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The energies of localized states associated with the neutral divacancy in silicon are computed using a
procedure in which wave functions and potentials are expanded in terms of Wannier functions for the
perfect crystal. The divacancy is represented by a pseudopotential. The lowest eight bands and the thirteen
nearest unit cells (including the central cell where the atoms are missing) are considered. Lattice relaxation
is neglected. Matrix elements of the Green’s function and of the defect potential on the Wannier-function
basis are obtained by numerical integration, using a pseudopotential band calculation. Two localized

states of different symmetry are found to be possible.

I. INTRODUCTION

N a previous calculation,! we have developed a
method for calculating the energies and wave func-
tions of bound states associated with localized defects
in semiconductors. In this approach, the wave function
of the defect state is expanded in terms of Wannier
functions for the perfect crystal. Matrix elements of the
defect potential and of the Green’s function on the
Wannier function basis are formed by numerical inte-
gration. Solution of a determinantal equation yields
the energy of the bound state. In I, this procedure was
applied to the isolated vacancy in silicon. Ten lattice
sites and eight bands were included.

The results of that calculation showed that a bound
state associated with the isolated vacancy could be ob-
tained. This was sufficiently encouraging to suggest
that it would be desirable to study another defect by
these procedures, and we decided to investigate the di-
vacancy. This has been done. The results, which are in
many respects similar to those we obtained for the single
vacancy, are reported here. Two bound states, of dif-
ferent symmetry, can be obtained.

The experimental situation concerning the divacancy
is quite complex. Information concerning the electronic
states associated with this defect is derived from elec-
tron-paramagnetic-resonance? (EPR) and infrared-
absorption measurements®# in irradiated silicon. The
experiments show that certain characteristic EPR
spectra and infrared absorption bands are associated
with the divacancy, and appear when the Fermi level is
in some specific range. Since an EPR signal is observed
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only when there is an unpaired spin, it is necessary to
assume that the defect can exhibit different charge
states. Apparently there are four of these, involving a
single positive, neutral, single negative, and double
negative states.

Interpretation of the experimental data in terms of an
energy-level scheme for the different charge states of
the divacancy is subject to many uncertainties. We will
discuss some of the possibilities in Sec. V in relation to
the results of our calculation. Some orientation with re-
spect to experiment is desirable, however, at this point.

The G6 EPR spectrum, which is associated with the
single-positive-charge state, is observed in irradiated
p-type silicon when the Fermi level is below about 0.25
eV above the valence band. Absorption of light of wave-
length 0.25 eV bleaches the observed EPR signal. This
is associated with a photoconductivity threshold and
the beginning of an infrared absorption band centered
at 3.9 u (0.32 eV). It is natural to conclude from this
that the lowest-energy state of the neutral divacancy
is located at 0.25 eV above the valence band.

The G7 EPR spectrum is associated with the state
in which the divacancy has a single negative charge. It
is observed in irradiated n-type silicon but not until the
Fermi level has dropped about 0.4 eV below the con-
duction band. We may conclude from this that the
double-negative-charge state of the divacancy is located
at about this energy. There does not seem to be any
conclusive evidence concerning the energy of the state
with a single negative charge, except that it should be
between 0.25 eV above the valence band and 0.4 eV
below the conduction band—a range of about 0.45
eV.

Two other infrared absorption bands associated with
the divacancy are found at 1.8 u (0.69 €V) in both #7-
and p-type silicon and at 3.3 u (0.38 V) in %-type sili-
con. It appears that these bands are not associated
with a photoconductivity threshold; they may there-
fore correspond to transitions involving excited states
of the divacancy. We will return to this problem in
Sec. V
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The plan of this paper is as follows: In Sec. II, we
review the general procedures of the calculation, which
were presented at greater length in I. Section IIT con-
tains a discussion of the symmetry properties of the
wave functions we consider. Our results are presented in
Sec. IV. The results are compared with experiment in
Sec. V, which also contains our conclusions.

II. SUMMARY OF THE METHOD

The computation of the properties of localized defect
states in semiconductors can be based on the methods
of solid-state scattering theory.:5 In this section we
shall briefly summarize the method as applied to the
silicon divacancy. Reference 1 is followed closely and
should be consulted for a more detailed description of
our procedure.

