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The simultaneous recording of current and radiation
as a function of electric field strength produces many
cases, like that in Fig. 3, which suggest that the instabil-

ity responsible for the radiation affects the current
magnitude.

The dependence of current on electric field during
plasma injection (produced by square-wave voltages),
Fig. 5, shows that more is to be learned and under-

stood about injection of electron-hole pairs into sem. i-
conductors.
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The static Jahn-Teller effect is studied for a monovacancy V+, V', and V in diamondlike covalent
solids by a new method which applies to the case of linear combinations of atomic orbitals (LCAO) as
wave functions. In this "rigid LCAO model" the orbitals are assumed to follow the nuclei rigidly in the
deformation. The formal calculation is almost identical to that of the usual treatment of the Jahn-Teller
egect by the perturbation method. For the vacancy in diamond we use the electronic structure determined

by Qoulson and Kearsley in a molecular model. We obtain energy lowerings of the order of 0.1 eV and
distortion amplitudes of about 0.05 L. Finally we compare our results with the experimental data.

INTRODUCTION

'T is well known that optical absorption and electron
~ - paramagnetic resonance give evidence for the identi-

fication of some irradiation defects in diamondlike

covalent solids as being vacancies and. interstitials.

But, in some cases, the question is which defect, either

a single vacancy or an interstitial atom, is responsible

for a given absorption band or EPR line. Theoretical
work then is very useful to guide us in the interpreta-

tion of experimental data.
In order to explain the GR 1 absorption band,

centered around 2 eV, Coulson and Kearsley' have

studied theoretically the electronic states associated

with a vacancy in a molecularlike model. In a similar

way, 7amaguchi has calculated the electronic struc-

ture for both vacancies and interstitial atoms. Un-

fortunately their results do not provide sufFicient infor-

mation to identify the observed centers with certainty.
From electron paramagnetic resonance we can get

an idea of the symmetry properties of the defects.
Actually there is a lowering of the tetrahedral sym-

metry due to the distortion of the neighboring atoms.

In this work, we shall study that distortion in the case

' C. A. Coulson and M. J. Kearsley, Proc. Roy. Soc. (London)
A241, 433 (1957).' T. Yamaguchi, J. Phys. Soc. Japan 17, 1359 (1962).

of single vacancies, as arising from static Jahn-Teller
effect. Jahn and Teller' have shown that if an elec-
tronic state of a polyatomic molecule is orbitally de-
generate, the nuclear configuration is unstable with
respect to small displacements, unless the nuclei lie on
a straight line.

It is then necessary to know the electronic structure
of the vacancy. V?e shall first recall the method and
results of Coulton and Kearsley, who made use of
linear combin. ations of atomic orbitals (LCAO) for the
wave functions. Because the first-order perturbation
theory of the Jahn-Teller effect is not very convenient
in this case, and it is probably better to assume that
the wave functions are rigidly translated according to
the atomic displacements, we propose in the second
part a new treatment of the Jahn-Teller effect which
we shall refer to as the "rigid LCAO model. " A great
advantage of this model is that the symmetry con-
siderations of the perturbation theory are still valid and
the formal results are similar.

In the third section, we shall give our numerical
results and conclusions, and then review the experi-
mental data and their interpretation. FinaHy, the two
are compared with one another and &with %atkins's

' H. A. Jahn and E. Teller, Proc. Roy. Soc., (London) 161, 220
(1937).
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simple models4 for vacancies in silicon. We hope to
give some support to Coulson and Kearsley's con-
clusion that the GR j. band arises from V' and to
Watkins's model for V+ in silicon.

I. ELECTRONIC STRUCTURE OF THE VACANCY

To determine the new stable configurations of the
vacancy, we need the electronic energy levels and the
corresponding wave functions. We use Coulson and
Kearsley's molecular model in the Hartree-Fock ap-
proximation. Having reviewed all of their work, we
obtained the same results, except for the 'E level of
V, which we think to lie somewhat higher than the
ground state, whereas in their work it is in the neighbor-
hood of the fundamental.

Let us now recall the basic assumptions of their
model. Each carbon atom in the diamond lattice has
four nearest neighbors forming a regular tetrahedron
around it. For the perfect lattice we can solve the
electronic problem by using sp' tetrahedral hybrids
pointing from one atom towards its nearest neighbor.

The central atom 0 (Fig. 1) has four nearest neigh-
bors A, 8, C, D. When it is removed to create a vacancy,
four bonds are broken. We can assume that the ad-
jacent bonds are not greatly altered and that the
deformation of the lattice around the defect is small.
Therefore the electrons which are engaged in bonds
outside the cube (Fig. 1) are not very much affected
by the vacancy.

We may notice here that this localized model neglects
the width of the valence band. For instance, the states
of high-spin multiplicity must have higher energy
values than calculated here. Actually the localization
of an electron, added to spin reversal, requires an
energy of the order of the valence bandwidth. We can
then conclude that the numerical results obtained in
the present model may be strongly modified when we
make more realistic calculations.

In the following we shall use Slater's atomic 2s and
2p functions, from which we build the hybrid orbitals
(we use a zero superscript for quantities involving the
coordinates of the nuclei in their perfect-lattice positions)

g0 —1(g0 g 0+g0 g0)

b'=-', (b,'—b '—b„'+b,'),
c'= x (c,'+c,'—c„'—c,'
d'=-'(d '+d '+d '+d ')

The Hamiltonian for the e-electron vacancy molecule
may be written in atomic units:

O'= Q (T;+V,e)+-,'p —,

Fxo. 1. The vacancy in 0 is surrounded by four carbon atoms
A, 8, C, D. The sp3 hybrid orbitals a', b', c', d' are given, which
point from the carbon atoms towards the vacancy.

electron i. V is the potential energy of interaction
between the vacancy electron i, the nuclei, the E-shell
electrons of the molecule, and the external electrons
surrounding the vacancy atoms A, 8, C, D.

We may write

Let us now calculate the electronic levels both in the
Hartree and Hartree-Pock approximations.

A. Hartree Approximation

I.et us form delocalized one electron orbitals:

v'= ', (a'+ b'+ d'+ —d'),

t 0—r (g0+b0 g0 d0)

t„'= ~~( a'+b'+c' d—'), (T2)—
t '= -'(a' —b'+d' —d')

(Ag)

They transform like basis functions of the irreducible
representations A~ and T~ of the group T~, this is a
great advantage because it enables us to simplify the
energy-level calculation by symmetry considerations.

