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Photoelectric cross sections for E through My subshells of iron, tin, and uranium have been numerically
computed for x rays from 412 to 1332 keV using a relativistic multipole expansion of the matrix element.
Electronic orbitals and partial waves were computed in the central-held approximation. Comparison of
screenedwithunscreened results shows that angular distributions and polarization correlations are essentially
unaffected by central-potential screening; total cross sections are merely renormalized by a factor equal
to the square of the ratio of screened to Coulomb bound-state normalizations. This normalization effect is
used to develop a table of realistic total cross sections for energies 10 to 3000 keV, and atoms 8=13 through
92. These predictions are compared with existing experimental data.

lations of photoelectric cross sections, following the
methods of I'1, undertaken to understand the effects
of electron screening and the properties of emission
from higher shells. In particular we have verified the
argument that the only signi6cant e6ect of electron
screening comes from the change in normalization of
the bound-state wave function9: Cross sections for
tw'o atomic models vary as the square of the corre-

sponding bound-state normalizations. (This has the
consequence that angular distributions and polarization
correlations are essentially independent of screening. )
This result has been established for each subshell E
through My and for ranges of photon energy down to
about twice the binding energy. We are thus able to
compare with all previous work' 7 and to utilize this
"normalization effect" in constructing tables of total
photoelectric cross sections, by shells, for realistic

potential models in the range Z&13 and 10 keV&k&3
MeV.

In Sec. II we summarize the mathematical formalism
fol' these calculations, aIid ln Sec. III %'e discuss oui

numerical methods. We do not attempt a complete

presentation, referring the reader to I'1, but rather

give only as much of the theory and numerical methods

as are needed to understand the new features in this
work and to permit a, discussion of our results. In Sec.
IV we present the results we have obtained for total
cross sections, differential cross sections, and polariza-

tion correlations. We use these data to demonstrate

that screening is a normalization effect; with similar

ideas we can also understand the relationships of cross
sections from states of the sa,me angular momentum.

Ke then prepare tables of photoelectric cross sections
and compare these with theory and experiment.

I. IÃTRODUCTION

'HEORETICAL predictions for atomic photo-
electric cross sections require the calculation of

integrals over electron wave functions in the potential
which represents the atom. In the relativistic region
such calculations have usually been done numerically,
beginning with the work of Hulme, Mcnougall,
Buckingham, and Fowler' on E-shell total cross sections

for a few point-Coulomb model atoms (i.e., no electron

screening). Using modern electronic computers, these

results have been extended by Hultberg, Nagel, and

Olsson' and by Pratt, Levee, Pexton, and Aron. '
Ailing and Johnson4 obtained I.-shell Coulomb cross

sections. Mole recelltly, cross sections in various

screened potential mode1s have been reported by Hall

and Sullivan, s Matese and Johnson, ' and Rakavy and

Ron. 7

This papels is a leport of furthel nunlellcal calcu-

' R. H. Pratt, Phys. Rev. 119, 1619 (1960),
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(2.1)do/dQ= (2ir) PPpIHI'

II. MATHEMATICAL FORMALISM I'1. The fp and ip are both unity and give the only
contribution for unpolarized photon and electron beams

Following I'i we write the differential cross section
respectively. The algebra yieldsfor photoeffect as"

do (M)/dQ= (47rppnk ') Q $;f,p;;(M), (2.6)

subject to energy conservation, where

H= (2snk ')'~' d'r pfi~'n e exp(i& r)ip;. . (2.2)

and

/ GK(r)Qzr, ~(r) )
oPK(r)Q Jl'pi(P)i

(2.3)

The initial electron wave is square normalized to unity,
and the final wave is asymptotically normalized to a
unit amplitude plane wave of 4-momentum (p,p) plus
an Becoming spherical wave. The incident radiation is
specified by 4-momentum (k, ir) and 4-polarization

(O,e). Both fi; and |P; are solutions of the Dirac
equation for a screened central potential.

The initial state is given by Kq. (2.10) in I'1, and
the final state by Kq. (2.16) in Pi. With the exceptions
that we use the phase shifts 5~ instead of b., and use I
for the bound-state "kappa" quantum number, but
with all other notation the same as in I' j, we have

where each of the sixteen P,, (M) is a bilinear function
of the reaction amplitudes. Our interest here is in the
cross section summed over all allowed values of M for
the given subshell, so we sum Eq. (2.6) over ail M from—J to +J.Eight of the P;, (M) are even in M, and eight
are odd; so upon summation we are left with only eight
terms, which can be written as sums over positive M
only:

fol

do/dQ= (8~ppnk ') Q )g,B,;

J'

B'~= E P'~(M).
M

(2 7)

The eight nonzero 13;; are given explicitly in terms of
the reaction amplitudes by Eqs. (2.25) in P1, where
we understand that the right-hand side is to be summed
over positive M. For example,