Let the Hamiltonian of the perfect crystal including
the periodic potential be denoted by Hy, and the change
in crystal potential produced by the introduction of the
defect be denoted by V. We define a Green’s function
G by

G=(E—Hy™. (2.1)
Since we are concerned here with bound states, the
quantity E which appears may be taken to be a real
energy.

Consider the determinantal function D(E) defined by

D(E)=det[I—GV], (2.2)

where I is a unit operator. For every real E, say Eo, for
which Eq. (2.2) vanishes, the operator I—GYV is singu-
lar. Hence there must exist some vector |¢) which is
annihilated by the operator I—G(Eq)V. This implies
that |¢) is a solution of the Schrédinger equation for
energy Eqg

(Hot+V)|¢)=Eo| ). (2.3)

Thus the problem of solving the Schrédinger equa-
tion for the energy of a defect state may be approached
by looking for the roots of D(E). We do not require the
full (infinite) matrix G in order to evaluate D(E) in the
case of a potential of finite range. It is sufficient to ob-
tain that portion which has the same extension in the
sites and in the bands as V does. From here on, we will
use the symbol G to refer to this sub matrix. It is also
convenient to invert the sub matrix G and solve instead

det[G1—V]=0. (2.4)

A suitable basis for the representations of operators
must be selected. For localized defect problems the
Wannier functions are appropriate and appear to have
considerable advantage.

The formal definitions of the Wannier functions and
the required operators are as follows: ¥,(k,r) denotes
the Bloch function for band # and wave vector k, and

5 J. Callaway, J. Math. Phys. 5, 783 (1964).
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is an eigenfunction of H, with an energy band function
a0 g (i) = B (9 (). (2.5)
The Wannier function is defined by

a.(r—R,)=

91/2

in which R, is a lattice vector, © is the volume of the
unit cell, and the integral is over the Brillouin zone. As
is well known, the Wannier functions are orthogonal in
both the band and site indices. The elements of the
Green’s function on the Wannier basis are given by

1
(nu[G{lv)=fan*(r~RM) a;(r—R,)d%
E—H,
2.7)
3 L) /‘d% exp—ik- (R,—R,)
(2 E—E, (k)

Finally, the defect potential on this basis is given by

(| V|lv)= / a.* =RV (®)a;(r—R,)d%. (2.8)

In treating the divacancy in silicon, we have em-
ployed Bloch functions, energy band functions, and
Green’s functions which were obtained in our earlier
calculation of the energy levels of the single vacancy.!
The potential matrix elements of the divacancy were
then calculated and the zeros of the determinantal func-
tion (2.2) located.

Let us briefly summarize the procedure employed in
Ref. 1. In order to determine energy levels of bound
states associated with a vacancy or divacancy, it is
necessary to have an expression for the change in po-
tential produced by the removal of silicon atoms. The
total crystal potential can be represented as the sum of
potentials due to the individual atoms. If relaxation
of atoms near the divacancy is ignored, the defect per-
turbation will be the negative of the potentials of the
missing silicon atoms. The true wave functions for
valence states, including those associated with a defect,
must be orthogonal to the wave function of core elec-
trons. In order to circumvent difficulties associated
with the strength of the true potential and with the
orthogonality requirement, the pseudopotential method
(see Harrison® for a review of the procedure) may be
employed. In order to simplify our calculations, the
pseudopotential method was employed to obtain wave
functions and energy band functions in the perfect
crystal and, in addition, was used to represent the di-
vacancy defect potential. The Wannier functions of our
calculation were then constructed from the pseudo-
potential wave functions.

6 W. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966), p. 19.



164 LOCALIZED DEFECTS

To construct Wannier functions, Bloch functions for
the entire Brillouin zone are required. It is convenient
to divide the Brillouin zone into equivalent 1/48 sub-
zones. Wave functions and energy band functions are
obtained directly in 1/48 of the Brillouin zone and then
transformed to obtain states elsewhere in the Brillouin
zone. Since Wannier functions may be altered by a
change in phase of the Bloch functions from which they
are constructed, it is necessary to specify phase factors
brought in by transformations completely. This ques-
tion was investigated in Ref. 1. It was shown that for
isolated energy bands, that is, energy bands which do
not touch (interact with) or cross other bands, the
following relation is obeyed by the Bloch function at
points ok in the star of k.