The energy of the bonding orbital e' is about 7 eV
lower than for t ', t„', t,'. From this, we deduce im-
mediately the electronic energy levels for V+, V, V
which are, respectively, the vacancies with 3, 4, 5
electrons. In the case of V+ (Fig. 2), v' (Aq) is 611ed
with two electrons (with antiparallel spin) and there

where i, j=1, 2 ~ m. T; is the kinetic energy for

4 G. D. Watkins, in Proceedings of the International Conference
on the Physics of Semiconductors, Paris, lÃ4 (Academic Press
Inc., New York, 1965), Vol. 3, p. 97.

FzG. 2. The electronic srtucture of V+ in the Hartree case: e
is lower in energy than t o, t„, t, . The ground state is given by
two electrons in eo and an unpaired electron in the threefold de-
generate excited state with basis functions t,', t„', t,' (Tz).
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in the V+ case. Here e' means the orbital with o. spin
and t&" &(l spin.

Inside a (t&")&'(f")" " configuration (where P=O, 1,
, n) we build linear combinations of Slater deter-

minants transforming like basis functions for irreducible
representations of the tetrahedral symmetry group TD.
Then we allow these configurations to interact with
each other inside a given irreducible representation
with given spin. In this way the maximum matrix to
be diagonalized is a 3&3 one.

In a first step Coulson and Kearsley used Slater 2s
and 2p atomic functions, but they obtained no allowed
transitions which could account for the GR 1 band of
Clark et al. (about 1.7 eV). Assuming that the inac-
curacy of Slater functions is the chief cause of the
discrepancy, they modified in a semiempirical way the
values of some integrals according to the experimental
data of optical spectra. They found the Vo'g~'Z'2
allowed transition to be responsible of the GR 1 band.

Yamaguchi studied a similar model for vacancies and
determined his integrals in order to get the minimum
value for the binding energy of the whole crystal. He
used his integrals as parameters and calculated the
level structure in several cases.

In Figs. 3(a), 3(b), and 3(c), we compare Yama-
guchi's results to ours using Coulson and Kearsley's
model. We note that the two lower levels are always
the same in the different models. For V+ and V' the
ground state is degenerate, a situation vThich allows a
Jahn-Teller distortion to occur. For V we can get
distortion only for the excited states. We can notice
that Stonehams obtained similar results for V' by using
the point-ion approximation for the vacancy molecule.

II. RIGID LCAO MODEL

FIG. 3. The electronic structure of V, V0, and V+ in the mole-
cular model. For V [Fig. 3(a)] and V' [Fig. 3(b)] the energy
levels are given in the following way: (1) in I, Coulson and
Kearsley's results with Slater functions; (2) in II, Coulson and
Kearsley s results, without or with configuration interaction in
their modified semiempirical model [in the V case, Fig. 3(a),.
we give, in I and II, the values which we have recalculated, includ-
ing the correction of the 'F. level]; (3) in III, Yamaguchi's results.
For V+

I Fig. 3 (c}g Slater functions have been used.

is an unpaired electron in the threefold degenerate
state (Ts). To obtain V' and V we add one or two
electrons in T2. Now, we can apply those considerations
to the case of the Hartree-Pock approximation.

U =U'+X,
V =V '+V,
W.= W '+Z. ,

(6)

where X, I'„, Z are the Cartesian displacements. The
electronic Hamiltonian can still be written

We first detail the basic approximations and then
we give the formal results. Finally we develop the
cases of the Hartree and Hartree-Foci» approximations.

When the nuclei move from their perfect lattice
positions their Cartesian coordinates U„', V ', 5' '
(n=A, 8, C, D) become U, V„W with

B. Hartree-Fock Ayyroximation

The many-electron wave functions are Slater de-

terminants built from v", t,', t„', t,' in the following

wa
"(1)-(1) "(1)f3(1) f:(1)-(1)

1
«onogo) t&o(2)rr(2) t&o(2)P(2) f o(2)&r(2)

(3 f)1/s

u'(3)~(3) u'(3)P(3) f'(3)~(3)

1
~= Z (T,+V;)+!2 —,

where V; is identical to the potential V;0, where we

replace U ', V ", 8' ' by U, V, W .
Let us now assume that the sp' hybrid orbital

named n remains centered on the corresponding nucleus

'A. M. Stoneham, Proc. Phys. Soc. {London}, 88, 135 {1966).



when the nucleus is displaced, and that it keeps the
same form. That is equivalent to saying that the
orbitals follow the atomic displacements rigidly. %e
then can write that n' (centered. on the perfect-crystal
position) becomes n (identical orbital centered on the
displaced position).

Two basis functions iP and pro of a degenerate elec-
tronic level are combinations of the 0.'. We make the
assumption that, when the nuclei are displaced, they
transform into f; and P; which have the same form but
where we replace n' by 0,. The secular problem then is
in terms of the matrix elements

which could give the electronic levels as functions of
the nuclei positions. &s. (Ttl

A. Method of CalcuIation

Let us first define normal displacements Q, (Fig. 4)
which are basis functions for irreducible representations
of T~. They are linear combinations of the Cartesian
displacements X, F, Z and their symmetry proper-
ties wiU allow us to simplify the calculations. The
matrix elements Be LEq. (8)$ are functions of the
new nuclear coordinates, i.e., of the Q,. If we assume
the atomic displacements to be small, then in order to
simplify the secular problem, we can use the expansions
to 6rst order:

Ba)
n=n'+ Q —

l Q„
BQis

\

t

(I

I

I
l

I
I

I
I

II

The potential energy for the motion of the nuclei is
obtained in the simple form

q, (v, ) Q, (v, )

FIG. 4. Geometrical representation of the normal displace-
ments: Qr and Qs transform like 2g —ys —ss and v3'(y —s') (E),
Qg like g'+y'+s'(Ai); Q4, Qg, and Qs like g, y, and s (2'2).

