 V"I= PS0-&+2—L&S-~~0+~0-~vS

18P,A 0+80,A,Pj}. (2.40)

We can, therefore, put Eq. (2.36) into the alternative
form

V fS&&g Q ~ ~ egPSPISuPba
{y} l M cp}

pb

Finally, on combining Eqs. (2.33) and (2.41)
obtain the relations between the elasto-optic constants
and the electrostriction constants for crystals of the
diamond structure:

V1111 (00 /4&)P1111 XO

V1122 (00 /42r)P1122 ~0

V1212 —(00 /41r)P1212 ~

(2.46a)

(2.46b)

(2.46c)

QI. LATTICE THEORY GF THE
CDEFFICIENTS {AP„„P}

The potential energy of an arbitrary nonprimitive
crystal can be expanded in powers of the displacements
of the atoms from their equilibrium positions as

C0=C0+'2 Q Q C,P(k lY)u (ill)NS(l'0')+ ~ . (3.1)

Hcl'e I (lg) 18 'tile a CR1'tcslall coIIlpolleIlt of tllc dis-
placement of the ~th atom in the 3th unit cell from its
cquihbrium position. The {C',I2(4; Ps') }arc thc atomiC

'lax=2 ~a7P&~P&+2 +p~aVP00pP&
pb Is p&

+2 Z ~.&.~-IS0V"'"00+ ". (243)
Isv pb

The electrostrictive strains induced in crystals of the
diamond structure are obtained from this expression by
setting Tpq=o. For crystals of the diamond structure
the electrostrictive strain is given by

n 2= Z EPE.{2Z ~ ~00V"',.PP}.
jNV p8

The coeKcients in curly brackets in this expression are
called the electrostrictional moduli {V&»P.p0}:]
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I (k)-g e pep(la)-d„(le). (3 2)

The 6rst term describes a homogeneous deformation of
the crystal. x(k) is the position vector of the equili-
brium position of the atom (k) in the unstrained, field-

free crystal. The deformation parameters {e ii) are the
elements of a real 3)&3 matrix which is not necessarily

force constants. The harmonic approximation for the
potential energy expressed by Eq. (3.1) suffices for our
purposes. We subject the crystal to a deformation de-
scribed by

symmetric. The displacements {d (k)) represent the
relative displacements of the sublattices comprising the
crystal in response to the macroscopic strain. They are
nonzero for crystals every atom of which is not at a
center of inversion symmetry. It will be seen that d (le)
is independent of the cell index /. However, it is formally
convenient to allow for a possible dependence on / until
a later stage in our calculations. The values of the sub-
lattice shifts {d (k)) will be obtained eventually by
minimizing the potential energy of the strained crystal
in the presence of the field. When we substitute Eq. (3.2)
into Eq. (3.1) we obtain

C„=CD+-,'Q {QQ 4& p(k; I'ii')xp(k)x. (I'i~')))e pep,
apPo l» l'»'

+Q Q {Q @~p(k; lY)x,(lY))d, (k)Ep, +-,'g P C~s(k; I'ii')d, (k)ds(lY). (3.3)
l»a Po l'»' l»a l'»'P

It is convenient at this point to eliminate the deforma-

tion parameters {e,) from this expression in favor of
the Lagrangian finite strain parameters {g„,), which

are de6ned by

1C
Jap 2 ) Gap~ gapa~~ 6Pa6$p J X/pa e (3 4)

At the same time we must eliminate the components of
the vector d(k) in favor of the contravariant compo-

nents in the deformed crystal, {d,(k)}, which are de-

fined by"

d.(k) =d.(k) —P ep.dp(l~)+0(e'). (3.6)

Q C p(k; I'ii')x, (lY)=G,s (k)
l'»'

(3.7)

is symmetric in P and 0 for every value of (kn). Conse-

quently, the sum

To carry out these eliminations we make use of the
result, which follows from the transformation properties
of the atomic force constants under an infinitesimal
rigid body rotation of the crystal, that the sum

d (li~) =d.(k)+P e,.d, (li~). (3.5) Q Q C p(k; Pii')x, (k)x,(l'a') = VNG ps. , (3.8)
l» l'»'

These displacement amplitudes, as well as the strain
parameters {g,), make no reference to the absolute

orientation of the crystal. Equation (3.5) can be easily

inverted, with the result that

where Vo is the volume of the undeformed crystal, is
symmetric in n and p and in p and 0, as well as in the
interchange of np with Po. We therefore obtain the result
that

~" =V '~ =&+-: ~ G"s l('-+.-)l('i +"s)+V 'ZZG. s.(k)ld. (k)—Z,.d,(t)+" jl(,.+..,)
appo l»a po p

+-'V-'Z 2 C. (k;t"')I.d.(k)—Z,.a,(t)+" ]Ld (P")—p .sr'f. (t' ')y j"
l»a l'»'P

I+s Q ~,p, ij~,gp~+ ~
' Q Q G~s, (k)d~(l~)gp~+~ VI 'Q Q C-'~p(k; I'x')d~($z)gp(l'x')+ . (3.9)

a ppo. l»a l'»'P

In writing this expression we have neglected terms of

third order in e„and d (k). However, it will become

clear from the succeeding analysis that none of the

omitted terms contribute to the potential energy den-

sity a term of the form 2 P„,„,8„8„AppF/ p In the con-.
text of the present problem their neglect is therefore

justified.
If we minimize the potential energy density given by

Eq. (3.9) with respect to the {d (k) ), we see that in the

approximation which this equation represents d (k) is

a linear function of the {q,).
» g,eferegce j., pp, j.39 and 28i.

O'= —Q E„M„—$ Q E„E„I'„„ (3.10)

"Reference I, p. 310. Although the field F appearing in this
equation is strictly the external Geld, we assume that this is also
the macroscopic field in the crystal, i.e., that there is no depolariz-
ing field. "this can be achieved experimentally either by plating
the electrodes which give rise to the Geld to the faces of the crystal,
or by choosing the crystal to be a thin slab parallel to the external
Geld.

In the presence of an external electric 6eld E, addi-
tional terms must be added to the potential energy of
the crystal. These terms in the adiabatic approximation
are given by"
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to second order in the 6eM. Here 3f„is the p Cartesian
component of the crystal dipole moment operator, and
I„, ls the pu element of the static electronic polarlza-
bility of the crystal. Both M„and E„,possess expansions
in powers of the nuclear displacements:

M„=M„&01++M„, (k)u (l»)

+sl g P M„,.p{l»; 1»')u. (k)up(l »')+. , (3.11)

P„,=P„,I 0'+Q P„„(l»)u (l»)

+-', Q Q P„, p(k;l'»')u {k)up(l»')+ . . (3.12)
lao Pa'P

The first two terms on the right-hand. side of Eq. (3.11)
are absent for crystals of the diamond structure.

When we substitute Eq. (3.2) into Eqs. (3.11) and

(3.12), we obtain for crystals of the diamond structure

4'= ——,
' g g Q E„M„, p(l»; l' »)(g x,(l»)x {l'»')c pep. +2 + x.(l'»')cp, d {k)+d (k)dp{l»')}

—-', P P„„&'&E„E„—-', Q Q E„E„P„„„(k)(Qx,(k)c,+Il (k) )——,
' Q Q Q B„E,P„...p(l»; l'»')

y(P x,(k)x.(1'»') p.,cp.+2 P x.(l'»')cp. d.(k)+a.(k)vp(l'»')) ".—(3.13)

%e must now eliminate the deformation parameters
(c,) and. the components of the inner disp1acements

(d (l») ) fl Gill tllls cxpl'cssloll 111 fRvol' of tile fllll'tc

strains (g,) and the contravariant displacement com-
ponents (d {l»}).However, as pointed out by Born and
Huang, '4 we must also eliminate the 6eM components

(E„) in favor of the contravariant components (h„} in
the deformed crystal, which are de6ned by

111 g»p, 8», Rnd d»(k), wc call Ilcglcct t11c 1ast 'till'cc tel ills
on the right-hand side of Eq. (3.13), with the conse-
quence that

—Vo I Q Q Q B„M„p.(k)d (l») Ilp,

(3.14) —gVe 'QQ Q B„M„„p(k;l»')

These 6eld components make no reference to the ab-
solute orientation of the crystal.