(@] te)Ta(k,r) =X, (a) exp[ —iak-t, ]V, (ak,r); (2.9)

X, () is the character for the operation « in the jth
one-dimensional representation of the point group. The
effect of Eq. (2.9) is to ensure, as far as possible, smooth
behavior of the wave function as its argument k goes
around the Brillouin zone. From Egs. (2.9) and (2.6),
it follows that the Wannier functions associated with
isolated energy bands transform according to the one-
dimensional representations of the diamond point
group.

Wave functions and energy band functions were ob-
tained numerically for silicon from a pseudopotential
band calculation. Brust’s” parameters were employed,
and only the lowest 15 plane waves were included. As
an illustration, we show the band structure obtained
along one line (of no symmetry) in the Brillouin zone
in Fig. 1.

An investigation of the conduction bands showed
that these bands were not isolated, but were interacting
and exhibited quasidegeneracies. As a result, if one con-
structs energy bands according to the usual “energy
ordering” scheme, the resulting wave functions are not
smooth functions of % throughout the Brillouin zone.
Problems arise at points of quasidegeneracy where two
bands approach closely. Although the energy bands—as
defined above—do not cross, the wave functions vary
rapidly with £ in the small region in which the bands

TaBre I. Symmetry assignments for the calculated energy
bands. All Wannier functions formed from a given band are thus
either real (R) or pure imaginary (I) as indicated in the third
column above.

Band 0).
1 1N R
2 Ty I
3 I R
4 VY I
5 I8 R
6 Ty 1
7 Ty I
8 Ty R

7 D. Brust, Phys. Rev. 134, A1337 (1964).
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F1e. 1. Energy bands in silicon as calculated with Brust’s
pseudopotential parameters and 15 plane waves along the line
r-Q [(3,2,1) axisfl)in the Brillouin zone. The bands are numbered
in order of increasing energy. The separation between I's’ and
T'25' has been slightly increased for clarity.

interact strongly. Away from the region of close ap-
proach, the wave functions are such that the bands
appear to have crossed and thus switched their sym-
metries. Thus, at points of quasidegeneracy, energy
bands could be defined either by “energy ranking”’ or by
symmetry of the associated wave functions. We note
that if “energy ranking” is employed to define the
bands involving quasidegeneracies, they will be of
“mixed” symmetries. We have consistently defined our
energy bands such that they are always of the single
symmetry type, so that the “simple” band analysis is
applicable. This “single’”’ symmetry prescription is of
considerable convenience in that group-theoretic analy-
sis and simplifications may be applied to the Wannier
functions and to the determination of the bound states
of the defect. This group-theoretic analysis is carried
out in the next section for the divacancy. The sym-
metries of the Wannier functions for the lowest eight
bands are listed in Table I.

III. SYMMETRY ANALYSIS OF THE DIVACANCY
ON THE WANNIER FUNCTION BASIS

The origin for the Bloch functions and hence for the
defect problem is located midway between the two
atoms in a silicon unit cell. The two atoms are thus
located at =d==%ae (1,1, 1). To create a divacancy
we remove the two atoms in the unit cell at the origin.

Before discussing the group theory for the defect, a
comment on notation should be made. We have three
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TasirE IL Coordinates of the two vacancy sites ¢ and ¢’ and
their first neighbors. v is the Jahn-Teller distortion parameter and
is a small positive number. The vectors are in units of 3¢ and our
%Ih{OifceZ())f coordinate axes differs from that of Watkins and Corbett

ef. 2).

a= (%y _% _%)+'Y(_1: 1: 0)
b= (_%’ —_%J i

c=&1b

d=(—% % —H—v(-11,0)
d=(-%4D-v(-1,10)
b= (%y %x ——i)

= (_—1‘7 —Z}Z) ——})

=G —5LD+r(=1,10)

different point groups to consider, O, for the silicon
perfect crystal, D;q for the divacancy without distortion
or relaxation, and Cg for the divacancy with a Jahn-
Teller distortion. For consistency, we have employed
the same O, labeling®? of irreducible representations for
all three groups. Thus our notation for D, will differ
from that of Koster.!” The character tables for Dsq and
Cyn may be obtained from the O character table with
the proper deletions.