In the matrix element B;;, we replace n and B by
their approximated forms (9). In this way we obtain
for H;; an explicit function of the Q, in which we only
keep the terms up to erst order in the Q.. In both the
Hartree and the Hartree-Pock approximations, it is
equivalent to write

The erst term is a diagonal one and gives the energy
E' before distortion. To know the new electronic energy
values we merely have to diagonalize the matrix whose
general term is

If we denote by e (Q ) tile clgcllvahles of this Illatllx
the new electronic energy values after deformation
become

~.(Q.)=&-'+ e-(e.)

where the second term gives, in the harmonic approxi-
mation, the interaction between A, 8, C, D and the
remaining part of the lattice. The frequencies ~, have
to be determined from the force constants of the
perfect crystal. In practice we shall be concerned only
with oI~ (symmetrical mode), oIa (twofold degenerate
mode), and oII (threefold degenerate mode of symmetry
Ts).

The equilibrium con6gurations then will be obtained
by resolving the set of simultaneous equations

BW„/Be,= BZ„/Be,+MoI,'Q, =0, (14)

which are valid only within the Born-Oppenheimer
approxllTlatlon.

Prom (14) we first calculate all the Q, and then the
splitting in energy due to the distortion. It is thus
possible to determine the symmetries of the new stable
configurations of the defect. We now consider the cases
of twofold and threefoM degenerate electronic levels.

B. Symmetry Considerations

Each energy level belongs to a given irreducible
representation which is at most threefold degenerate.
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TABLE I. Solutions for the threefold degenerate state. We have simplified our notations by putting
e1 ——{Ig)'/2M (cop)', eg ——(I3)'/2M (o)p)', q1 ——I2/M (cop)' qe ——I3/M (cop)'

Tetragonal case

g1

12

Intermediate case

gl gl gl gl gl

12 12 i2 6 6

Trigonal case

2VS 2VS

g1 ~t1 gl gl

4' AS 4&3
0 0

Q4

Qs

Q6

Energy
lowering

0
0
gg

0 0

0 0
e1 —e~

—fts gs

0 0
0 0

31—3/3

sg3

3V&

3A
3V3

—39'~

3V~

We will consider only E and T levels because non-
degenerate levels like A~ and A. 2 cannot give rise to
distortions. The only term which does not vanish in
this case is the totally symmetrical displacement. This
displacement Qs also arises in the case of degenerate
levels, but as the term E„(g.) in Eq. (13) is linear in
the Q, in the first order approximation, the problem
can be separated and the value of the other Q, does not
depend on Qs. We will then restrict ourselves to the
case where Qs vanishes in order to simplify the calcula-
tions. We will further give the value of the additional
term due to Qs in a particular case (ground state of
Vs)

We notice that the quantities

(15)

we obtain~ for the matrix (11)

( I1Q1 I1Q2
!
i Iigs IiQi

If we introduce p and 8 given by

Q, =p cos8, Qs ——p sin8, (19)

we find by using (14), (18), and (19) that the equi-
librium configurations correspond to

p= IIi I/M(ugs, W„=E'+Iis/2M(vzs. (20)

From these equations we cannot get the values of Qi
and Qs explicitly. To determine 8 it is necessary to
make a formal calculation up to second order. As a
standard result we find

ag, 8=q~/3, (21)

have the same symmetry properties as the terms where j is an integer. We then obtain three equivalent
tetragonal configurations which have (100), (010), and

(16) (001) symmetry axes.

which we should find in the usual perturbation treat-
ment of the Jahn-Teller effect. We then, find similar
results (see Appendix B).

1.E Level

For this twofold degenerate energy level, the basis
functions Pss and ass transform like (2x —ys —zs) and
&3(ys —z'). By putting

8

ags ), '

8
((6 I

&
I A&

—8 s I
&

I &s))
Bgs —0

( 8

~8Q 0

(22)

we are concerned with the more complicated matrix

Z. T level

Ke treat both T'q and Tg levels which lead to the
same results. The three basis functions /is, /so, and fs'
transform like x, y, z (2's) or yz, zx, sy (Ti). If we define

'(Is/3)Qi Isgs
IsQs —(Is/6)Qi+ (Is/2~3)gs
Isgs Isgs

Isgs
Isgs—(Is/6)g —(I /2~~)g-

(23)

' U. Opia and M. H. L. Pryce, Proc. Roy. Soc. {London) A238, 425 {1957).
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To solve the set of Eqs. (14), we use the method of
Opik and Pryce. ' We obtain similar results (Table I).
There are three possible solutions for the lowering in
energy, i.e., a tetragonal, a trigonal, and an intermediate
case. The last one gives a lowering in energy midway
between the other two and has no practical interest.
The choice between tetragonal and trigonal distortions
only depends on the numerical values of I2 and I3. As
for the E level, there are three equivalent tetragonal
configurations with symmetry axes (100), (010), and
(001). On the other hand, there are four equivalent
trigonal con6gurations with symmetry axes in the four
equivalent (111)directions.

C. Application of the Method

We detail here the application to the Hartree and
the Hartree-Pock approximations.

Hartree A pproxi4wati os

Let us consider the case of V+ in the Hartree ap-
proximation. We choose this case only because it is
the simplest one and because it is the most important
one in Watkin's4 EPR study on silicon. This center has
one unpaired electron in a threefold degenerate state
with basis functions t,', t„', and t,'. From the above
considerations the problem is reduced to the deter-
mination of the following integrals (H~ is the part of
the total Hamiltonian involving the coordinates of
electron 1):

Hartree Fock A-pproximatiom

Let us now discuss the application of the model to
the Hartree-Pock approximation for the general case.
In the matrix element (15), the wave functions P, and

f; are now linear combinations of Slater determinants
and the Hamiltonian is built with one- and two-
electron operators. The one-electron operators have
matrix elements similar to those obtained in the
Hartree problem. We still have to investigate the
matrix elements of 1/r;;,

( 8 1
Q.l: E —l~&,

&8Q, ~tr, ; 0

which break down into integrals of the type

f 8
n(1)P(2)—7(1)8(2)«« I

(8Q, ~12 i, '

(-'9)

(3o)

does not depend on the nuclear position, so that

8
(nl ——+V., ln& =O.

8Q, 2 p

The second term in (27) is a sum of two-center
integrals. We then have shown that there is no con-
tribution of the one-center integrals in the "rigid LCAO
model, "while in the perturbation treatment (Appendix
3) we can see that those integrals lead to very large
values of the energy lowering in trigonal distortions.

a
(«.IH~I t.&

—«*IH~I t*&)
with n, P, y, 8=a, b, c, or d. The one-center integrals
vanish as in (28).