Ke use the conditions imposed. on the coeScients
(M„, p(i», 1' ))», (P„„, (k)), and (P„„,p (l»; l'»') }by the
transformation properties of 3fp and Ilia under IQGnl-

tesimal rigid body rotations of the crystal to eliminate
the parameters (c,}, (d (l»)), and (E„) from C' in
favor of the (g,},(cl (l»)), and (h„}.The necessary re-
sults are that the sums

Xd (1»)dp(l »') ~, —
—-', Vo I Q P „Io&8 h„

—
2 Vo ' Q Q B„h,P„„(k)d.(k) —-, (3.16)

Q M„, p(k, l»')x. (l»'), (3.15a) VoM„«,p.=Q Q M„, p(l»; l'»')x, (k)x.(l »'), (3.17a)

Q P„,, (k)x,(l») 8„P.BIO' 8, P„—»&OI, . (3.1—5b) M„p.(l») = Q M„,„p(l»; l'»')x, (l'»'), (3.17b)

Q P„„„p(l»;l »')x, (l »') —8 pP„„(l») P„.»,=Q P„„(l»)x»{l»)

b„pP„, (l») b,pP„—„,(l»), (3.1—5c} —&„P.p"'—B„P„pI'&. (3.17c)

Rl'c symmetric 111 p Rlld 0') 111 cI Rnd p) Rlld Rgmll ln p Rnd

~, respectively,
If we retain terms in C' of no higher order than third

~4 Reference 1, pp. 282-283.

Thc cocfflclcnts (M»»&p»} VRIlls11 for crystals possesslllg
a center of inversion. The erst term on the right-hand
side of Eq. (3.16) will therefore be omitted in all that
follows.

The equation for d (l») is obtained by minimizing the
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sum of Wo and W' with respect to d (1»):

—(Wg,+W')= Vo 'Q G p (l»)r/p +Vo ' Q C p(l» l»')dp(l»')+ . .
&)d (l»)

—Vo ' Q Q B„3E„p.(l»)r/p, Vo '—Q Q B„M„,p(l»; l' »)dp(l »)—,'Vo —' Q B„B„P„„,(l») . =—0. (3.18)
p L'a'p

It is shown in Appendix A that the solution of this equation can be written formally as

d &o&{l»)=—Q I' p(l»; l'»')Q Gp„(l»')g„+-', Q I' p(l»; l»')Q B„B,P„.,p(l»')+0(r/', r/B),
l' p&'p

(3 19)

where F is a suitably truncated form of the matrix + '. With the aid of the equilibrium condition (3.18) we can
rewrite the potential energy density as

W= R' +o-', P G.pp. r/. ,r/p, +',-Vo-' P P G,p, (l»)d. &o&(l»)r/p. ——,'Vo-' g P g B„M„.p.(l»)d &o&(1»)r/p.

—oVo 'ZP, .&o'B,B,—oVo 'Z Q B„BZ„,,r/, ——,'Vo-'Q Q B„BP„„,(l»)d &oi(l»)+ . . (3.20)
l&& aP

When we substitute into Eq. (3.20) the explicit expression for d„&o&(l») given by Eq. (3.19), and collect the terms
of 0(i)') and of 0(r)E'), we obtain

W= Wo+-', P G,p.i/, gp. ——,
' Q ( Vo ' Q Q Q I'„„(I»;l'»')G„, {l»)G„p.(l »') }r/, r/p,

a ppo. a pp&r lP~ lP& l'Pt'

—l 2 2 B.B.(Vo 'P.-,}~-.+l zr, B.B.(Vo '2 2 P, .(I )I" (l; l' ')G-.(l' ')}~"+ (321)

If we compare this expression with Eq. (2.18), we can
make the identifications

C.,p.=G.,p.—Vo 'Q Q I"„„(l»;l»')
lap t'p&'v

XG„.,(l»)G„p,(l »'), (3.22)

~ g&an= Vo Ppvnp+ Vo 2 Z Ppv, y{l»)

lot's

l'p&'8

0& I',o(l»; l'»')Go p(l'»') . (3.23)

The identification of the coefficients (C,p.} given by
Eq. {3.22) as the ordinary elastic constants follows from
results of Huang, "Leibfried and Ludwig, "and Lax. '~

The first term on the right-hand side of Eq. {3.22) gives
the contribution to the elastic constants associated with
the homogeneous ddormation of each of the two sublat-
tices comprising crystals of the diamond structure; the
second term gives the contribution associated with the
relative rigid body displacement of the two sublattices
in response to the homogeneous deformation of the
crystal. It should be noted that the coeKcients G,p, are
defined by an expression, Eq. (3.8), which is a function
of the equilibrium positions x(1») and x(l'»') of the atoms

(l») and (l'»'), rather than of the relative separation of
these two atoms, x(1»)—x(l »'). It follows, therefore, that
the contribution to the sum in Eq. (3.8) from lattice

"5 K. Hnnng, Proc. Roy. Soc. (London) A203, 1/S (1950)."G. I.eibfried I.nd %. I udvrig, Z. Physi 160, 80 (1960);L. L
Hedin, Aviv I ysik 18, 369 (1960).

'~ M. I.ax, in Proceedings of the International Conference on Lat-
tice Dynamics, Copenhagee, IN3, edited by R, F, @/is (Perga-
mon Press, Igc., gear pork, $965), p. 583.

sites in the surface of the crystal is of the same order of
magnitude as the contribution from the lattice sites in
the interior of the crystal: such a sum is said to be
boundary sensitive. "'" Consequently, Eq. (3.8) does
not provide a convenient starting point for the calcula-
tion of the elastic constants and must be transformed
into a boundary insensitive form for this purpose. The
way in which this is done is described in Refs. 16 and 17,
and we will not go into it here, as it is not with the elastic
constants that we are primarily concerned. In what fol™
lows we therefore focus our attention on the coeScients

Ke can slmpllfy thc cxprcsslon for Al&,p~p given by
Eq. (3.23) and at the same time compare our results
wltll 'tliose of Tlleiillel". Compaililg Eq. (3.20) with Eq.
(2.18), we can make the identification

A„„=—Vo 'P„„&o&=—8„„X,, (3.24)

where the second equality is a consequence of Eq. (2.29),
and is valid only for cubic crystals. Equation (3.24),
together with Eqs. (3.1'/c) and (3.23), yields the result
that for cubic crystals

A„„.,=fl„„.,&»+8„„.„&»+x,P„.S„,+ S„.r„,l, (3.25)

where

P„„.,&»= —Vo 'P P„„(l»)xp(l»), (3.26a)

a„...& &=Vo-'Z E P.„,(l )
leg l'«."5

XI „(1»;l')G...{l'»'). (3.2& b)
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If we combine Eq. (3.25) with Eq. (2.31) we obtain for
the elasto-optic constants

p„, = (4%/t0 ){8„, &'&+8„, ,&'&+X&&i&„„8,}, (3.27)

or alternatively

8,-,"&+8"""&=(«'/4~)P"-n ~o4 o-' (3 2g)

The physical interpretation of the coeScients
{8„„,&"} is readily seen. The atoms comprising a crys-
tal possess electronic charge distributions of 6nite
spatial extent surrounding their nuclei. As two atoms
are brought closer together than their equilibrium sepa-
ration in the crystal the overlap of their electron clouds
increases. However, because of the exclusion principle,
the electrons try to avoid the region of maximum over-

lap, and the electronic charge distributions on the two
atoms accordingly distort. The degree and nature of
this distortion is a function of the relative separation
and orientation of the two atoms. The distorted charge
distributions respond diBerently to an external electric
6eld than do the undistorted charge distributions, so
that the electronic polarizability of the crystal is a func-
tion of the displacements of the atoms from their equi-
librium positions. The coeflicient P„„, (l») gives the
6rst-order change in the pv component of the electronic
polarizability of the crystal when the atom (k) is given
a unit displacement in the x direction, all other atoms
being kept 6xed at their equilibrium position. The co-
eScients {8„„,&'&} and {8„„,&'&} therefore give the
change in the polarizability of the crystal (strictly, the
susceptibility) when the atoms comprising the crystal
are displaced from their equilibrium positions in the
pattern associated with a homogeneous deformation of
the crystal. In particular, the coeflicients {8„„,&'&} give
the change in the polarizability due to the atomic dis-
placements associated with the homogeneous deforma-
tion of each of the sublattices comprising the crystal.
However, in crystals of the diamond structure every
atom is not at a center of inversion symmetry, so that
a homogeneous deformation of each sublattice is ac-
companied by a relative displacement of the two sub-
lattices. The change in the electronic polarizability of
the crystal associated with the latter displacemen. t is
described by the coefficients {8„.,"&}.