Table IT contains the coordinates of the two vacan-
cies ¢ and ¢’ and the nearest-neighbor atoms to the va-
cancies. v(110) represents the change in coordinate
position due to a Jahn-Teller distortion and v is a small
positive number. Thus atoms ¢ and d move toward each
other, as do atoms ¢ and d'.

To simulate the divacancy potential without distor-
tion, we subtract atomic pseudopotentials at the atom
sites labeled ¢ and ¢'. It is seen that there are 12 sym-
metry operations for this defect potential and that the
group is D3q. To simulate the defect potential with dis-
tortion, the atoms @, d, ¢/, d’ (and associated pseudo-
potentials) would be removed (subtracted) at distor-
tion-free positions and placed (added) at the locations
shown in Table II. Thus the symmetry group (Can)
with distortion is seen to consist of the four operations
given in Table III.

The calculations reported herein all pertain to a di-
vacancy without Jahn-Teller distortion. To include dis-
tortion and consider the same number of lattice sites
as was done for Dj,; in order to obtain convergent results
would increase the numerical labor involved beyond the
bounds of feasibility. It is therefore of interest to see
what statements can be made about similarities or dif-
ferences in the problems as treated with and without
Jahn-Teller distortion. It is rather difficult to assess the
changes in bound-state energy levels to be expected
in going from D34 to Cap. It may be shown for the one-
dimensional representations and for the central-cell

8 J. Callaway, Energy Band Theory (Academic Press Inc., New
York, 1964), p. 23.

9 L. Marriot, Group Theory and Solid State Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1962), p. 80.

0 G, F. Koster, in Solid State Physics, edited by F. Seitz and
D. g‘urnbull (Academic Press Inc., New York, 1957), Vol. 5,
p. 173.
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[ (0,0, 0) lattice site] matrix elements that the bands
which contribute are the same in both D34 and Cap. For
the remaining site groups, the transformation to Cap
brings additional bands and interband couplings into
the problem.

A total of eight bands (four valence and four conduc-
tion) and thirteen lattice sites have been considered.
These sites and the associated site group index for sym-
metrized combinations of Wannier functions are listed
in Table IV.

In calculations of this nature, the most labor is in-
volved in the calculation of the matrix elements of the
defect potential on the Wannier basis. We shall see that
group theory can be employed to substantially reduce
the labor involved. As the problem is now phrased,
eight bands and thirteen lattice vectors yield a defect
potential matrix of order 104X 104 ; hermiticity reduces
this to a consideration of 5460 elements. By an applica-
tion of group theory, many of the matrix elements can
be shown to be either zero or simply related to other
matrix elements.

Consider the matrix element

(nu] V[lv)=/an*(r—R,,)V(r)a;(r-—R,,)d%’. 3.1)

It was shown! that for an operation {8|0} in the sym-
metry group of the defect potential the following rela-
tion between matrix elements holds:

(o |V |In)=XaD (B)X: B (8) (mp| V]I7),  (3.2)

where R,=p8R,, R,=8R,, and X, and X;* are the
appropriate characters for operation 8 for bands # and
I. Thus (nu|V|lv) and (np|V|lr) are simply related.
Applying Eq. (3.2) to determine the number of inde-
pendent matrix elements for the thirteen-site problem,
we find that there are fourteen different site vector
pairs which must be considered. These are listed in
Table V. For eight bands Table V represents 644
matrix elements. Using Eq. (3.2), several of the matrix
elements can be shown to vanish by symmetry. The
number of matrix elements which must be calculated

TasLE III. Symmetry operations in the group of the defect
potential for Dsg and Cap.

Class Operations in Dsq Operations in Can
E xy3 xy3
JCe y&s yx3
Zyx
xzy
Cs zxy
yzx
J zjz zyz
Cs JT2 JEz
ZP%
2
JCs zZzTy
g2z
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is shown in the fourth column of Table V giving a total
of 510 elements.