Bpp= P L) J (M)[ +)Z' (M)~ +'] J+(M))

+ (Z, (M) )'j.
We insert (2.3) and (2.4) into (2.2), and choosing

the s axis along k, we obtain"

H (M) =4s (i)~(2vrnk ')'i'—
(J+(M) /J (M) &-

X iJ.& .+i +.
i i

(2.5),(M) (M)&

for e+=e,+ie„. Here we have explicitly displayed the
M dependence. The factor (i)z is a choice of the phase
designed to give real integrals later on. The functions
J~(M) and E~(M) are complex scalar functions which
we call reaction amplitudes, after the definition of
Nagel"; we will write them out explicitly later.

The cross section is obtained for definite M by
putting (2.5) into (2.1). This gives bilinear products
of e~ and e~*, and also of the components of U~ and
U~t. These are combinations of the polarization
parameters" $; and f; (i, j=0, 1, 2, 3), as defined in

"We use the unrationalized "natural" unit system, 5=m
=c=1. Hence e'=a=1/137. We shall also continue to use the
notation of P1 and P2.

"We use the coordinate system of P1:
s=k, g= (kxp) ikxyi ', s=gxs.

1' B. Nagel, Arkiv Fysik 18, 1 (1960). In this work, and other
works of HNO, the 8 axis is chosen along p, not along k. Thus,
the A, B, C, D reaction amplitudes of HNO are related to our
J+, Z+ by a rotation transformation.

& The g; are Stokes parameters of the photon polarization. The
g; de6ne the direction of the electron spin in its rest frame.

The cross section (2.7) is for a general pair of photon-
electron polarizations specified by the $;, t'; For the.
case of unpolarized photons and photoelectrons we
average over incident photons and sum over final
electrons to obtain

(do/dQ) i= (16sppnk )Bpp.

We then rewrite (2.7) as

do /do) !zu&;;,
dQ EdQ& ~~poi

(2 8)

(2.9)

R„+(M)=Q Q„+(~,K,M)
v=1

XQ' I',+(~,K,M; li)S„(a,K; X). (2.11)

where the Ca(= B;;/Bpp) are calle—d polarization cor
reLutior functions.

The cross sections are given in terms of the reaction
amplitudes. %e must write these amplitudes in terms
of quadratures suitable for numerical computation.
Carrying through the matrix multiplications and
angular integrations we obtain

J~(M) q
I
=P o"m, '(M)Q, (P), (2.10)

(M)I
where
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The functions on the right-hand side of (2.11) are'4:

Q +(,K,M) =+g.(—1) +'*[(2)I'+1)(21.+1)]'('

XC&gr.~+3. CJI,m-
&

XC;I,~Pi CJI, iv ',

obtained by numerical integration of the threefold
pl odUcts of contlnUUD1 wave functions boUnd wave
functions, and spherical Bessel functions.

Spherical Bessel functions were obtained with the
method of Corbato and Uretsky. "The continuum and
bound radial wave functions were obtained by numerical
integration of the pair of equations:

(
d 1+K—+—GK(r) —%+1+4(r)]Fr(r) =0;

'-M -, M -, 0'0 0 0'
(

1 K—+ FK(r)+[8—1+(b(r)]GII(r) =0.
df

(3 1)

SI(((,K; X) =

Equations (3.1) are written for the hound state (h(l).
)&( ~)&, The same equations hoid tor the continuum state,

(—ddd. —', ddt ,'tt) 0 -0 0 except that we use d, (r), f(r), , an, d ()t).
The function P(r) is just —V(r), where V is the

screened central potential for the atomic electron in
j'„(r)GK (r)j),(kr) r'dr;

question. Ke have specified the screening by a factor
&(r), defined by

g„(r)Fx (r)j h(kr)r'dr .

In (2.11) the summation over X, denoted by P', is
carried from X;„to X in steps of hvo, where

We point out four properties of the Eqs. (2.10)
through (2.12): (1) The R„+(M) are real; (2) the
spherical Bessel functions in the S integrals come from
the multipole expansion of exp(ik r); (3) the sum in

(2.10) is over all )(= &1, &2, . ; (4) the R matrices
of (2.11) and the reaction amplitudes of (2.10) reduce
exactly to those in P1 when K= —1, M= ', (i.e., for E-
shells).

Upon inserting (2.11) into the expression for (d(r)„„I,

and integrating over dQ(p), we obtain

o„„p.i ——(16IIPenk ')
J

&(g P [E„+(M)'+R„(M)'], (2.13)

which agrees with I'1 for E shells.