The relation between the polarizability derivatives
and the elasto-optic constants obtained by Theimer
LEq. (3.24) of Ref. 2j differs from the result given by
Eq. (3.28) only by the absence of the term in XD from
the right-hand side of the latter. The presence of this
term on the right-hand side of Eq. (3.2/) has its origin
in the change in the volume of a crystal accompanying
a homogeneous deformation. That is, even if the atoms
comprising a crystal were not polarizable and deform-
able and the constituent sublattlces did not undergo
any relative displacements on the application of a strain
or electric 6eld to the crystal so that 8„„,&'~=8„„,('&
=0, the dielectric polarization, which is the dipole mo-

IV. DETERMINATION OF THE COEFFICIENTS
{Bpy~p }/FOR CRYSTALS OF THE

DIAMOND STRUCTURE

The translation vectors for a crystal of the diamond
structure are

x(l) = lpga&+4a2+4a8, (4.1)

where l~, 12, ls are three integers which can be positive,
negative, or zero, and to which we refer collectively as
l. The three primitive translation vectors are given by

a, =-',a,(0,1,1), a,=-,'o, (1,0,1), a, =-', o,(1,1,0), (4.2)

where a0 is the lattice parameter. The basis vectors are

x(1)=0, x(2) =-,'ap(1, 1,1). (4.3)

In what follows wc assume that the crystal which we
study contains E primitive unit cells. Consequently the
volume V0 of the undeformed crystal is given by Ev„
where v is the volume of an undeformed primitive unit
cell, which for crystals of the diamond structure is
&&,=a0'/4. This assumption means that the cell index l
takes on only E values.

We consider Grst the coefficients {8„„,&'&}, which
according to Zq. (3.26b) are given by

8„„,&2&= Ve-'P P J.'„„,„(l»)

&& I',g(l»; l'»')G». ,(l'»') . (4.4)

The coeKcient G,&&,(t») appearing in this expression is
de6ned by Zq. (3./) as

G.&&.(l») =Q @ p(l»; l'»')x, (l'»')

It follows from Eq. (4.5) and from infinitesimal transla-
tion invariance, as expressed by Eq. (A6), that

Q G p.(l»)=0. (4.6)

The evaluation of the expression (4.5) for G», (l») is
greatly simpli6ed if we use the condition of in6nitesimal
translation invariance, Eq. (A6), to rewrite Eq. (4.5)
in the form

G p.(l»)= —Q 4 p(l»; l'»')x. (l»; l'»'). (4 &)

ment per unit true volume, would still be a function of
the strain parameters simply because the crystal volume
is a function of the strain parameters. On the basis of
this argument the elasto-optic constants in this arti6cial
case would clearly be given by

p„„„=(4n/«')x08„„8, (3.2&&)

for cubic crystals, and this is just the expression into
which Eq. (3.27) degenerates for this case. Theimer's
theory, on the other hand, predicts that the elasto-optic
constants vanish in this case.
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With the expression for G p, (k) written in this bound-
ary-insensitive form we can tal~e advantage of the fact
that the atomic force constants depend on / and I' only
through their difference. This fact enables us to change
the summation variable from /' to a new variable l= /' —l
to obtain

G p.(k) = —Q C.p(OK; li~')x, (0x; lK') . (4.8)

the expressions for G p (01) and G p, (02) become

G-p. (o1)= —
I G-p. (11)+G-p.(12)j, (4 11a)

G p (02)= —[G p (21)+G p, (22)j. (4.11b)

From the symmetry of the atomic force constants,

C p(k; lY)=C p(k; l'a'), (4.12)

and the fact that C p(lie,
' 1'x') depends on l and l' only

through their difference, it is straightforward to estab-
lish the general property

G p.(«') = —Gp..(a'x). (4.13)

In particular, we have that

G.p.(«) = —Gp..(«) . (4.14)

To proceed farther we need to establish the transfor-
mation law for G p,(«') under an operation of the space
group of the crystal. In the Seitz" notation a space-
group operation is written in the form {S

~
v(S)+x(m) },

and is dined through its effect on the position vector
x(k):

{Si v(S)+x(m) }x(k)
= Sx(k)+v(S)+x(es) =—x(LE) . (4.15)

In this equation 8 is a real, orthogonal, 3&3 matrix
representative of one of the proper or improper rotations
of the point group of the space group, v(S) is a non-
primitive displacement associated with certain rota-
tional elements of nonsymmorphic space groups, that

~ F. Seitz, Ann. Math. 37, 17 (1936).

The right-hand side of this equation is independent of l,
so that the only coefficients we have to consider are
G p (01) and G p, (02). However, these coeflicients are
not independent, for in view of Eq. (4.7) the following
relation must hold:

G.p.(01)= —G.p. (02) . (4.9)

Because G p.(01) enters into the expression for the
relative displacement of the two sublattices comprising
the diamond structure when the crystal is homogene-
ously deformed, it might be thought that only the
atomic force constants coupling atoms on diferent sub-
lattices should contribute to the sum (4.8). That this
conjecture is correct is shown by the following argument:

In terms of the sums

G.p. (KK ) =Q C.p(k; 1'K')x (k lK') '(4.10)

Combining Eqs. (4.10) and (4.16), we find that

G p (EK') = Q C,p(LK; L'K')x, (LK; L'K')
L'K'

= P Q S.„Sp„C„„(k;1'ii')S.,x,(k; lY)
LiK' l.~

=P S.„Sp„G„„,(«') . (417)

In going from the second to the third line of this equa-
tion we made the change of summation variables
x(l'g') = {S

~
v(S)+x(m)} 'x(L'E').

The space group of diamond is OA, ~. If we ignore the
invariant subgroup of translations through the lattice
vectors {x(m)},this space group consists of 48 elements

{S~ v(S)}, in which the purely rotational elements {S}
comprise the point group 0&. The 24 symmetry elements
whose purely rotational parts comprise the point group
Td contain no nonprimitive translations and do not
interchange the two sublattices of the diamond struc-
ture. The remaining 24 symmetry elements have a non-

primitive translation through the vector ~co(1,1,1)
associated with them, and interchange the two sublat-
tices. The use of the erst group of 24 symmetry opera-
tions in Eq. (4.17) yields the result that the elements of
the third-rank tensor G p, («') are given by

G-p.(«')=G(«')
I ~-p. l (418)

where G(«') is a coefficient which is independent of

n, P, 0.. However, we see that the results expressed by
Eqs. (4.14) and (4.18) are compatible only if G(KK) =0.
Moreover, the presence of a center of inversion in crys-
tals of the diamond structure has the consequence that

G(12)= —G(21) . (4.19)

Using these results in Eqs. (4.11) we find that

G p (01)=—G(12) i& p i

= —G p, (02)

= —P C,p(01; l'2)x, (01; l'2) . (4.20)

"G. H. Begbie and M. Born, Proc. Roy. Soc. (London) A188,
B9 (1947).

is, space groups which contain screw axes and glide
planes among their symmetry elements, and x(es) is a
translation vector of the crystal. The second equation in
Eq. (4.15) expresses the fact that inasmuch as {S~v(S)
+x(m) } is a, symmetry operation of the crystal, it must
send the lattice site (k) into an equivalent lattice site,
which we denote by (LK). In what follows we will use
the convention of labeling by capital letters the lattice
site into which a given lattice site, labeled by lower case
letters, is sent by a space-group operation.