No further simplifications can be achieved using
single Wannier functions as basis functions. On this
basis the solution of a 104X 104 determinantal equation
would be required. We now wish to consider the factor-
ization of the determinant D(E) into small subdeter-
minants. This is done by the application of standard
techniques to construct symmetrized linear combina-
tions of Wannier functions which transform according
to irreducible representations of the symmetry group
of the defect potential. In particular, if we want a linear
combination of Wannier functions which belong to the
oth row of the sth irreducible representation of the
group of the potential (we denote operations in this
group by ), we form the combination

A,09 (I'; .R,J’VZ Da,a(a) (ﬂ){ﬁlo}an(f—Rn)
B
=Z Da,a(s) (,B)X,,,(i) (ﬁ)an(r—ﬁku)- (3-3)
8

The symmetrized Wannier function 4, (r; R,) is
thus characterized by row o, representation s, band #,
and site group R,. For the thirteen lattice vectors in
Table IV we have three site groups. For one-dimen-
sional representations we would thus obtain a secular
determinant no larger than 24X 24. However, for par-
ticular site groups, (nonzero) symmetrized Wannier
functions cannot be formed from all eight bands. These
results are contained in Table VI for the 4 one-dimen-
sional groups of the defect potential. We see that the
determinants for I'y and T's’ would be 13X 13 and the
determinants for 'y and Ty’ would be 7X7.

An examination of Table VI and our numerical
matrix elements indicated that, among the one-dimen-
sional representations, solutions of I'; and I'y’ symmetry
were most likely to contain bound states. We have,
therefore, limited our attention to these two represen-
tations. The numerical results are presented in the next
section.

TasLE IV. Column 1 contains the site group index for Djq.
Column 2 lists the vectors in the site groups in units of $¢. Columns
3 and 4 are the distance squared from the lattice site R, to the
vacancies at +d and —d.

Site Group {R.} |R—d|? |R.+d |2

1 (0,0,0) 5 %

2 (1,1,0) 1% 3%
0,1,1)
19,1
1,1,0) 3% 175
0,1, 1)

3 4, 25 245

D—AO)—H\:—‘IO&-‘ b
Ol O = 1O
el ™ At L™ L

NN NS
NN T T
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TasLE V. The fourteen types of potential matrix elements
which must be considered for the three site group problem in-
volving thirteen lattice site vectors.

Pair index Matrix element Band indices

1 (s,000|V|t000) 1>s 14
2 (5,000| V|, 110) ! 40
3 (5,000{V]|t,110) s, 32
4 (5,110|V]:110) t>s 24
5 (s,110|V|,011) t>s 36
6 (s,110|V]|t,110) 1>s 24
7 (s,110 Vt,Oii) 1>s 36
8 (s,110|V|¢,110) st 64
9 (5,110|V]¢,011) s, 64
10 (s,110{V]101) s, 64
11 (s,1i0 Vit 110) 1>s 20
12 (s,110|V|t,011) 1>s 36
13 s,110|V|t,110) t>s 20
14 (5,110|V]|t,011) t1>s 36

510

IV. RESULTS

As was done in I, we have inserted a continuous
parameter N into the determinantal equation for the
energies of bound states

det[G1—AV]=0. (4.1)

We may suppose that symmetrized basis functions have
been employed in constructing the matrices G and V so
that Eq. (4.1) pertains to a single irreducible represen-
tation. The energies of bound states determined from
Eq. (4.1) are functions of \; since X effectively controls
the strength of the potential, we can determine the de-
pendence of the bound-state energies on the strength of
the potential. Additional information can be obtained
by changing the size of the matrices: that is, we can
delete various bands or lattice site groups.

The energies of the bound states belonging to the I'y
and T'y’ representations are shown as functions of \ in
Fig. 2. In this case all the relevant bands have been in-
cluded with three site groups (the central cell plus
nearest twelve neighboring cells) being considered. The
results are particularly interesting in that they indicate
that bound states are possible in both representations
for values of A between 1 and 2. There is, in fact, a small
region of values of A, between 1.29 and 1.38 in which
bound states occur in both representations, with that
belonging to I'y’ having an energy about 0.7 €V larger
than that belonging to I'y. In this range of A, we therefore
find that both a ground state and an excited state of the
divacancy are possible. The symmetries of these states
are such that an optical transition between them would
be allowed. It is possible to interpret the experimental
infrared absorption measurements of Cheng ef al.4 in
such a way that one of the observed absorption bands
corresponds to this transition.