III. NUMERICAL METHODS

The problem of computing photoelectric cross sec-
t.lolls llas beell I'edllce(l to colllplltlllg tile Q and F
factors and 5 integrals of (2.12). The Q and F factors
present no great problem. Hut the 5 integrals must be

"The Czl,~+ are the same as de6ned by Eq. (2.13) in P1
t However, there is a typographical error in that expression; the
sign of C+ for J=L——,

' shouM be (—), not (+).g The OJ I,~ are
given by (2.12) in E1.The q, and g~ are the negative of the sign
of the subscript (a or K), as de6ned in I'i.

4(r) = (o/r)&(r) (3.2)

for a—=Zo.. In the present work we have made calcu-
lations for four different central potentials:

Coulomb,

Thomas-Fermi,

x(r)=1; (3.3a)

(3.3b)X(r) =C ((I(tr),

q= 2[4/(3qrZ)]')',

C, the "universal TF function"";

Kerner "
Vukawa,

x(r) = [1+1525(IZ'('. r] ' —
(3 3c)

&(r) =exp( —Xr),

for X-1 j.2nZ'~'

(3.3d)

"F.J. Corbat6 and J. L. Uretsky, J. Assoc. Comp. Mech. 6,
366 (1959).

"We used 4 as given by V. Bush and S. Caldwell, Phys. Rev.
38, 1898 (1931). A more accurate tabulation is given by S.
Kobayashi, T. Matsukuma, S. Nogai, and K. Umeda, J. Phys.
Soc. Japan 10, 759 (1955)."E. H. Kerner, Phys. Rev. 83, 71 (1951).

Values of li were ta,ken from Matese and Johnson' in
an effort to reproduce their results as a check of our
pI'o gram.

The bound states were computed from (3.1) with the
methods developed in I'1. However, we required that
the relative variation of the binding energy, 8T/T
(rather than of the total energy, 8F/F) be small. This
provides a more sensitive measure of deviations which
is needed for the higher shells since the energy levels
become too closely spaced if measured by E instead of
T(=1—E). Also, it was necessary to use Coulomb-like
radial wave functions, which had the proper number of
nodes, to start the iteration scheme. (In P1 only the
nodeless E'-shell functions were considered. ) Finally,
due to instabilities in the integration scheme, we im-
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posed a cutoff on the calculated functions at a radius of
1.5 to 3 times the classical turning radius. Beyond that
point the functions were continued with their asymp-
totic approximations; the errors so induced in term
values and wave functions (where they contribute to
the integrals) are negligible.

The continuum functions were also computed with
methods developed in P1, but with some important
modifications. We first convert g„and f„ to g, and f„,
which are 6nite at the origin:

foi"

g. ( r)=r' 'f.(r)

f„(r)= r'-~f„(r),

~—[x2 a2]iI2

(3 4)

In P1 the first few points of g„and f„were obtained by
a Taylor series expansion about the adjacent preceding
point. [See Eq. (3.32) in P1.] However, we found it
more satisfactory to expand each point about the
origin. The coefficients of the expansion will of course
depend upon the choice of potential p(r) Alth. ough we
used a different formula for each potential, we found
that these differences cause insignificant deviations
from expansions using the pure Coulomb potential.
This is because near the nucleus the electron essentially
sees a strong unscreened Coulomb potential.

The power series expansion was used for the first
2~x~ points, after which the integration was continued
by the Runge-Kutta method. "Upon reaching the first
minimum of f„(r), near r= ~x~/p, we switched from
computing g„and f„ to computing g„and f„, defined by

g( )r=prg. (r)

.'.!')=Prf'(r)
(3.5)

f, (r) =A,
2E.

where

pr[cos8„j„ i(pr)

—(—1)"sinb, j „(Pr)],

5„=bi+ (x—t)2'2r,

' See, for example, J. B. Scarborough, ENmericat 3fathematicat
Analysis (Johns Hopkins University E ress, Baltimore, Maryland,
1958), 4th ed. , p. 3i.7.

It is desirable to do this because these new functions
are asymptotically sinusoidal. The resulting numerical
integration will always be within machine limits and
thus requires no scaling factors as needed in I'1.

The functions g„(r) and f„(r) are normalized with a
method which generalizes that of I'1. If we assume an
approximate asymptotic form based upon a phase-
shifted free-6eld solution,

2+1 '"
g„(r)=A„—Pr[cost'i„j „(Pr)

26
+(—1)"sins„j, i(pr)],

(3.6)

then A „and li& (or ti„) are to be determined by matching
the right-hand sides of (3.6) with the numerically
computed g„(r) and f„(r) at some point r2 in the free-
field region of the atom. However, values of r for which
the integration of g„and f„ is feasible without excessive
computation time are not sufficiently large: Applying
(3.6) we do not get constants A„and tii, but some
functions A(r) and 5(r). Thus, a modification of (3.6)
is needed.