In the Hartree-Fock case we see another fundamental
di6erence between the present model and the perturba-
tion treatment. In the latter case, the electron inter-
action gives no contribution to the Jahn-Teller effect
because 1/r;; does not depend on the nuclear coordi-
nates, while we now have some matrix elements (30)
which can play an important role. More details on
the calculations are given in the Appendix A.

(24)
8

(t.IH lt.& I

8Q4
"

As t„ t„, t, are linear combinations (4) of n, the two
integrals (29) break down into a series of

( 8

&8Q, 0

25
III. NUMERICAL RESULTS AND DISCUSSION

p8
(-IH. ltt&,

8Q, 0

(26)

(
8 (8

(nl —+I'-~ln& + 2 I
(nil'»ln& I. (»)

8Q. 2 4
e~ (8Q. ~ 0

The first part of (27) is a one-center integral which

p being an sp' tetrahedral hybrid different from n. The
term (26) involves only two and three-cent-er integrals
while the first one LEq. (29)j can be broken down in
the following way into

A. Numerical Results in the LCAG Model

It is erst necessary to Qnd the order of magnitude of
the frequencies or+ and co&.

We can assume that both frequencies are of the
order of the maximum optical value of the phonon
spectrum,

(31)2.5X 10'4 rad/sec.

We Grst give the numerical results for diamond in
the "rigid LCAO model" with Slater atomic wave
functions. We then review the main experimental re-
sults and discuss in some detail the identification of the
defects.
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I'zc. S. The 6rst energy levels of V+, Vo, and V
before and after distortion.

However, as Lidiard and Stonehamv have pointed
out, in a simple model where we keep all the atoms
fixed except A, 8, C, D, we can show that

However, for &os we will keep the value (31) which
ls not very diferent from

&v&= 2.24)&10"rad/sec

deduced by Lidiard and Stoneham~ by using the force
constants of Swalin. The numerical vat. ucs of I1, Ig,
I3 were computed from the tables of Kotanl) Amemlya,
and Simose' and of Von Hermann and Kopineck. '
Some details are reported in Appendix A.

The numerical results and the corresponding distor-
tion are given in Table II and Figs. 5 and 6 for the low'-

lying states of V+, Vo, and V in the Hartree-Pock
approximation and for' p+ ln the Hartree oDc. Let Us

summarize these fesults in the following way:

(a) Energy lowering: In Fig. 5 we give the con.—

sidered levels before and after distortion and in Table
II we give the numerical results for the energy lower-
1ng 1D each CRSC.

For V+ in the Hartrce-Pock approximation the
ground state 'T2 is 4 CV deeper than the 6rst excited
state 4T1. So we have studied only the former which
gives rise to tetragonal con6gurations. In the Hartree
treatment of V+ we obtain similar results.

A. B.I,idiard and A. M. Stoneharn, in International Industrial
Diamond Conference, Oxford, 1966 (unpublished).

8 Kotani, Amemiya, and Simose, Proc. Phys. Math. Soc,
Japan 20, Extra 1 (1938).

9 Von Hermann and Josef Kopineck, Z. Naturforsch 5a, 420
(1950).

both for E and T levels, and from Kq. (14) we obtain

(-',M~ 'Q'+IQ )=0,
BQ3

(34)

where cog is the frequency of this symmetrical mode.

TABLz II. Numerical results in the rigid LCAO model. "
I or a T level we give AEg~ and ARED only for the most stable
con6guration.

Approx1-
1Tlatlon

Hartree

Hartree-Fock

aZ sP.
Electronic tetragonal trigonal

Center level (eV) (eV)

P+ Tg 0.33 0,18

0.09

0.09

0,05

0.005 0.42

0.014 0.06

AR, A

ARggg = —0,05
HRgD =0,025
hRgp = —0„028
ARgD =0,014
DRza =0.028
DRg~ =0.014
d,Rgg =0.084
Rga = —0.084

ARE@ = -0.033
ARzgp =0.033

Por V' the ground state 'E is 0.5 eV lower than the
erst excited state 3T1. We have determined the energy
lowering for both levels. The numerical values are
about 0.1 CV for 'E in a tetragonal conhguration and
0.4 CV for 'Ti in a trigonal one. We then see (Fig. 5)
that both levels give almost the same energy, 3T1 being
about 0.17 eV above 'E,

The 'A2 ground state of V is not degenerate and so
gives xlo dlstoltlon terms. The 6rst excited stRtc T1
favors a trigonal distortion.

(b) Dlstol"tion amplitude: Ill Table II, wc llldlcatc
thc distortion amplitudes for the equilibrium conhgura-
tions in each case.

For a tetragonal distortion we have three equivalent
configurations with symmetry axes along the (100),
(010), and (001) directions, from which we choose the
fiI'st. II1 'this case, Q2 ——0) and OIlly Qi does Ilot VRIlisll.

We see [Fig. 6(a)] that the increases of the inter-
RtolTllc dist RDccs DR@~ RDd DR@~ al c sUKclcnt to
determine the conhguration. Their numerical values are
glvcD in Table II, cxccpt for an E lcvc1 whclc %'c give
only their absolute value because we cannot determine
the sign of Qi to first order. (20).

In the trigonal case re have four equivalent con-
figurations (Table I):We choose the one which corre-
sponds to Q4 ——Qq

——Q6. Then the three atoms A, 8, C
form an equilateral triangle LFig. 6(b)j and D is on
its symmetry axis. Once more we determine the new
con6guratlon by the numerical value of AEgg and
ARg g).

(c) The symmetrical term Qa.'Up to now we have
not considered this term in detail though it exists for
each electronic level. From symmetry considerations
the hnear term in Q3 can be written



From (34) it follows that

Q,= I/—Moo ',
and the lowering in energy is given by

Io/2M~g'. (36)

The whole problem lies in the determination of I and
~~. We have attempted to calculate this term only in
the case of the 'E ground state of V'. The integral I
can be put in the form

8 ) 8
8'l&14'& I

+ (2 P.u)
~Qo /o -rjQo ~& —o

(37)

where F p represents the repulsion between nuclei 0.
and P. We give some details of the calculation in
Appendix A. We notice that such a term does not
appear in the calculation of I~, I2, I3 because it vanishes

by symmetry. For ~~ we have taken the value

oog= 2 5X 10 rad/sec.

I xo. 6. Stable con6gurations of
the vacancy: (a} tetragonal case;
(b) trigonal case.