Some information concerning the nature of the wave
functions for these states may be obtained by examining
the eigenvectors. These are listed in Table VII for an
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FiG. 2. Energies of divacancy states of symmetry Ty and I'y’ as
functions of A. The scale of energy employed places the valence-
band maximum at 0.0 eV and the conduction-band minimum at
0.92 eV. This is not in exact agreement with experiment since the
experimental band gap is not precisely obtained with Brust’s
pseudopotential parameters and 15 plane waves.

energy 0.06 eV above the valence band. The eigen-
vectors are, of course, functions of £ and thus of A cor-
responding to the curves of Fig. 2; the qualitative char-
acteristics of the two given in Table VII are retained. It
will be noticed that the eigenvector for I's’ is dominated
by the contribution of band 2 while for I';, no single con-
tribution appears to be as important.

The relative importance of individual bands to the
E(\) curves was investigated deleting them singly or in
combination. Generally, one can say that removing a
conduction band shifts the E(\) curve to the left, that
is, to smaller values of \, while removing a valence band
shifts the curve to larger values of \. We have found
only one situation which is inconsistent with this simple
statement : Removal of the contribution from band 4 in
the I'; representation has an effect opposite to that
expected.

Some of the information obtained by deleting bands
is shown in Figs. 3 and 4. We see in these figures that
removal of all conduction bands does shift the curves
somewhat to the left; however, these shifts are small
compared to those obtained by deleting valence bands 1
and 2. The shift of the E(\) curves in those cases; from

Tasre VI. List of the symmetrized linear combinations of
Wannier functions which can be formed for the three site groups
and eight bands. “0” indicates that a (nonzero) symmetrized
Wannier function cannot be formed for the band and site in
question.

Representation

Site group )Y T Ty Ty

Band 123 123 123 123
1 T XXX 000 00x 0x0
2 T’ 0x0 00x 000 XX
3 T xxx 000 00x 0x0
4 Ty 00x 0x0 xxx 000
5 I rXx 000 00« 020
6 Ty 0x0 00« 000 xx%
7 Ty 0x0 00x 000 TX X
8 Ty 000 Txx 0x0 00x

CALLAWAY AND A. ]J.
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. Tasie VII. Eigenvectors for the I'y and I'y representations are
listed for £=0.06 eV (above the valence band). A=1.32 for I';
and 1.08 for I'y’.

Site I Site Ty’
group Band Component group Band Component
000 1 —0.4938 000 2 —0.7902
000 3 0.3317 000 6 0.1095
000 5 —0.3982 000 7 0.2578
110 1 —0.1069 110 1 0.2635
110 2 —0.3159 110 2 —0.3794
110 3 —0.0212 110 3 —0.1650
110 5 0.0998 110 5 0.1192
110 6 0.1044 110 6 0.0223
110 7 0.1623 110 7 —0.0182
110 1 0.0577 it1o0 2 —0.1932
110 3 0.4068 110 6 0.0071
110 4 0.3975 110 7 0.0288
110 5 —0.0430 110 8 0.0575

a region near A=1 to one near A\=8, indicates the vital
importance of the lowest bands in these states.

Figures 3 and 4 also show the effect of considering a
smaller number of lattice sites. If only the central cell is
considered, that is, if we include only the Wannier
functions associated with the two missing atoms, we
obtain the E(\) curves labeled “central cell only.” The
bound state appears near A= 1.35 for I'y’ and 1.6 for I';.
When the second site group of six cells is included, the
curves labeled ‘““two site groups” are obtained. These
have bound states which are already present in the case
A=1.0 and are, in this respect, probably in better agree-
ment with experiment than are our final results. It is
also quite interesting that, in this approximation, the
energy separation between I'y and I'y’ states is reasona-
ble small (less than 0.15 eV) and actually changes sign.
When the third site group is included both curves shift
to larger N, but I'y is affected rather more than is I's".
The difference appears to result mainly from the some-
what anomalous contribution from band 4.