We observe that in I'1 the argument of the trigono-
metric functions in (3.6) was not just 5„,but was actually
(5„+rt ln2pr), for it=ac/p. The distortion is due to
persistence of the Coulomb potential. Similarly here,
we change the argument to [8„+Q(r)], where Q(r) is
yet to be determined. We now make the transformation

—e+ 1—1/2

g. (r) = A (r) Sin[pr —-2t2r+5(r)+Q(r)],
2f

and similarly for f„(r).Putting these into the equations
for g„(r) and f„(r), we obtain equations for A(r) and
8(r), and from these we deduce the asymptotic forms
for A(r) and 5(r):

lnA (r) x(2pr) ' sin2pr+const;

8(r) r&(2pr) ' cos2pr+const

+ (e/P) e(r)«r —Q(r)

(3.7)

Q(r) = —(e.'P) y(s)«s= (ae/p) ln2pr, (3.8a)

and for screened potentials

Q(r) = —(e/p) e(s)«s. (3.8b)

With these choices lnA (r) oscillates about A„and 8(r)
oscillates about 8~, with amplitudes decreasing as r ',
and periods 2r/p.

Thus if we use the approximate forms (3.6), but with
ti„+Q(r) replacing li„ in the trigonometric functions, we
can obtain A „and tii neglecting terms of 0[

~

~ ~/(2pr2)],
where ro is the matching point. However, we can do
even better if we average A (r) and ti(r) over one (or
more) period(s). Doing so reduces the errors to
0[~&~/(4P2r22)]. This averaging method was used in
our present work. "We emphasize that Q(r), which we
call the phase correction integral, is extremely important,
being of order 0.1 to 1 rad in most of our cases.

I A more complete description of this method is found in Chap.
7 of Ref. 8.

It is clear that we want A(r) —+A„and 5(r) —+Si as
r ~ ~. So if we set the first constant to lnA„, and the
second to 8~, then we see that for the Coulomb potential
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HRvlQg obtalncd A„, wc DOI'IDRllzcd oui computed
wave functions by dividing by it. These functions werc
then combined with the normalized bound-state waves
and the spherical Bcssel functions, and we numerically
integrated the 5 integrals with Simpson's rule. In the
present programs the integration grid was d,r=0 125/. k,
so that d kr was constant. This enabled us to use stored
values of the jl(kr) rather than compute these each
time. The 5 integrals were combined with the Q and
I fRctoI's to glvc 8 matllccs, Rnd tIlcsc werc combined
to give amplitudes and cross sections.

Ke should 6nally discuss the accuracy of our nu-
nmrical methods. Errors in the calculations of wave
functions arc dlscusscd lD PI, RDd plcscDt errors RI'c of
thc sanlc order, +IO 4. Kx'I'oI's ill Sesscl fUDctloQs,
associated I.egcndrc polynomials, 3-j symbols, etc. are
completely negligible. The two major sources of error
are (1) finite grid size in the 5 integration (histogram
error), and (2) truncation error due to limitation of the
lllllll'iM1 of II's 111 tlM Belles (2.10) RIld (2.13).

To estimate the histogram errors in 5 integrals we
IDRde tests dullQg thc carly stages of this work. Various
grid sizes Ar ranging from 0.005 to O.j.0 were used. The
results generally fluctuated by 0(0.1%%uo) for the grids
tested; a few Ematrices c.hanged by =1%when grid
slzcs oI' lDtcglatlon tcchDlqucs wcx'c RltcI'cd. %c cstl-
mate that most of our integrations are accurate to
&1%,p~ob~bly =o.5%%uo.

Thc othel major soUI'cc of error) truncation) CRQ bc
tested by looking at the truncated sums 0~, which are
just the series (2.13) for ~ running from iV to +X-.
Tlle tluncatloll ellol ls 1—OIr/a. Plots of tllls tlllIlcatloll
error decrease exponentially with E/p. This behavior
can be used to predict the number of partial waves
required to obtain a given accuracy for a speciled
momentum P. Computer storage/time requirements
caused us to limit

~

II
~
&20. However, this was sufficient

to calculate total cross sections with truncation error
&0.1%, in most cases. A few high-energy higher shell

calculations 11Rcl tl'uIlcatloll errors 0 (0.5%). Ill tile
important regions of photoelectron emission the esti-
mated truncation errors are 0(1%) for angular distri-
butions and polarization correlations.

The combined effects of all errors are estimated to
be (0.8% for total cross sections, with most of these
&0.5%, and 0(1%) for angular distributions and

polarlzatloQ col I'clRtlons.

IV. RESULTS

A. Total Cross Sections

A scparRtc DUMcI'leal computation of thc photo-
electric cross section is necessary for each choice of

photon energy, atomic number, subshell, and potential
model. %c present in Table I the total cross sections

'0 See further comments on errors in Chap. 10 of Ref. 8.