Under a space-group operation the atomic force con-
stants transform according to"

C p(LE; L'E') =Q S „Sp„C„„(k;lY). (4.16)
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In obtaining Eq. (4.20) we have established two re-

sults. We have shown tha, t the coefFicients G s,(01)
= —G p, (02) are expressible only in terms of atomic
force constants coupling atoms on diHerent sublattices
of the diamond structure. At the same, time we have
shown that G p.(01). has the form

where

G-i.(01)=Gl ~-i I
(4.21a)

G—=—G(12) = —Q Cia(01; I'2)x3(01; /'2) . (4.21b)

The preceding results enable us to rewrite the ex-
pression for the coefficient B„, ,"', Eq. (4.4), in the fol-
lowing form:

P I'.p(l~", lY)= I'.s(ax'), (4.23)
(3II„M„)'"

so that according to Eq. (A19),

e (xl0j)ep(~'l0j)
I' p(xK')=P'

(o,'(0)
(4.24)

In Eq. (4.24) &o;(0) is the frequency of a normal mode of
infinite wavelength (ii= 0) labeled by the branch index

g, and e(kl0g) is the corresponding unit polarization
vector. The prime on the sum means that it extends
over the optical branches only. The form of e (~l0j)
is determined by symmetry in crystals of the diamond
structure, and is"

-(I I0j)=2-'"~-,=- .(210j), (4.25)

where j=1, 2, 3 labels the three optical branches. The
frequencies of the three optical vibration modes at %=0
in crystals of the diamond structure are all equal, and
equal co~, the Raman frequency. Putting these results
together, we 6nd that

I'-s(») =I.s(22) = —~..(12)
= —I" p(21)=8 p/2(o~'. (4.26)

It follows, therefore, that the coeKcient 8„, , " is
given by

2 G
(4»)

8~ 3IIcog 'Y

2 M. Lax, Symnmtry Principles in Solid State Physics (to be
published).

I'6

Mv„v&

X(I',s(11)—I', i(12)—I',i(21)+I',i(22)), (4.22)

where M(=Mi ——M~) is the mass of one of the atoms
comprising the crystal. The elements of the 3&3 matrix
r(KK) are defined by Eq. (A10) of Appendix A as

Equations (3.28) consequently simplify to

"'=( o'/4 )p

Bii22 (&0 /4s)pl122 xo 1

(4.29a)

(4.29b)

Bigi2~"i+(2/n )(G/Mug )I =(eo /4m)pi2ig. (4.29c)

These equations are as far as we can go toward evaluat-
ing I' without adopting some specihc model for the lat-
tice dynamical and optical properties of crystals of the
diamond structure.

The vibrational properties of the crystal enter Eqs.
(4.29) through the parameter G and through the Raman
frequency in the combination 3f~~2. The expression for
the former is given by Eq. (4.21b); the combination
M~~' can be expressed in terms of atomic force con-
stants by"

M(oui' ———2 Q C (01; I'2).

That only force constants coupling atoms on diferent
sublattices appear in this expression is a reQection of the
fact that the Raman frequency is the frequency of a vi-
bration mode in which the two sublattices beat rigidly
against each other.

Sophisticated force-constant models for crystals of the
diamond structure have been developed. Herman" has
written down the force-constant matrices for interac-
tions between atoms which are 6rst, second, ~, 6fth
neighbors. Pope" has extended Herman's results to ob-
tain the sixth-neighbor force-constant matrix. The
force-constant matrices for 6rst-, third-, and fifth-
neighbor interactions have the forms

Q1 P1 P1—C' s(000 111)= pi ~i pi
«P1 P1 O!1~

(4.31a)

Q8 P8 P8—@'-s(000 311)= p~ Ps r3
-ps r3 P3~
C'

A5 P5 05—4 p(000; 331)= pg nl 0,
«05 05

On the right-hand side of each equation we have ex-
pressed the argument (01; /'2) of each force-constant
matrix in terms of the components of the vectors x(01)
and x(P2) in units of ao/4. The remaining 6rst-, third-,
and 6fth-neighbor force-constant matrices can be ob-

2I S. Ganesan and A. A. Maradudin (to be published)."F.Herman, J. Phys. Chem. Solids 8, 405 (1959).» N. K. Pope, in Proceedings of lhe In/ernukonal Conference onI.attjce Dynamics, Copenhagen, D'63, edited by R. F. Wallis
{Pergamon Press, Inc. , New York, 1965), p. 14'?.

The only nonzero elements of this tensor are

~1212 ~2112 ~1221 ~2121 ~1818

~8118 ~1881 ~3181 ~2828 ~8228

=Bg332 =Bg232 = (2/8 )(G/Mcori )p. (4.28)
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The coefl1cient (2/2l, )(G/M&0122) appearing on the right-
hand side of Eq. (4,29c) is therefore given by

1 p1+(2po 3r—o)+(po+«0)
(4.33)

420 n1+(no+2P2)+(Vo+2no)

At the present time the only crystal of the diamond
structure for which all of the force constants appearing
in Eq. (4.31) are known is germanium. "The results
(in units of 10' dyn/cm) are

+1=3.910, p1
——3.044, no ———0.781, po

——0.733,

p3= 0.378, ra= —0.453, e5= 0.490, p5= 0.514,

(434)

The value of (2/2l, )(G/%40122) obtained by combining
Kqs. (4.33) alld (4.34) ls glvell 111 Table I.

For silicon and diamond no such extensive force-
constant data exist, and we are forced to use a much
cruder force-constant model to evaluate 6 and &co~'.
Because of its simplicity the model we chose to use is
a nearest- and next-nearest-neighbor force-constant
model in which the nearest-neighbor interactions are
still described by the force-constant matrix (4.31a),
while the next-nearest-neighbor interactions are as-
sumed to be of the central-force type, and are described

by the force-constant matrix

n2 n~ 0't
—C 2(000; 220) = n2 n2 0

.0 0 0.
(4.35)

The three elastic constants of the crystal can be ex-

pressed in terms of the three force constants e1, p1, and

n2 by

420C12 2pl n1+4n2

420+44 n1+ 4n2 (pl /™1)~
(4.36)

From Eq. (4.33) we obtain the result that on the basis of
the present simple model

(4.37)

Values of e~, p1, and ot, 2 obtained from experimental
values of the elastic constants are given in Table I for
diamond, silicon, and germanium, together vrith the

tained by applying Eq. (4.16) to the results given by
Eqs. (4.31).

Substituting Eqs. (4.31) into Eqs. (4.21b) and (4.30)
yields the expressions

G= a,$—p +(2p 3r—)+(p +6lr )j, (4.32a)

%40122= 8t n1+ (no+ 2l(4)+ (yo+2no)]. (4.32b)

TABLE I. Values of physical constants and of derived quantities
used in this paper.

Diamond Silicon Germanium

u0(A)

Cll (10"dyn jcm')
C12
C44

Sll (10 "cm'/dyn)
S12
544

X0

pl 1
—g] 2 (10 cm jdyn)

(t44

1 ZN
——(10-' cmo/Kg)
sdT
ala(10 "cm'jdyn)
&j12

A/44

lrl1(] o-18 cmo/dV11)

7r 44

Pllll
P1122
P1212

p 1111 p1122 2pl 212

Pllll

&1212(~&

p4111 41Lto (cm/V) ]
71122(")

P (A')'
P (A2)g

el (10' dyn/cm)
pl (10 dyn/cm)
o.2 (10' dyn/cm)—(8Gje0M~gP) '
—(86jao~~z2)'
I.(r0) (A')
&(~0) (A').
r0I.'(r0) (A')
roT'(ro) (712)

3.567

10.76
1.25
5.76

9.55
099

17.35

5.86
0.386

+1.71e
—0.74
+0.95
—0.51
+0.22—0.28
—0.49
+0.20—0.16
—0.37

1.72—0.16
0.44

0.093—0.01.7
0.021

104.7—13.9

0.701
6.448
1157
9.62
1.1.7

5.430

1.66
0.64
0.80

76.8—21.4
126

11.6
0.854

21b
7

+25

+7
—1
+0.3—0.5
—0.2—0.003—0.04
—0 075

3
0.9
0.4
0.3—0.03
0.15

14 9
10.7—0.736

0.715
25.5
0.674

63.6
34.1

5.657

1.29'
0.48
0.68

96.4—26.0
149

16.0
1.193

+10
+7

+14
—0.4—0.25—0.55
—0.07—0.06—0.04

+0.06

3
2
0.7g

0.7
0.6
0.3

10
12

8.16
5.66—0.108
1.17
0.694

15.8
12.4

116.5
70.3

22 H. B. Huntington, Solid State Phys. I, 213 (1958},Table 4.1, p. 93.
b K. J. Schmidt-Tiedmann, J. Appl. Phys. 32, 2058 {1961};Phys. Rev,

Letters 7, 372 (1961}.
& V. I. Nikitenko and G. P. Martynenko, Fiz. Tverd. Tela I, 622 (1965)

(English transl. :Soviet Phys. —Solid State 7', 494 (1965)j.
d M. Cardona, %. Paul and. H. Brooks, J. Phys. Chem. Solids 8, 204

(1961}.
e G. M. Ramachandran, Proc. Ind. Acad. Sci. A25, 171 (1950).
& Equation (4.33).