A

70 80 90 100
090
o075}
AllB C Dy
_ 060}
e~
[
u oast
E
o030}
015
15 5 20 25 30 35

A

F16. 3. Energy of the localized state of symmetry I'y in various
approximations: (A) All contributing bands, two site groups only;
(B) three site groups, all conduction bands removed: (C) three
site groups, all bands (same as in Fig. 2); (D) central cell only
with all contributing bands; (E) band 1 removed (use upper
scale for A.
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A

Fi16. 4. Energy of the localized state of symmetry I'»’ in various
approximations: (A) three site groups, all conduction bands re-
moved; (B) two site groups, all contributing bands; (C) three
site groups, all bands (same as in Fig. 2); (D) central cell only, all
contributing bands; (E) band 2 removed (use upper scale for A).

It is rather difficult to assess the general convergence
of our expansion in a reliable way since, at present, we
are unable to include either more bands or more lattice
sites. However, it would appear both from the form of
the eigenvector and from the behavior of E(\) that Ty
is reasonably stable. The convergence of I'; appears to
be rather poorer as far as lattice sites are concerned. The
wave function appears to spread out more in the
Wannier representation. In both cases, it appears un-
likely that addition of higher conduction bands will
have a significant effect. As the wave functions spread
out more in % space, which is the tendency observed for
the higher bands, the matrix elements of the pseudo-
potential tend to become small since the pseudo-
potential is largest near £=0. With the pseudopotential
method, there are no other valence bands to include.

V. DISCUSSION AND CONCLUSIONS

The experimental information on the properties of
the divacancy which was cited in the Introduction
seems to require that it is possible for the divacancy to
exist in four different charge states. Our calculations
pertain to only one of these.

We have proceeded by assuming that the energy
levels of the perfect crystal can be calculated from a one-
particle Schrodinger equation containing a potential
which is the sum of neutral-atom pseudopotentials. The
divacancy is represented by the negative of two neutral-
atom pseudopotentials, one for each atom missing. The
use of neutral pseudopotentials is essential in our
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approach since we require a short-range interaction.
The question “To what charge state of the divacancy
do the results refer?” has some subtle aspects. We
believe that the most reasonable interpretation is that
they pertain to the divacancy in the same charge state
as that of the atoms used in constructing the original
crystal pseudopotential : the neutral charge state.

On this basis, we should compare our calculated
lowest-energy level with that observed experimentally
for this state with an energy about 0.25 eV above the
valence band. The symmetry of this state is not deter-
mined experimentally, so we do not know immediately
which of the two curves of Fig. 2 to use in order to de-
termine . It is tempting, however, to suppose that the
1.8 p infrared absorption band which is associated with
the divacancy might correspond to the transition
between the I'y; and I'y’ levels we have calculated. This
interpretation would account for the absence of photo-
conductivity associated with the observed absorption,
and is consistent with the observed range of Fermi levels
in which the transition is reported. If our interpretation
is correct, the lowest level of the neutral divacancy has
T'; symmetry in the approximation in which lattice dis-
tortion is neglected and we would seem to require
A=1.4. This choice is also reasonable consistent with
our calculations of an excited state at an energy of 0.7
eV above the ground state, which is in good agreement
with the observed absorption band. Such good agree-
ment, if it exists, is probably accidental.

The main conclusion that we wish to draw from this
calculation is that the method of expansion in Wannier
functions works about as well for the divacancy as it
did for the single vacancy. While there are many pos-
sible reasons concerning the numerical approximations
made in this calculation as to why exact agreement with
experiment (\=1.0) is not obtained, the slightly larger
value of \ required in the present case (1.4 as opposed
to 1.2) may possibly be attributed to the increased im-
portance of lattice relaxation around the divacancy. We
believe that this work, and that previously reported in
I, serve to establish our methods as practical pro-
cedures for the study of localized states associated with
neutral defects in semiconductors.

In summary, we have determined the energies of pos-
sible localized electronic states associated with the
neutral divacancy in silicon. Two such states of sym-
metries I'y and Ty’ in the approximation in which lattice
distortion is neglected, have been found to be possible.
A tentative interpretation of the observed 1.8 u infrared
absorption band in irradiated silicon as due to a tran-
sition between this state has been proposed.