~s& 'I

ea ea

W
I I

I /

leap

~~t
gl

e

I
I
I y
o ~

W % tlf
I

For the 'E level of V' we obtain a lowering in energy
of about 1.2 eV and a symmetrical contraction of the
vacancy molecule with amplitude 0.2 A,. From this
estimate we can conclude that we obtain the right
sign (contraction) and a reasonable order of magnitude
despite the crudeness of the model (which is probably
better fol distortion terms 'tllan fol Qo).

From Table II and the values of this symmetrical
contraction we conclude that we have obtained a
reasonable set of results, while in the perturbation
theory, the energy lowering in the case of trigonal
distortions is about 5 to 10 eV (Appendix 3). Finally,
we notice that all this study concerns the static Iahn-
Teller effect. A complete discussion of the static and
dynamic cases would require the calculation of second
order terms which can possibly alter some of the above
theoretical conclusions.

B. Review of Exyerimental Results

In 1957, Mitchellm suggested that the GR 1 absorp-
tion band of Clark e] al." centered about 2 eV could
be due to electronic transitions in single vacancies. We
have seen that Coulson and Kearsley found this value
for the allowed transition 'E —+'T2 of V' But V' has
also been proposed for other centers. We first examine
the important 8 spectrum (or 'Y' system) observed in
EPR (Harris, Owen, and Windsor" ). The correspond-
ing center has spin. 5=1 and. a (100) symmetry axis.
The study of its intensity'3 versus temperature leads
to the conclusion that it corresponds to an excited

"E.%.J. Mitchell, Brit. J. Appl. Phys. 8, 179 (1957).
'1 C. D. Clark, R. %'. Ditchburn, and H. K. Dyer, Proc. Roy.

Soc. (London) A234, 363 (1956);A237, 75 (1956).
'~ E. A. Harris, J. Owen, and C. Windsor, Bull. Am. Phys, Soc.

8, 252 (1963).
» J. Owen, in I'hysjcg/ I'roperfies of Diumold, edited by R.

Herman (Oxford University Press, London, 1965)) p. 274.

state about 300 cm ' higher than the ground state
which is not seen by resonance. The last point is con-
sistent with the electronic structure determined theo-
retically for V' and C' ' ' but room for doubt remains.
More recently, by studying the correlation between
the GR 1 band and the "c" system, Clark et u/. '4

strengthened the idea that the former was produced
by V'. They attributed this correlation to the formation
of interstitial-vacancy pairs by irradiation. The vacan-
cies would be responsible for the GR 1 band and the
interstitial for the "c" system. However, we notice
that Owen does not rule out the hypothesis of Vo for
the latter. The C spectrum ("b" system) with spin
5=1 observed by Faulkner and Lomer" could also
be attributed to V". As to the A spectrum ("d" system)
whose spin is 5= ~, Yamaguchi' suggested that V is
responsible for most of it. The centers associated with
C and 3 spectra have a symmetry axis close to the
(322) and (311) directions. Another A spectrum has
been observed by Baldwin" who has interpreted it in
terms of V+ in a tetragonal configuration, but those
results have not yet been confirmed.

Let us now summarize catkin's KPR study4 in
silicon. He was able to identify a great number of EPR
spectra in irradiated silicon. In particular, he attributed
the spectra Gg and G2, respectively, to V+ and V . The
case of G~ seems to be the most important one in this
study. The corresponding defect has tetragonal sym-
metry and Watkins4 has interpreted the whole G~ spec-
trum by a simple Hartree model for V+ (Fig. 2). He
estimated the potential barrier between two tetragonal
configurations to be of the order of 0.02 eV. It is possible
that this value corresponds to the difference in energy
between tetragonal and trigonal distortions.

' C. D. Clark, I. Duncan, J. N. Lomer, and P. W. Whippey,
Proc. Brit. Ceram. Soc. 1, 85 (1964)."E.A. Faulkner and J. N. Lomer, Phil. Mag. 7, 1995 (1962).
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C. Discussion of the Results

We first consider the case of V which has a E, ground
state and a 'T» level about 0.3 eV above it. V' can be
responsible for the "c"system if the 'T» level favors a
tetragonal stable distortion. Actually, we find that the
new stable configurations are trigonal and since experi-
mental results give no evidence of such distortions it
is possible that the dynamic effect is important enough
to prevent the static one. Nevertheless, the logical
interpretation is that the neutral interstitial can account
for the "c"system and V' for the GR 1 band of Clark
et al." This conclusion could then give some support
to Coulson and Kearsley's calculation for the»E —+»T2

transition in V' which appears to be of the same order
of magnitude as the GR 1 band (2 eV). However, a
more confident conclusion would require some knowl-
edge about the Jahn-Teller effect on the first excited
state 'Ti of CP (predicted by Yamaguchi) "

We now can give some interesting conclusions for
V+. In this case the predicted con6gurations have
tetragonal symmetry. Unfortunately, the theoretical
studies of the electronic structure lead to the con-
clusion that, in irradiated diamonds, V+ is much less
stable than V' and V . However, as the 2T2 ground
state is very low compared to the 6rst excited state
('Ti about 4 eV above) we can expect this level still
to be the fundamental one in silicon. If we assume
that the integrals involved in the distortion problem
do not vary too much we can extrapolate our results
to the case of silicon. With this hypothesis we 6nd, in
agreement with Watkins, that V+ has symmetry axes
along the (100& directions. In Table II we see that
in the Hartree-Pock approximation the difference in
energy between tetragonal conhgurations is about 0.04
eV. We can assume that the height of the potential
barrier of reorientation between tetragonal. distortions
is smaller or at most equal to this value. We then
find good agreement with the value deduced by Watkins
from experimental measurements (0.02 eV).

The ground state of V is nondegenerate ('Ap) so
there is no distortion for this level. However, as we
have mentioned before, in a more accurate model
where the whole crystal is taken into account such a
level with high-spin multiplicity is probably less stabi-
lized than in the molecular model of Coulson and
Kearsley. If we then study the first excited state 2T»

(about 1 eV higher in the molecular model) we find

that it favors a trigonal distortion but we have no
experimental data to check this calculation.

of the vacancy are in states built from sp' hybrid
orbitals centered on the four nearest neighbors of the
missing atom.