26
26
26
47

50
50
50
92
92
92
26
26
26
47

50
50
50
82
82
92
92
92
26
26
26

$7
50
50
50
92
92
92
26
26
47
47
50
50
50
92
92
92
26
50
50
92
92
26
50
50

92
26
50

92

26
50
50
92
92
26
50

92

412
662

1130
279
354
412
662

1332
412
662

1332
412
662

1332
279
354
412
662

1332

0 0 0

f ~

~ ~

~ ~ I

4.73

0.340
59.9

4 95
0.0321
0.00949
0.00219

0 0 ~

0 ~

0.597
0.186
0.0432

103 160,0
279
412
662

1332
412
662

1332
279
354
412
662

1332
412
662

1332
412
662
279
354
412
662

1332
412
662

1332
412
412
662
412
662
412
412
662
412
662
412
412
662
412
662
412
412
662
412
662
412
412

412
662

13.0
~ ~ ~

~ 4 ~

0.668
0.000625
0.000160
0.0000300

~ ~ ~

4 It a

0.0502
0.0138
0.00275

J ~ ~

~ 0 ~

0.237
0.000911
0.000243

4 ~ ~

~ 0 I

0.0565
0.0152
0.00322

~ '0 ~

0.112
0,00952

4 *

~ ~ ~

~ 1

0.781
0.000219

ega
~ ~ ~

~ e a

0.338
0.000319

~ 4 ~

4 ~

4 4

0.196
0.0000015

~ 4 4

~ ~

~ I

0.0120
0.0000020

~ ~ ~

~ 0 ~

~ ~ ~

0.0110

.239

.0704

.0222

4.56
1.41
0.327

58.5
19.8

0.0211
0.00626

~ 4

0.477
0.149
0.0346

~ ~ 0

~ 0 *

7.12
2.45

0.000311
0.0000803

~ 0 0

0.0352
0.00962
0.001.92
2.89
0.893

0.000444
0.000121

~ ~ ~

0.0392
0.0106

~ ~

1.64
0.452

0.00279
0.0912
0.0286
1.61

~ 5 4

0.0000375
0.00724
0.00198
0./00

0 0 ~

0.0000532
0.00812
0.00219
0.428

0 P ~

0.0000702
0.0000148
0.0217

~ 1 ~

4 4

0.0000792
0.0000190
0.0193

0 4 ~

~ ~ ~

10.4
5.39

58.9
20.0
4.88

1.15
0.598

0.601 0.631

~ ~

0.0905
0,0431

0.203 0.220

~ ~ 0

0.108
0.0505

0.0924 0.102

~ 4

1

Thar.z I. Total photoelectric cross sections in barns as coIn-
puted in this vrork, Symbols C, TF, K, and Y refer to Coulomb,
ThoInas-FermI, Kerner, and Vukawa potentIals.
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TABLE II. Normalization effect error for Thomas-Fermi cross sections.

Subsh

K
LI
L II
L III
MI
MII
MIII
MIV
Mv

z
keV 412

—0.0076'
+0.0084
+0.012
+0.0265
+0.0026
+0.0048
+0.0166

26
662

+0.0025
+0.0042
+0.0040—0.0006

1332

0 0028., b

412

—0.0027—0.0024—0.0036—0.0083

50
662

—0.0025—0.0043
+0.0035—0.0132

1332

+0.0016—0.0047
+0.0014

412

+0.0014—0.0175—0.0132a

—0.03235

92
662

—0.0007'—0.0131—0.0143~
—0.0145.
—0.0122'

0.01720
0 03070—0 0064'
0 0500

1332

—0.0008

a Coulomb cross sections taken from other sources.
b This point for 1130 keV.' Thomas-Fermi cross sections from G. Rakavy and A. Ron.

in barns per atom obtained from about one hundred
such computations, each taking about five minutes of
computer time on Stanford's IBM-7090. We chose
these cases to gain insight into the eRects of central
potential screening, to study the relationships of cross
sections of various subshells, and to permit compa, risons
with previous calculations. We shall look at these three
points in order; then we shall present tables of "real-
istic" cross sections which combine the theoretical
results of this and other works.

In the absence of numerical results two approximate
methods to take account of screening eRects have been
discussed. The best known method is to use the results
for Coulomb cross sections, but everywhere replacing
Z by Z,«=—Z—s, where s is a screening constant chosen
to produce observed binding energies from the point
Coulomb energy expression. It has been pointed out'
that this eRective charge" method fits the atomic wave
functions over the regions which give the main contri-
bution to the normalization integral, but at least for
energies well above threshoM these are not the regions
important for the photoeffect matrix element. Con-
sequently the method is incorrect.