Equation (4.37).

values of (2/2)(G/lM40122) obt'ained by substituting
them into Kq. (4.37).

VVe now turn to a discussion of the tensor 8„, ,&').

7. DETERMDTATION OF THE COEFFICIENTS
{a„„.,&») FoR cRYsTms/oF THK

DIAMOND STRUCTURE

Ke have seen in the preceding section that the only
nonzero components of the tensor 8„„,(" are propor-
tional to the parameter I' which is being sought. How-
ever, from Kq. (4.29) we see that in order to obtain P
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from experimental data we need to know the compo-
nents of the tensor B„„,~", in particular the component
Bg2gg"', since Bgggg

' and Bgg22'" can be obtained from
experimental data. In obtaining these values we are
faced with the following problem. We see from Eq.
(3.26a) that the first-order electronic polarizability co-
eKcients {P„„-,(k) } enter into the expression for
8„„,&'&, just as they also enter into the expression for
8p p However, in the case of 8„„,& ' & they do so in
a boundary-sensitive manner, unlike the boundary-
insensitive manner in which they enter into 8„„,&'&.

The expression (3.26a) for 8„„„&'&must therefore be
rewritten in a boundary-insensitive form, and this re-
quires a microscopic model for the electronic polariza-
bility of the crystal. A consequence of this is that By p

"
is not simply proportional to I', but instead is a com-
bination of the microscopic parameters in terms of which

P„„, (k) or P is expressible. The equation (4.29) must
therefore be regarded not as an equation for E itself but
for the parameters in the microscopic model of I'. It is
to the establishment of a microscopic model for the elec-
tronic polarizability of crystals of the diamond structure
that we now turn.

If we are to use experimental values of the elasto-
optic constants and the static dielectric susceptibility
to determine the value of the polarizability derivative
I', the model of the electronic polarizability we choose
must contain as many parameters as there are pieces of
experimental information, no more, no less. The model
we have chosen to use in our work has this property.

This model assumes that the electronic polarizability
of a crystal of the diamond structure can be expressed
as the sum of the electronic polarizabilities of the bonds
between nearest-neighbor pairs of atoms in the crystal.

The motivation for our choice of this model is the
fact that physical chemists have long described the
polarizability of molecules in terms of the polarizabili-
ties of the atomic bonds comprising the molecules. '4

In particular, the concept of the polarizability of a car-
bon bond is well established. We exploit this concept by
regarding a diamond crystal as a very large molecule
made up of carbon atoms, whose polarizability is there-
fore given by summing the polarizabilities of the bonds
between all atom pairs. Because the atomic bonding in
silicon and germanium is of the same type as in diamond,
it is not unreasonable to expect that if our model has any
validity for diamond, it will have the same validity for
these two crystals.

As an atomic bond does not have spherical symmetry,
but rather possesses cylindrical symmetry with respect
to the line joining the atomic centers, we attribute to
each bond a longitudinal polarizability and a transverse
polarizability. Let us denote by L„„(r)=L„,(r) and
T„„.(r) =T„„(r), the longitudinal and transverse elec-
tronic polarizabilities, respectively, of the bond between

' See, for example, S. Glasstone, Textbook of Physical Chemistry
(D. Van Nostrand Company, Inc. , New York, 1946), p. 537.

two atoms of types ~ and f{.
" separated by a distance r.

The total electronic polarizability of the crystal can
therefore be written as

R„(k; 1'»')R„(k; lY)
P„„=,'P -P' — L,„(R(l»; lY))

R'(l» lY)

+-', ZZ' ~.,—
l» l'r. '

R„(l»; l'»')R„(k; lY)-

R'(l»; P»')

X2'„„(R(l»; lY)), (5.1)

where the factor of ~ corrects for the double counting of
bonds, and the primes on the sums denote that the
terms with (k) = (lY) are omitted. In writing Eq. (5.1)
we have introduced the notation

R„(l»)=x„(l»)+g„(l») (5.2a)

R„(l»; lY) =R„(l») R„(lY—) (5.2b)

The functions L„„(R(l»;lY)) and T.:(R(k; lY)) in
Eq. (5.1) are nonzero only if the two atoms whose posi-
tions are given by R(k) and R(lY) are nearest neighbors.

Expanded to 6rst order in the atomic displacements,
the electronic polarizability takes the form

X L'..(.)—
x„8„+x,8„

+ LL..(r) —2'- ()] (5.5)

where primes denote diGerentiation with respect to
argument.

Equation (5.3) can be rewritten conveniently as

P„„=P„,«&++ Q P„,, &"(l»-; l »')u, (l'»')+, (5.6)
l» l'»'~

P„„=P„„«~+-,'P P' f„„„(l.; l'")
l»a l'»'

X[I.(k) —N.(l'")gy ", (5.3)

where

x„(l»; lY)x.(k; lY)
P «&=-' Q Q' — — I. (x(l» l'»'))

x'(k; l'»')

x„(l»; lY)x.(k; lY)
+-', ZZ' ~.,—

x'(l» 1»')

XT„„.(x(k; lY)) (5.4)
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P„,, &"(l»; l») =-,' Q' f„„{l»;l'»') .
Zl gr

(5.7b)

It follows from Eq. (5.7) that the coefficients {P„,, &'&

&((l»; P»') }satisfy the condition

where

P &"(l» lY)= —-,'f„„(l»; l'»') (l») W (l'»'), (5.7a)

P P &"(l« lY)=0 (5 g)

which ensures that the electlon1c polalizabllity of the
crystal does not change when the crystal is subjected to
an arbitrary rigid body displacement.

For cubic crystals, which is all that we consider in
this paper, the expression (5.4) for P„„&"can be sim-
pli6ed to

x„'(l»; l'»')
P„„"&=,'b„, P Q-' — -LL.:{x(l»;lY))—T.;(x(l»; lY)) ]« i'" x'(1»", lY)

+-', b„„gQ' T„„(x(l»;lY))=-,'8„,Q Q' LI.„;(x(l», l'»'))+2T, „.(x(l»; l'»'))$

=-,'$8„„+'fLi„(x(01;lY))+2Ti„(x(01;l »'))j. (5 9)

Comparing Eqs. (3.24) and. (5.9) we find that for cubic
crystals

x,=-,'r&.—' P' $L&„.(x(01; lY))

+2Ti:(x(01; lY))j. (5.10)

Z'a'
f~„{l»' l » )= —Q f~„(l» ) l»)

= —g' f„„(l»;2l—l »')

= —P' f„,„(l», lY)=-0. (5.13)

From Eq. (5.6) we see that the coe%cients we have Combining Eqs. (5.11) and (5.13) we obtain
calle&i {P»y ~(l») }ale giveil by P", (01)=2' f" (o1' l'2) (5.14a)

P„...(l») = g P„., &'&(lY; l»)

=P„„, &"(l»; l»)+Q'P„, , &"(l»'; l»)

=-,'P' f„, (l»; lY) —-', P' f„„(lY;l»)

=P' f„, (l»; l »') .