To treat the Jahn-Teller distortions we have proposed
a "rigid I.CAO model" in which the atomic orbitals
rigidly follow the nuclei in the deformation; the formal
calculations required by this study are similar to those
we should use in the first-order perturbation treatment.
We have found that there was no contribution of the
one-center integrals so that we obtain reasonable re-
sults when compared to experimental data.

However, it would be necessary to Gnd a more
elaborate model of the electronic structure for the
vacancy and to see its influence on the results of the
Jahn-Teller effect calculated. in. this model. Actually
the numerical values can be greatly affected when we
take better account of the crystal. It would be worth
trying another method and applying the Green's func-
tion method to the study of the electronic structure
and the Jahn-Teller effect for vacancies in diamondlike
covalent solids.

We also notice that it would be interesting to apply
the present study to the case of other systems whose
electronic structure has been determined from I.CAO
wave functions and to compare the results with those
of the perturbation method and with the experimental
data.

APPENDIX A

I.et us give the essential steps of the calculation in
the "rigid I.CAO model" where we are concerned with

integrals such as

( f&

(~l basil~) I,
&ag,

( 8
(~l &il&)

kag.

( 8 1

hag, r»2 C

(A1)

the last will be denoted (8/Bg (nj9lp8))p. All these
integrals are one-, two-, three-, and four-center inte-
grals. By using Mulliken's approximation" we can
reduce them into two-center integrals. This circum-
stance allows us to simplify the calculations. The
integrals I», I2, I3 can be expressed in the general form

CONCLUSION

To analyze the Jahn-Teller effect for a single vacancy
in diamond we started from a molecular model pro-
posed by Coulson and Kearsley to determine its elec-
tronic structure. In their study the 3, 4, or 5 electrons

"T.Vamaguchi, J. Phys. Soc. Japan 18, 368 (1963).

s ~&& -0
"In this approximation we write, for instance,

&Pl v., l»=xHPI v., lP&+&~I v., l~G
and

&~P I v» =~'H«l vv&+&«I »&+&PP I v»+&PP l»&3.
with

&=8 2797Xio '

(A2)
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where f p depends only on the distance between atoms
c. and p since the integrals considered in the problem
involve two atoms n and p. The only coordinates which
are of interest to us are

We introduce the quantities 8 p and. F p dined by

a.p=&-I-A/2+v. .+vp I p),
I.p=&pl v. I p).

Qo= ( V~—+I'a+Vc Va—~~+Za &c+—&a),
242

(A3)

In order to simplify the calculations we have determined

aAB +acD
(A9)

I"=I'~a'+I'ca'

For these two coord. inates we obtain

8
(g f.p) = o(f~c'—f~a' fac'+—faa'),

aQo ~~p o

All the quantities 8 p' being equal, we have from (A4)
and (4)

«„le,lr„) I
=-;(—e'+el"),(a

kaQ, io
8

(g f.p) =( f~a'+—fca').
aQ4 ~p o

In these relations f p is a function of the internuclear
distance R„p. We are concerned with the derivatives

8
(~, l&~I~*) I

=-:(-a'+I"),
aQ,

"
)o

(
a

&ol&~l&.) I =l(—a'—I").
aQ. ~o

(A10)

(AS)

R p being the internuclear distance for the nuclei in
their perfect crystal positions. As we have

Ep' E=2.54 A, . ——

we can write (AS) in the simplified form

8' and F' are two-center integrals and to calculate them
it is necessary to use spheroidal coordinates centered
on the two atoms in question. We also need. the detailed
form of the potential energy which turns out to be

V g= —
I 4o d'or'+4aor+6-8+

r)
E~(2)3'

&&exp(—2ar) — dro. (A11)

Ef-p(~) j=f-p'.
dE

(A6) In. this expression r is the distance between electron 1
and the atom o; and r~2 the distance between electrons
i and 2. Another interesting form for V ~ is

The only task to do now is to determine the diA'erent
functions f p in each case. As we noted at the end of
the Sec. II, we must consider matrix elements of 1/r;;
in the Hartree-Fock case. We then separate the Hartree
problem from the Hartree-Pock one.

fo(r)
V g fg(r)+ (—xo——,+ye„—so.)

fo(r)
+ '( Spozoo+sgo~og psooog) ~ (A12)

1. Hartree Case

As in the perturbation treatment Esee (311)j, the wh~~e "=(*+&+s) In (A12)~ '» ~»

matrix elements of one-electron operators to be calcu- values ~i and are determined from

lated are

Ep Hf $f/

/ a
& l&, tt.)

E,aQ4 o

(A7)

As 6xQs 6yO!y EzQz

where n„c.» a„, n, are the Slater's 2s and 2p atomic
orbitals defined by

n, = (ao/3m)"' exp( —ar )r,
n = (8'/~)'" exp( ar )x—

and b is the effective nuclear charge. The values of f~,
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fs, fs are easily deduced from (A11):

3 1
i ——

l
b'r'+38 +-'8+— p(—25 )——,

r r

where v=bR. Hy derivation with respect to R we
obtain

1 — bsrs 5 5
fs= —— +s~'r+s~+-

V3 2 2r 4br'
5

Xexp( —2lir)+, (A15)4''
8r 9 9 9

f = +-'~'r+3b+ —+ +
2r 2 ' 4Ãr'8r

Xexp( —2br)—
4Pr'

To determine I"' we have used thehe form (A11) of V i
in this case. For 0' we havewhich is n1orc interesting in

erformed the calculations by analytical met o s wi
12~ d have expressed all the results inthe form jA ~ an we

terms of integrals hke

d 8J=,7i J—„=, (J~—i.-+J, pi).
dR Zp 2

We have tabulated all the integrals of this kind, by
using the tables of Kotani, Amemiya and Simose. ' We
finally obtain the numerical values

&&„lH, l&„) l
= —47 502X10-'P,

&&Qs ~s

&~„la,l~,) = —24s6sxlo- s', (A1s)
BQ4 p

J-,-(f,a)

J .-(f,g)

(1+)ip) (1—)ip)
(x+p)™+1(x-p}"fl——

lgl
Jk)i+@& &—p

Xexp( —2A—vs)d)id@, (A16)

1+)p pl —)ip
()+~)™+I()—~)""f gl

)+p )i—g

X exp( —p)i)d)id@,

&.le, l~,) l

= —92 552x10- a.
&aQ4

2. Hartree-jFoek Case

h to deal with terms like (8/(3Q, &nPlyb))sKe now have to ea wi
b Mulliken'sfi d in (A1). As we can reduce them y u

'
dc ne iil

e rais the general cal-a proximation in two-center integra
of (A2)-(A4) still holds for them. The w o e

problem involves the following in egra
16 '8'

&.s l yy)s= 13 742,

&sy l sy)s ——24 473,

&syl xs)s= —3815,

&xx l yy)s =6178,

&yy I yy)s= »»0
&xslxs), =6ss,

&ss l
ex)4= 43 240,

&e. l ys), = —216,

&sx l xx)4= 29 408,

(ex
l
yy)4=1924,

&eye ss)s ——12 622,

&sy l xy)4
———5706.