It has been argued' that for energies well above
threshold screening is simply a "normalization effect."
The reasoning is as follows. First, the main region of
importance for the matrix element is the region of space
where r=0(1/6), t1 being the minimum momentum
transfer to the nucleus. For photon energies well above
threshold, 6=0(1). Second, the bound-state wave
functions in the region r= 0(1) are in the 6eld of the
bare nuclear Coulomb potential and diRer from exact
Coulomb wave functions in normalization only, not in
shape. Third, except at very low energies the con-
tinuum electron is not much affected (in shape or
magnitude) by screening at distances r=0(1), so the
final state can be approximated by an exact Coulomb
wave function. Similarly the shift in energy of ejected
electrons due to the shift in binding energy for a
screened bound state is negligible provided ~—I)&a'.
Thus the screened cross section should be proportional
to the Coulomb cross section for the same photon
energy, the constant of proportionality being the square

of the ratio of screened to Coulomb bound-state nor-
malization, independent of energy. This we call the
normalization egect due to central potential screening.

We have used our data to test this argument. First
define

= lim GK'(r)/GK'(r),
r~P

(4.1)

which is the ratio of screened (s) to Coulomb (C)
bound-state normalizations for a given state K. If the
normalization effect works, then the product 'o(C)/
o (s) should be unity. We de6ne the normalization effect
error 1VE!(s) by

cVE (s)= 'o (C)/o (s)—1. (4.2)

Using our data we computed this error for several
cases, a few of which we show in Table II. These errors
are of the order of computa, tional errors, indicating
that the eRect works quite well for the Thomas-Fermi
potential. Similar results were obtained for Kerner and
Yukawa potentials.

In fact, the agreement is quite good even for energies
of the order of a few times the binding energy. At these
energies the continuum factor pc in (2.1) can change
by as much as 15orro due to screening effects on the
bound-state energy. The continued agreement with the
normalization eRect can be understood as follows. For
very low energies, and at distances r=0(1), the energy
dependence of a continuum Coulomb wave function is"
(pe) &, so ~H~s varies as (pe) '. Hut this is exactly
canceled by the factor (ps) in Eq. (2.1). Hence, for
low energies as well as high energies we get no variation
in cross section due to the change in energy of the
continuum wave. (It is known that for given p the
normalization of a continuum wave is uneffected by
screening down to very low energies. )

We conclude that it is possible to use ' to account
for screening over a wide range of photon energies. For
example, using our values of ', Ailing and Johnson's4
values of o(C), and Rakavy and Ron's" values of

n As P -+ 0, the normalization (at r =0) goes as P ~
ec—y )/Peg'».

For p«o/~z~ we neglect the variation of the numerator.
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TABLE III. Normalization effect errors (NE) for low photon
energies. Coulomb (C) data from Ailing and Johnson; Thomas-
Fermi (TF) data from Rakavy and Ron; normalizations from the
present work. All data for Z=92.

Subshell (kev)

279
279
103
81

279
103
81

279
103
81

NE (TF)

+0.0028
—0.0083—0.0015—0.0013
—0.00].6—0.0005
+0.0007
—0,0043
—0.0020—0.0010

p.(TI)

p (C)

1.087
1.047
1.116
1.157
1.050
1.123
1.165
1.046
1.111
1.146

"We use the notation: C = Coulomb; TF=Thomas-Fermi;
K=Kerner; Y=Yukawa.

"For a more detailed discussion of this eGect see Sec. 11.5 in
Ref. 8.

o (TF)" we obtain the NE(TF) shown in Table III.
Also listed are the factors pe. Even though this factor
changes by 15%for 81 keV photons, the screening factor
' gives correct results. So the normalization effect

works for photon energies as low as 250 keV for the E
shell of uranium (i.e., about 2&&binding energy), and
as low as 80 keV for the 1.subshells. Perhaps the method
is valid at still lower energies, but present data is in-

sufficient to test this. Similar results were obtained for
the M shell and for lower Z.

These ideas can be extended to predict approximate
ratios of cross sections for states having the same
angular momentum K. This follows because in a given

atom the wave functions of same K, but different n,
are proportional in the important region r=0(1), and

the proportionality is independent of Z if relative 0(a')
is neglected. ' Thus, for example, the ratios of Coulomb
cross sections from s states are given by the e-cubed
rule,

(K): (L7): (Mr): (Nr) =1:(1/8): (1/27): (1j64),

where relative O(u') is neglected, independent of k.
However, the Z dependence of 0(u') is not negligible

in heavy elements, being 10% to 30% for uranium. "
From the success of the normalization theory of

screening, it is clear that these results will also hold

in screened potentials: Present calculations indicate
that the ratios of screened cross sections for same K
are indeed irtdeperlderlt of k to within 0(1%) over the

energy range tested, 400 to 1300 keV.
%lith the normalization eBect we are able to convert

screened cross sections into Coulomb cross sections and

vice versa, and so we can make comparisons with other
calculations. We agree with the data of P1, HNO,
Ailing and Johnson, Hall and Sullivan, and Rakavy
and Ron to within 0.8% for all points compared, with

the exception of the Lq results for Coulomb potential,

TABLE IV. Comparison of Yukawa cross sections as calculated by
Matese and Johnson (MkJ) and the present authors (SRP).