P„„,.(02) =g' f,„.(02; l'1) = —P„„,.(01). (5.14b)

Ke are now in a position to calculate the coeKcients
{B„„,&"}.Substituting Eq. (5.11) into Eq. (3.26a) we
obtain the result that

(5 11, B„.r&'&= —Vo 'Q P„,, (l»)x, (l»)
lx

= —V ' Q QP &'&(lY l»)x (l»)
In writing the last line of this equation we have used the
result, which follows directly from Eq. (5.5), that =V-'Q QP &'&(l'»'l )x (l»' l») (515)

l'&r' Zx

(s.12)f„„(l»;lY) = f„„(l'»', l») . —

B„„r&'&=——,'Vo 'Q Q f„, {l»; lY)x, (l»; l'»')= —r ' Q f„„„(01;l'»')x„(01; l'»')

where we have used Eq. (5.8) in writing the last line of
The result given by Eq. (5.11) can be simph6ed if we this equation. Finaliy, making use of Eqs. (5.7a) and
note that (5.12) we find that

x xp x„x„x x, 2Li;(r) 2Ti„.(r)= —v. ' P b„. -- T'i;(r)+ L'i. (r)— — +
Zlgr r r3 r

For cubic crystals this expression simpliies to

x„x,b„ +x.x,b„+, LLi"(r) —Ti"(r)j
e i,'8l; l'~')

(s.16)

B„, ,"'=— ' Q' —,'b„,b,~T' „()+-', (b„,b, +b„b„,)LL „.( )—T „.( )j
Zr gl

x„x,x xp 2L&„.(r) 2Ti„.(r)-
+ I'i"(r) —— —T i"(r)+

e t', 11;l'x')
(5.17)
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e0 pll1 1 pll22 2p1212~=ao2-
Ssr 1—(SG/asMIdI22)

(5.19)

which expresses I' entirely in terms of experimentally
determinable quantities.

From the numerical values for the parameter G
presented in Table I we see that it is negative for dia-
mond, silicon, and germanium. It follows, therefore,
that, on the basis of the present. model, the sign of I' is
determined by the sign of the combination p»» —p»22

2p1212.

VI. NUMERICAL RESULTS

In Table I we have listed the values of the primary
physical constants which either enter directly into the
expression (5.19) for the electronic polarizability deriva-
tive P„or determine the values of derived quantities
which appear in this expression. Among these primary
physical constants are the stress derivatives of the di-
electric tensor, q;, = Be;/BT, , and the pressure derivative
of the refractive index, n 'dN/dT, from which the
values of the elasto-optic constants quoted in this
Table were derived. %e have also listed the stress de-
rivatives of the dielectric permittivity tensor,

Our assumption of nearest-neighbor bond polarizabili-
ties is computationaHy convenient because it leads to
four independent microscopic parameters, which is the
number of macroscopic parameters in this problem, viz. ,
~o, p11», p1122, p1212. If we denote the nearest-neighbor
separation in crystals of the diamond structure by
so= ~~3'/2uo, the microscopic expressions for the quanti-
ties Xo, I', BIyyj ", and 8$2$$ " take the following forms:

xs ——(4/32. )[LI2(re)+ 2TI2(rs)], (5.18a)

I'= (4/3'") [L»'(«) —[2L»(I o)/I o]
—T12'(re)+ [2T12(ro)/ro]], (5.18b)

&IIII"'=—(4/». ){«TI2'(ro)

+2[LI2(rs) —TI2(rs)]j—Its 2P, (5.18c)

81122 = —(4/3&, )roTI2'(ro) —ao (5.18d)

81212&1&= —(4/3v. )[LI2(rp) —TI2(rp)] as 2I'. —(—5.18e)

LI2(fs) TI2(re) L12 (rs), Rlld T12 (12) Rre tile vallleS Of

the longitudinal and transverse bond polarizabilities
and of their first derivatives evaluated at the equili-
brium separation between nearest-neighbor atoms in
crystals of the diamond structure. The subscripts j.2
emphasize the fact that in each nearest-neighbor pair
in such crystals one of the atoms is on sublattice 1 while
the other is on subla, ttice 2.

H aH that we wish to obtain is the coe%cient I', we
can bypass the calculation of the parameters LI2(rs),
L12 (ro), TI2(rs)~ Rnd T12 (re)~ Rnd CRII Solve directly fo1
P. Combining Eqs. (5.18c), (5.18d), and (5.18e) with
Eq. (4.29c), wc obtal11 flic IclRtlo11

= BP;/BT„where the permittivity tensor is the inverse
of the dielectric tensor. [In def'Ining these constants we
have used the contracted Voigt notation for the various
tensors rather than the full tensor notation. The rela-
tions between the constants in the two sets of notations
are given, for example, in the book by Nye. "]

From Table I we see that in the only case where a
comparison can be made at the present time, viz. , that
of germanium, the value of the quantity —(SG/uoleIa2)
computed on the basis of Eq. (4.37) with values of the
atomic force constants n~ and p» obtained from the elas-
tic constants through Eq. (4.36) is 41/II smaller than
the value computed from the more elaborate (and pre-
sumably more accurate) expression given by Eq. (4.33).
It is perhaps not unreasonable to think that the values
of —(SG/II2M&oI22) computed for diamond and silicon
from Eq. (4.37) may be in error by corresponding
amounts. This possibility should be kept in mind in as-
sessing the reliability of the numerical results obtained
in this section, and it points up the desirability of having
the values of the atomic force constants for diamond and
silicon obtained from the fit of at least a fifth-neighbor
general tensor-force model of such crystals to experi-
mentally determined phonon-dispersion curves.

The values of I' for diamond, silicon, and germanium
calculated from Eq. (5.19) are presented in Table I.
Two values of I' are quoted for germanium correspond-
lllg to tile two different cxpl'csslolls, Eqs. (433) RIld
(4.37), used in calculating the quantity —(SG/asMnIS2).
The value of I'= —3.78 A' calculated for diamond com-
pares very favorably with the experimental result of
Anastassakis et al. s that ~P~ —4 A2. While the experi-
mental results can tell us nothing about the sign of I',
the theoretical results obtained in this paper predict that
flic slgll of I Is tile slg11 of p1111 p1122 2p1212) wlllcll Is
negative for diamond.

Although a,t the present time no experimental values
are available for even the magnitude of P for silicon and
germanium, experimental results are available which
enable us to make an indirect assessment of the reli-
ability of our theoretical results for these two crystals.
From a comparison of the intensities of the 6rst-order
Raman scattering of light by silicon and diamond,
RusselV has estimated that

I&'I/l&c I
=27 (cxpt) (&1R)

From Table I the corresponding theoretical value is
found to be

[~.;~/)~.
~

=1.84 (thcor. ). (t..lb)
The theoretical value of this ratio is within 35/II of the
experimental value, and the agreement between theory
and experiment in this case must be considered as
satisfactory.

A second, indirect, check. on our theoretical results is
provided by the recent experimental result of Parker

22 J. F. Nye, Physsoal Properties of Crystals (OdorIi University
Press, New York, 1957).
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eI, cl.,' who found that

(6.2a)

From Table I the corresponding theoretical value is
found to be

[Z„l/leo. l
=O.58, 0.70 (theor. ), (6.2b)

where the two values quoted are associated vrith the two
values of —(8G/aoiiII&oa2) calculated for germanium.
Again, the agreement between theory and experiment
for this ratio must be considered as satisfactory.

From the expressions given by Eqs. (5.18) and (4.29),
and the values of the physical constants we can solve
folthc valllcs of 112(fo), T12(ro), roL 12(fo), and &OT 12('A)

for each of the three crystals considered in this paper.
The values obtained for these parameters are given in
Table I. From these values vre see that although the
values of I' are negative for diamond and silicon, and
positive for germanium, the values of I.'12(ro) and

P12(ro) are positive for aH three crystals. That is, for
values of the nearest-neighbor separation close to the
equilibrium value the longitudinal and transverse bond
polarizabilities increase with increasing bond length.