&xx
l
ys)4= —3631,

&yyly ) =8724,

&xy l xs)4 ——7414, (A19)

These terIHs a 0 0dd t those determined in the Hartree
case.

+ V' and V and for each consideredIn the case of V+, V, an an
ave to calculate matrix elements osofelectronic level we have o ca s o

Slitter determinants. KC have usedsed. Lowdin s me o
h of orthonormal determinantal wave func-in t e case o

rms of the integralstions. The decomposition is in terms o

The decomposition of the terms in o i

. 97 1474, 1490 (1955)."P. O. Lowdin, Phys. Rev. 7, 14
.C. Sla,ter, Quantum Theory ofMolecules a 0

'
s

1 0 1966 (unpublished)"M. I annoo, Thbsc de 3cmc Cyc c, rsay,

(aQ,
(A2o)

QQ P
Q Q 9 QQ Q (A21)

e use the same notation as in (A4). Let us givewhere we use e
b.;,8 h,

"",h.'d.f,.l,~.....,for each one.
The termsli e QQk ~ n

l
PP)' have been calculated by using

D of Kotani, Alnelniya, and SD11ose anthe Bp~q o o
Von Hermann and Kopinec . simi

is straightforwar ud b t lengthy. After that we obtain
only three types of integrals:
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for (npI np)' in terms of the C s,o for which we had. to
extrapolate the values from v=7 to v=7.6. Finally for
(nnInp)' we have used the integrals I, and I„,
defined in (A16).

The syiiiinetrical term Qo. Let us now detail the
calculation of (37).We have defined F s as the repulsion
energy between atoms n and P, i.e., the sum of four
terms:

(i) The exact repulsion between n and p, which is
16/R p,

(ii) an attractive term between atom n and the three
electrons engaged in the three spo orbitals centered on
nucleus p and pointing outside the cube of Fig. 1;

(iii) the same term between atom P and the three
electrons around e.,

(iv) the repulsion between those electrons.

We can easily show that such terms do not appear
in the calculation of the distortion. Actually we have

1
Qo= -(X~—I'~+Z~+Xa+ 1'a—Zs'

243 —Xo+ I'c+Zo —Xi)—I"D—Zi)), (A22)

and as we have for I the form (A2) we obtain for the
F p a contribution of the form

(I"~a'+I"~o'+I"~ii'+I"so'+I"an'+I'co') (A23).

As the I' p' have the same form, this reduces to

However, in the distortion terms we obtain (A4)
instead of (A23) and these expressions identically
vanish.

We now can notice an important fact in the frequency
determination. Up to now we considered only terms
llkC

-,'iVo) oQ,',
where co, wollld be deduced froIYl thc force constants.
However, there are second-order terms in Q,' which
can give an important contribution to this crystal
elastic term. For this reason we have taken the value

tion theory. As in (9) the electroruc Hamiltonian can
be expanded in a series of the Q, :

(B1)

The second term in (B1) can be studied by perturba-
tion theory. For a degenerate electronic level with
basis functions f' and f' the matrix elements of the
perturbation are given by

2 Q.(4 I( ) Ik'), (B2}

while in the "rigid LCAO model" we had. to study (11):

2 Q.( 0; I
&

I 4)) . (83)

The symmetry properties of these two terms being
identical the formalism is the same. To transpose the
results it is suKcient to take new dehnitions for the
integrals I„I„I, LEqs. (17}and (22)j:

(BII
Ii=(&i'I I

—
I
&o'},

kaQ, ,

/ BII BH
I~")-8 'I I~"} (B4)

kaQ, o &Qo o

BII)

& 4&o

Kith these expressions all the conclusions of Sec. II
are valid.

I-et us now detail the perturbation. We can write

g; V, being the potential energy defined in Sec. I. By
putting

instead of
o)~ =o)g/2 ~

BV;
G;,=, g, = QG,„

a 0

(B6)

which we obtain by using the same model as in (32).
This lcn1RI'k rcmMns vRlld for M@ Rnd GPy Rnd Rs wc

expect a positive contribution of the second-order
terms, the energy lowerings wc have found in Sec. II
would bc reduced. But, to bc consistent, ln such a
model it would be necessary to study all the second-
order terms like Q„Q,

the perturbation term LEqs. (81) and (BS)] can be
written

The problem requires the determination of integrals
such Rs

O''I n. l 4'). (Bg)
APPENDIX 8

As the g, are sums of one-electron operators, the inte-
We recall here the essential steps of the determina- grals (BS) break down, both in the Hartree and

tion of the Jahn-Teller effect when using the perturba- Hartree-Pock approximation, into one-electron inte-
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grals such as

(~.'(1)IG.I~ (1)); '=*, y, ' (»)

Gq~, G~2 belong to E,
Gy4, Gys, Gy6 belong to (310)

Thus it is easy to show by synnnetry considerations
that Ij, I~, I3 can be reduced to the following terms
only:

(t„'I Gg2
I
t„') noted (yy),

&t„'I Gg4I t,o) noted (ys),
(w'IGg4I1, ') noted (rx).

To determine the Gg, we write

BVy BVg BX BVg BI" BVg BZ
+ + (312)

BQ, BX BQ, BV BQ. BZ BQ.

As the transformation between the Q, and the X is
orthogonal,

BX /BQ, = BQ,/BX,
We also have

Vg= Q V y, n=A, B, C, D

Thus we obtain with (312) and (313)

BV BQ, (BV BQ,+I-
BX, oal (BF ),BF,

As eo, I, ', I,,' are linear combinations of a', 6', co, do the
integrals (311)break down into

(n'I G~, I
a'& one-center,

(p'I G~ I p') and (a'I G& I
p') two-center, (315)

(p'I G~,„ly'& three-center.