47
47
47
47
47

47
47
92
92
92
92
92

k
l (keV)

279
354
279
354
279
354
279
354
662

1332
1332
1332
1332

Subshel

K
E
I~I
LI
I~II
L III IIII III
E
E
I~I
~II
~III

0- (S8zP)
(barns)

10.38
5.393
1.1.55
0.5980
0.09047
0.04311
0.1077
0.05046

20.13
4.905
0.6307
0.2195
0.1015

0 (MRJ)
(barns)

10.21
5,283
0.9740
0.5100
0.0720
0.0340
0.093
0.044

20.04
4,884
0.6140
0.2050
0.0980

0- (SaP)

(MaJ)
1.0167
1.0208
1.1858
1,1725
1.2565
1.2679
1.1581
1.1468
1.0045
1.0043
1,0272
1.0707
1,0357

'4 D. Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev.
137, A27 (1965). We wish to thank Dr. Liberman for kindly
making available to us several listings of bound-state functions.

"A complete set of tables for all of these subshells and shells is
given in Lockheed Rept. No. LMSC 5-10-67-11 Suppl. A, available
in limited supply from the authors. All results are also in the
dissertation, Ref. 8.

Z=82, k=103 keV. This energy is below the limit
required for good accuracy of our program, so we
suspect that Ailing's result (153.9b) is better than ours,
With this exception we are in excellent agreement with
all these calculations. However, we do not agree with
the results of Matese and Johnson, ' as shown in Table
IV, and we believe their results are incorrect. Matese
and Johnson did not use a screened bound-state wave
function, but instead used a Coulomb-like analytic
function and varied some of the parameters until it
gave the proper experimental binding energy. As with
the Z, ~~ method this need not give the correct wave
function in region of importance for the photoeffect,
namely r=0(1).

Hy combining previous work2 '~ with our present
data, incorporating the normalization theory to fill in

gaps and estimate higher shells, we have calculated a
set of cross sections for a "realistic" screened potential.
The "realistic" screened potential which we used is the
relativistic Hartree-Fock-Slater potential computed by
Liberman, Waber, and Cromer, '4 which we call the
LWC potential. From their bound-state functions for
the various subshells of several atoms we obtained
values of '. These ratios were multiplied by Coulomb
cross sections, either calculated or interpolated, re-
sulting in predictions of what would be obtained by
direct calculation using the LWC model. We present
results for the E shell in Table V, and for the total
atom in Table VI. Not shown are similar results for
Lr, Lrr, Lnr, L, M, and estimates for 7+0+
The data in Table V are believed accurate to &0.1%
for Z&20, and =0.5% for Z=13. Estimated errors
for Table VI are &0.5% for Z&20 and k&1332 keU.
For Z= 13 the errors may be 2%; for k) 1332 keV the
errors may be 1% to 2%.
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TABLE VII. Comparisons of experimental total atomic photo-
eGect cross sections with predictions of the present work. Experi-
menters are (I) Titus, (II) Parthasaradhi et al , (.III) Latyshev,
and (IV) Colgate.

TABLE VIII. Comparisons of experimental Z-shell cross sections
with predictions of the present work. Experimenters are (I)
Missoni, (II) Seeman, (III) Bleeker et al. , (IV) Latyshev, and
(V) Hultberg and Stockendal.

Experi-
menter Z

I 29
I 42

II 47
I 47

II 50
I 50
I 73
I 73
I 79
I 79

II 82
III 82
IV 92
IV 92
I 92

IV 92

Photon
(keV)

662
662
320
662
320

2620
662

2620
662

2620
320

2620
412
662
662

1332

Exp. value
{barns)

0.125&0.009
0.700~0.016
7.65 +0.46
1.198+0.028

10.2 +0.6
0.11 ~0.03
8.55 ~0.14
0.47 +0.05

11.62 +0.16
0.74 &0.06

76.5 ~4.6
1.3 +0.41

73.2 +0.2
24.9 +0.2
23.9a
5.9 &0.1

Predicted
(barns)

0.133
0.735
7.96
1.227

10.43
0.123
8.90
0.657

12.64
0.926

85.6
1.08

73.5
24.8
24.8
5.98

Exp. value

Predicted

0.94&0.07
0.95w0.02
0.96&0.06
0.98+0.02
0.98+0.06
0.89+0.27
0.96+0.02
0.72&0.07
0.92+0.01
0.80+0.06
0.89+0.05
1.20+0.37
1.00+0.00
1.00+0.01
0.96
0.99&0.02

a This figure was obtained by S. Hultberg from data of W. F, Titus, and
appears in Arkiv Fysik 15, 307 (1959).