Turning now to the relations between the elasto-

optic constants and the electrostriction constants, we
6nd. on combining Eqs. (2.41) and (3.24) that

71111'"=—{(eo'/42r) pllll —Xo},

r1 122 = {(eo /4%)P1122 Xo} ~

'r 1212 = —(eo /42l') pl212.

Values of the electrostriction constants computed on
the basis of Eq. (6.3) are given in Table I. From these
values and Eq. (2.45) we have also computed the values
of the electrostrictional moduli Y„„p&», and these are
also given in Table I. In carrying out the latter calcu-
lations vre have used the relations"

APPENDIX A

It has been shovrn" that the solution of the equation

Q 4 p(l&4; lY)dp(lY)=C. (lit), (A1)

when the coefficients {C (k)} satisfy the condition

P C,(la) =0,

can be written in the form

d,(L)=g 41,24 &'&+ Q I' p(l»; lY)Cp(l'&4'). (A3)

In Eq. (A3) the {44,) are three arbitrary constants, while
tllc vcctol's {ni'&) ale g1vcll by

n(a& —e(s&/(~ )1/2

by Gundjian do not have their origin in electrostriction
but reQect soIDe other physical process.

In summary, we have presented in this paper a micro-
scopic theory of the elasto-optic constants of crystals of
the diamond structure which corrects an earher theory
of Theimer, ' vrhich relates the elasto-optic constants to
the electronic polarizabiHty derivative I', and which
yieMs values of I' for diamond, silicon, and germanium
which are in satisfactory agreement with such experi-
mental results for these coe%cients as are available at
the present time. In addition, the relations betvreen the
elasto-optic constants and the electrostriction constants
for crystals of the diamond structure are established,
and experimental values of the former have been used
to calculate values of the latter for diamond, silicon, and

germanium.

Cl1+C12

(Cll —C12)(Cll+2C12)

C12
OS 1122 ~12

(Cll —C12) (Clt+2C12)

5 1212 45 44 1/4C44 yf

vrhere e&'), c&2), e&" are any three mutually perpendicu-
lar unit vectors and M~ is the total mass of the crystal.
The elements of the matrix I are given by

(6.4)

a.1 &(l.)ap& &(lY)r p(k; P&4')= , (A5)
(M&.M& .)'" GPg

between the elastic compliances regarded as the ele-

ments of a fourth-rank tensor and expressed in the tvro

Suf6X VOIgt notatIon.
An attempt to measure the electrostriction constants

of germanium has been made recently by Gundjian. 2~

His experimental results are seven orders of magnitude
larger than the theoretical values reported here. This
discrepancy strongly suggests that the eQects measured

"R. F. S. Hearmon, Ae IefroducI4otl to Applied Anisotropf'c
EIasIjcity (Clarendon Press, Oxford, England, 1961),p. 25.

"A. Gundjian, Solid State Commun. 3, 279 (1965).

where 3f1, is the mass of the atom (hc) and the sum over
s is a sum over all the normal vibration modes of the
crystal except for the three zero-frequency modes vrhich

describe pure rigid body translations of the crystal. ao,

is the frequency of the sth normal mode and 8 &'&(l&4)

is an element of the corresponding unit polarization
vector.

Because the solutions of Eq. (A1) appear in this paper

'8 S. Ganesan, A. A. Maradudin, and E. Burstein, Phys. Rev
(to be published).



CRYSTALS OF DIAMON D STRUCTURE 1097

only in sums of the form

C,....„(l1»1, , l„» )d „(l K ),
&n&n(xn

Pnva1 , a~n(l1K1 j
' ' '

j lnKn)dan(lnKn) v

ln&n&ts

the conditions which follow from in6nitesimal transla-
tion invariance

C......„(l1»1, ~ ~ ~, l„»„)=0,
&ninon

Pnv, a1 "an(ll»1 j
' ' ' j ln»n)

&nanna:n

(A6)

The expression for I' p(l»; l»') given by Eq. (A5) is
valid for an arbitrary crystal, either perfect or imper-
fect. However, for perfect crystals, which are all that
are considered in this paper, a convenient representa-
tion of I',p{l»; l K') is provided by expanding it in terms
of the eigenvectors (e (»1kj)} and eigenvalues of
((dJ2(k)} of the 3rX3r Fourier transformed dynamical
matrix:

D p(»K'1k) = Q 4 p(l», l »')
(M.M, )'I' 1

Xe-A (n(&)—&(1')) (Aga)

P D p(KK'1k)ep(»'1kj)=rug(k)e (»1kj), (A8b)

Q e„*(»1kj)e (»1kj)= (),y v (Agc)

p e *(»1kj )ep(K'1kj ) = (')„„s.p (Agd)

The allowed values of k are uniformly and densely dis-
tributed throughout the first Brillouin zone for the
crystal, and the index j(=1, 2, ~ 3r) labels the 3r solu-
tions of Eq. (A8b) corresponding to each value of k In
this representation I' p(l»; l'»') has the form

have the consequence that the part of d (l») associated
with pure translations of the crystal makes no contribu-
tion to such sums. Therefore for the purposes of this
paper we can set the coeflicients ((1,}in Eq. (A3) equal
to zero, so that the solution of Eq. (A1) is effectively

d„(l») = Q I',p(l»; l K')Cp(l K') .

ments are given by

Q I' p(l»; l»')= I'.p(K»').
11~ (M„M„,)1(2

(A10)

An explicit representation for I'.p(KK') follows on insert-
ing Eq. (A9) into the left-hand side of Eq. (A10):

e (»10j)ep(K'10j)I',p(KK') =P'
~P(0)

(A11)

P„,=P P„„(l»). (81)

The polarizability of each atom is assumed to be a func-
tion of the instantaneous positions of all the atoms in
the crystal, and to admit of an expansion in powers of
the displacements of the atoms from their equilibrium
positions:

Pn„(lK) =P„.("(l»)+ Q P„„,p("(l»; l K )up(l K )

+x Q Q P (2)(l» l»' l' ')K

[recall that e *(»10j)=e (»10j)J. The prime on the
sum on the right-hand side of this equation means that
it extends over the optical branches of the phonon spec-
trum only.

APPENDIX B
In the text we employed a "bond polarizability"

model of the electronic polarizability as the basis for
an evaluation of the polarizability derivative I' for
diamond, silicon, and germanium from experimental
values of the elasto-optic constants of these crystals.
While this model proved to be a successful one in that
predictions based on it appear to be in satisfactory agree-
ment with experimental results, it nevertheless is based
on assumptions which, while seemingly reasonable, may
in fact prove to be overly restrictive. In this Appendix
we describe briefly an attempt to construct a model of
the electronic polarizability of crystals of the diamond
structure which is based on a minimum number of as-
sumptions. The model we consider is the same one used
by Theimer' in his work, except that it is presented here
as a special case of a much more general model.

Our starting assumption is that the static electronic
polarizability of the crystal can be written as the sum of
the atomic polarizabilities of all the atoms in the crystal:

1 e (»1kj)ep*(K'1kj)I' p(l»; /'K') =
lt)'(M„M, )1im &i u)1P(k)

l'a'P l"c"y

X up(l'K')u~(l"»")+ . (82)

(83a)

From a comparison of Eqs. (3.12) and (82) we see that

(A9)

where the prime on the sum means that the three terms
for which k= 0 and for which j refers to the three acous-
tic branches of the phonon spectrum are excluded. [For
these terms, co;(0)=0.]