Ke use Mulliken's approximation' for three-center
integrals and write

&P'IG -I y') =~(&P'IG -IP')+4"
I
G -I~')), (»6)

with ) =8,279'7&10 ' Thgs wg can wnte formally for

1. Simyli6cation of the Integrals (39)

By de6nrtion the wave vectors eo, $,0, t„o, t,o do form
bases for the irreducible representations of T~. From
(36) it is+also easy to show that the quantities G~,
transform in the same manner as d.o the Q,. We can
conclude from Fig. 4 that

the integrals (311)

&yy) =(yy) +(yy) +(yy), (»7)
the same decomposition holdmg for (ys) and (rx). In
(31'I) we define the terms in the following way:

—
&yy)& is built from integrals like (u'I G&,

I
n'),

—
&yyh from &P'IG~-IP')

—
&yy)3 from (~'IG~-Ip')

These terms are calculated by different methods.

2. Summary of the Calculations

We now can determine the one-center integrals. As
G~, and

I n(1))' are functions of the coordinates of
electron 1 related to the atom n we take spherical
coordinates r, 0, y„around this atom. By integrating
erst over angles we eliminate a large number of terms.
To do this we choose the form (A12) for the potential
V ~ and calculate the quantities G~, as combinations
of partial derivatives of V ~. In this case we obtain
analytical results.

The two-center integrals like (p'(1) IG~, Ip'(1)) need
more elaborate methods. We only give here the essen-
tial features of the calculation. We can write

BQ, 8
&p'IG -lp')= &p'I v- lp')

BX BX g

BQ, 8
+

BI BI" y. ()

BQ, 8
+ (p'lv- lp') . (»g)

~~a -~~a —Ra=0

These terms involve the quantities

I'-s(&.~) =(P'I V. IP'&, (3»)
where E s is the distance between atoms n and P. If
we denote by R p' this distance when n and p are in
their perfect-crystal positions with

~-s'=L(X-s')'+( -V)s'+(~- )s'j'"=&, (320)

we can Anally write in a more interesting way

BQ. BQ.
(polG. ..I po) = x.,o+

BX BF

BQ, 1 d
+ ~.s' — I'-~(&) (321)

BZ E. dR

The only quantities we must know are the I' p(R)
which were determined in Appendix A. The calculations
which follow are too extensive to present here, and we

only mention that we have used analytical forms for
the integrals proposed by Von Hermann and Kopineck. '
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The other two-center integrals of the form (no
~
Gs«~ p')

are much more complicated. To determine G1, from
(A12), we must use spheroidal coordinates centered on
nuclei n and P and express all the integrals in terms of
elementary ones which we have tabulated. Throughout
the whole calculation we have followed the methods of
Kotani, Amemiya, and Simose to determine the aux-
iliary functions. Few of them have been extrapolated
from the parameter 8R= 7 to 7.6 which is the value for
dkamond.

Center

V+
V0

Electronic
level

2T2
1+
Sgl
2T

AIt'

tetragonal
eV

4.10 '
4.10 '
3.10 3

7.10 4

AIt
trigonal

eV

9.4
1.5

TABLE III. Energy lowering in the perturbation model. We
can see that the energy lowering for a trigonal distortion takes
on values which are too large in each case.

3. Numerical Results

We obtain the following values:

(yy) = —7.n9X 10-s~s

(ys) =197 355X10 s5'

(ux)= —267 231X10 eP.
(B22)

We notice that (ys) and (sx) have much higher values

than (yy). This comes from the fact that for the one-
center integrals we have

(y) = —( )=1«rr) (B23)

while two-center integrals are of the same order of
magnitude in each case. We give (Table III) the energy
lowering in each case, in the Hartree-Fock. approxima-
tion with tots =ter = 2.5X10"rad/sec, maximum optical
value of the phonon spectrum.
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Electronic Structure and Optical Properties of Hexagonal
CdSe, CdS, and ZnSt'
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Pseudopotential form factors and band structures are determined for CdSe, CdS, and ZnS. These band
structures are then used to analyze the optical data for these crystals. The calculation con6rms some earlier
identi6cations of the optical structure in some cases, and causes new interpretations in other cases. In
addition, some previously unidentified structure is explained. A calculation of the imaginary part of the
dielectric function is given for hexagonal CdSe and ZnS.

I. INTRODUCTION

'HE empirical pseudopotential method' (EPM) and
related methods have been shown to yield ac-

curate~band structures for semiconductors, ' insulators, '
semimetals, 4 and metals. s With this method, the po-
tential used in the secular equation to find the one-

t Supported by the National Science Foundation."Present address: James Franck Institute, University oi
Chicago, Chicago, Illinois.

$ Alfred P. Sloan Foundation Fellow.' M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
(1966) (referred to as CS).

'Reference 1 and references therein. Also P. M. Lee, Phys.
Rev. 135, A1110 (1964); W. Saslow, T. K. Bergstresser and M.
L. Cohen, Phys. Rev. Letters 16, 354 (1966).' M. L. Cohen, P. J. Lin, D. M. Roessler, and W. C. Walker,
Phys. Rev. 155, 992 (1967).'L. M. Falicov and P. J. Lin, Phys. Rev. 141, 562 (1966);
P. J. Lin and L. M. Falicov, ibid. 142, 441 (1966);P. J. Lin and
J. C. Phillips, ibid. 147, 469 (1966).' See, for example, W. A. Harrison, in Psegdopotentials in the
Theory of Metals iW. A. Benjamin, Inc. , New York, 1966).

electron energy levels and wave functions is determined
by a small number of parameters, the pseudopotential
form factors. These parameters are obtained from
experimental optical data: In the present work, re-
Qectivity taken over a wide range of energy. The po-
tential is appropriate for the states of interest, the
valence and conduction band states, and the core states
are not solutions of the secular equation. The present
work is a straightforward extension of the work. of CB
to the hexagonal, wurtzite structure semiconductors
ZnS, CdS, and CdSe. The pseudopotential form factors
obtained for cubic ZnS (zinc blende) in CB are taken
over and are used for the calculation of the band struc-
ture of hexagonal ZnS (wurtzite). The knowledge gained
in the ZnS calculation aids in the calculation of the
band structures of hexagonal CdS and CdSe, using the

6 L Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960);
M. H. Cohen and V. Heine, ibid. 122, 1821 (1961);S.J. Austin,
V. Heine, and L. J. Sham, ibid. 127, 276 (1962).