In the text we require the 3r)&3r matrix whose ele-

P„„, (l») =—Q „P„,. ' ((1 )Kl»), (83b)

P„„p(l», I'K') = Q P„„p(')(l"»";l»; l »'), etc. (83c)
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The coefficients P„,"'(l»), P„„, "'(lY; l»), P„„, p&"

X(l' »", 1»; l'»'), must satisfy certain general invariance
conditions. From their definition as the partial deriva-
tives of the atomic polarizability P„„(l») with respect to
atomic displacements, it follows that P„„, p&'&(l'Y', l»;
l'»'), are completely symmetric in the indices (l»a),
(le),

P„„,p&'&(l"»"; 1», l'»') =P„„,p &'&(1'Y'; l'»'; l»), (84a)

P &3&()III III. l . lI I. ill II)

P (3)()III III, t, tII II, tI lq
pv, rxyP

that the coeKcient P„„&'&(01)has the form

P &'&(01)=8 P"& (BSa)

The remaining 24 operations of the space group yield
the result

P„„"&(02)=P„„&"(01). (BSb)

Because P„„&'&(l») is independent of the cell index l, the
only nonzero, independent coeScients of this type are
just those given by Eq. (BS). Combining Eqs. (83a),
(BS), and (3.24), we relate the coefI&cient P&'& in Eq.
(BSa) to the measurable quantity xo by

Xo ——(2/&&„)P&o&. (89)
From the fact that an arbitrary rigid body displacement
of the crystal cannot change the atomic polarizability we
obtain the conditions

Q P„„, &"(lY; l»)=-0, (85a,)

From the fact that P„.(la) must transform as a second-
rank tensor under an infinitesimal rigid body rotation
of the crystal, we obtain the following condition on the
first-order coefficients:

g P„„, &"(I»; lY)xp(l'»') —b„Pp„&"&(1»)

h„P„p&'&(1»)—= Q P„„,p"'(l»; lY)x.(lY)

8„pP.„&"(l») —8„pP„&"(l») .—(86)

In addition to these general conditions, which apply
to a finite crystal as well as to an infinite one, there are
others which have their origin in the structure and sym-
metry of a given crystal, and which presuppose an in-
finitely extended crystal. Under an operation of the
space group of the crystal, the coeKcients {P„„&'&(l»)}
and {P„„,,&i&(l»; l'»') } transform according to

P„„&o&(L,I~) =P S„,S..P,.&'&(l.), (87a)

P„„.& &(II&; I.'It') = P S„,S„.S.,P„.,&'&(l.; 1'"). (87b)
par

If the space-group operation is a rigid body displace-
ment of the crystal through one of its translation vec-
tors, Eqs. (87) yield the result that P„„&'&(l») is inde-
pendent of the cell index l, while P„„,,&"(1»; lY) de-

pends on t and 1' only through their difference.
If in Eq. (87a) we apply the 24 operations of the

space group O~, ' whose purely rotational elements com-
prise the point group Td to the lattice site (01) we find

Q P„„p&'&(l'Y'; l»; lY)
lx

= P P„„p&'&(l'Y'; l»; l'»') =0, etc. (85b)

So far in this discussion we have made no assumption
regarding the interatomic separations ~x(l») —x(l'»')

~

over which the coe%cients {P„„, "(l»; lY) }are sensibly
nonzero. In view of the origin of these coeScients in the
distortion of the charge distributions of the atoms (1»)
and (lY) through the change in their overlap as their
relative separation changes from its equilibrium value,
we would expect P„„, &»(l»; l'»') to decrease rapidly as
~x(l») —x(1'»')

~
increases. In what follows, primarily to

keep the number of independent parameters small, we
assume that P„„, (l»; l'»') is nonzero only if (l») = (lY),
or if (1») and (lY) are nearest-neighbor sites.

The independent, nonzero elements of the tensor
P„„&'&(01;02) are obtained from Eq. (87b) if we re-
strict the operations of the spa, ce group OI,7 to those
which leave the la, t.tice sites (01) and (02) fixed. If we

display the elements of an arbitrary third-rank tensor
according to the scheme

xxx xxy xxs yxx yxy yxs sxx sxy sxs,
xyx xyy xys yyx yyy yya syx syy sys, (810)
.xsx xsy xsz ysx ysy yes zzx say ass

the tensor P„„'"(01;02) has the form

abb ddf d fd
P„„"&(000;111)= d d f b a b f d d . (811)

d fd f(ld bb&&

In writing the left-hand side of Eq. (811)we have writ-
ten out explicitly the Cartesian components of the posi-
tion vectors x(01) and x(02) in units of 4ao. The elements
of the tensors P„„, '"(000; 111),P„„, "&(000; 111),and
P„„&»(000;111)can be obtained from the result given

by Fq. (81]) by the use of Eq. (87b). The rotational
invariance con&iitions, Eq. (86), are satisfied by the
form of the tensor P„„, &i&(1»; l'»') given by Eq. (811).

According to Eq. (83b) we have that

P„„, (1») = Q P„„, &i&(l'»'; l»)

=P {P„..."'(01; l—1'») I-P„,, &"(02; l—l'») },(812)

because P„„,„'"(l»; l'»') depends on l and l' only through



CRYSTALS OF DIAMOND STRVCTVRE f099

their difference. In particular, we see that

P„., (01)=Q {P„„,&'&(01; /1)+P„, , &'&(02; /1)}
l

=P„„, &'&(01; 01)+Q P„„„&'&(02;/1)
l

= —P P &"(01;/2)+P P &'&(02; l1)

so that for this model

P= —gf

The elements of the tensor 8„„,'" take a simple form
on the basis of the present model. %e can use infini-
tesimal translation invariance as expressed by Eq.
(35a) to rewrite Eq. (3.26a) in the form

8„...&'&= —Vo 'Q P„„,.(/»)xp(/»)
= —2 Q P„„, &'&(01; /2).

l
(B13)

= —Vp
—' P Q P &"(/'»'; /»)xp(/»)

The second line of this equation reAects our assumption
that P„„, &'&(l»; lV) vanishes if (l») and (l'»') are more
distant than nearest neighbors; the third line is a con-
sequence of Eq. (B5a), and we have used Eq. (37b) in
writing the last line. Using Eq. (311) in Eq. (313) we
obtain the result that

P".."'(o1)= gf I "-—I

= —Vo ' Q Q P &'&(/V) /»)xp(/'»'; l»). (316)
lk

%e now carry out the sums over I,', a, and a', keeping in
mind that P„„&"(l»,; lV) depends on l and l' only
through their difference, and that (/») and (lV) must be
no farther apart than nearest neighbors:

3„, p&u= —
P~ {P„,, &'&(01; /2)xp(01; /2)+P„„, &'&(02; /1)x, (02; /1)}

Va

1
=—Q {P &' (01; /2)xp(01; /2) =P„,,„& &(01; —/2)xp(01; —/2) }

2
=—Q P„,, &'&(01; /2)x, (01; /2) . (B17)

The second equation follows from the fact that inver-
sion is a symmetry operation which interchanges the
two sublattices in crystals of the diamond structure.

According to symmetry arguments the tensor 8„„,(')
has only three independent elements, e.g., 8»» ",
8»»(", and 8»»('), for crystals of the diamond struc-
ture. An explicit calculation based on Eqs. (311) and
(B17) confirms this and yields the results

&»»"' = —(2/v. )(«&) i (318a)
%&op"& =—(2/v. )(«/&), (318b)
B&o&p"' ———(2/v, )(«d) . (318c)

Combining Eqs. (3.28), (4.29), (315), and (318), we
obtain finally the following relations between the micro-
scopic parameters a, b, d, f and. the macroscopic quanti-
ties {p„„,},«, and &&p= (pp —1)/47r, for crystals of the
diamond structure:

~= —(«'/8) {(«'/4~)p»» —
&&o} (319a)

/&= («'/8) {—( /4p~o) p»oo ~o}, (319b)
d+ (G/ad% p&g') (8f)= —(«'/8) (oo'/4v )p„„. (319c)

From the results given by Eqs. (319) we see that the
generality of the model on which they are based is at
once its strength and its weakness. Other than the
restriction to nearest-neighbor interactions, no assump-
tions have gone into determining the form of the tensor
P„„, &'&(000; 111).However, a consequence of this gen-
erality is that we have more microscopic parameters
than there are relations between them and experimental-
quantities. As a result, we have no way of determining
the parameter f= —(P/8) uniquely. The value of the
present model wouM seem to lie in the fact that when an
accurate value of I' is known, from some independent
calculation or from experiment, so that all four param-
eters a, b, d, f are known, this model can serve as the
basis for a less restrictive microscopic model of the elec-
tronic polarizability of crystals of the diamond struc-
ture than the one adopted in the test. Such a model could
then be used in calculations of other properties of these
crystals in which the electronic polarizability plays a
central role, for example, in calculations of the second
order Raman spectrum.