~ W. F. Titus, Phys. Rev. 115, 351 (1959); Bull. Am. Phys.
Soc. 4, 269 (1958);Nucl. Phys. 69, 179 (1965).

~7K. Parthasaradhi V. Lakshminaryana, and S. Jnananda,
Phys. Rev. 142, 9 (1966).Hereafter we shall call this PLJ.

"G.6.Laytshev, Revs. Mod. Phys. 19, 132 (1947).
~ S. A. Colgate, Phys. Rev. 87, 592 (1952).
3o G. Missoni, Report ISS 65/11, Istituto Superiore di Sanita,

Roma, Italy (unpublished)."K. W. Seeman, Bull. Am. Phys. Soc. 1, 198 (1956)."E.J. Bleeker, P. F. A. Goudsmit, and C. De Vries, Nucl.
Phys. 29, 452 (1962).

» S. Hultberg and R. Stockendal, Arkiv Fysik 15, 355 (1959).

In Table VII we compare our predictions for total
atoms with the experiments of Titus, " Parthasaradhi
et gl. Latyshev and Colgate. The data of Titus
are consistently below the present calculations, usually
not even within the stated limits of experimental error.
The results of PLJ are in agreement with us for Z= 47

and 50, but for Z=82 there is wide discrepancy. We
agree quite well with Latyshev and with Colgate. In
Table VIII we compare E-shell predictions with experi-
ments of Missoni "Seeman, "Bleeker et al. "Latyshev "
and Hultberg and Stockendal. "The predicted values
are always too small for the data of Seeman, Bleeker
et ul. , and Hultberg and Stockendal. It is not likely
that our E-shell predictions could be too small while

our total-atom predictions are too large, as would be
the case if we accepted Titus's data as correct. Such a
situation could be explained only if our predictions for
higher shells were much too large. To see whether this
could be the case we look at ratios o(K)/a(L), o(E)/
a(~+" ), (I)/a(~+" ), and (K+I.+~+ ")/
o(E), which Hultberg" measured for uranium with
photons between 412 and 1332 keV. He found nearly
0-independent values of 5.3+0.2, 13.9+0.7, 2.6~0.15,
and 1.26~0.01 respectively. Our predictions are
5.35~0.21, 16.9~1.2, 3.16&0.10, and 1.245+0.013.
This indicates that our M+ . contributions may be

Experi-
menter Z

I 79
II 82

III 82
IV 82
III 82

V 92
V 92

Photon
(kev)

662
511

1332
2620
2754
1172
1332

Exp. value
(barns)

10.2 &0.03
23.4 a0.7
3.24~0.13
1.04~0.4.
0.93+0.07
7.2 +0,5
5.4 &0.3

Predicted
(barns)

10.44
22.06
2.94
1.09
0.85
6.16
4.84

Exp. value

Predicted

0.98+0.03
1.06+0.03
1.10+0.04
0.95+0.4
1.09~0.07
1.17+0.08
1.12~0.06

a This value was obtained by multiplying Latyshev's cd by his values of
(Oz/OA) .

'4 M. Wiedenbeck, Phys. Rev. 126, 1009 (1962).
'5 We use scattering cross sections from G. W. Grodstein, U. S.

Dept. of Commerce, NBS Circ. No. 583, 1957 (unpublished)."B.I. Deutch and F. R. Metzger, Phys. Rev. 122, 848 (1961).
"W. H. McMaster, N. Kerr Del Grande, J. H. Mallett, N. E.

Sco6eld, R. Cahill, and J. H. Hubbell, University of California
Lawrence Radiation Laboratory, Report No. UCRL-50174-II.
1967 (unpublished).

"W. H. McMaster, N. Kerr Del Grande, J. H. Mallett, N. E.
Scofield, R. Cahill, and J. H. Hubbell, (private communication),

O' Letter A represents total atomic cross section.

smaller than Hultberg's but our o(E)/o (I. ) ratios are
the same.

We know of no other direct measurements of absolute
photoelectric cross sections. However, we can estimate
"measured" cross sections by subtracting scattering
(coherent and incoherent) from measurements of total
x-ray attenuation. Wiedenbeck'4 measured attenuation
in lead at 50, 105, 208, and 412 keV, yielding photo-
effect components, by subtraction, "of 2335, 1484, 260,
and 45.3 b, respectively. We predict 2531, 1606, 264,
and 45.3 b. Agreement is good for the higher energies,
but as K-shell threshold is approached the disagreement
becomes 0(10%), due in part to inaccurate scattering
cross sections near threshold. A similar analysis of the
data of Deutch and Metzger" gives 113+3 b for 279-
keV photons on gold. Our prediction is 116b, in agree-
ment. Finally, a few comparisons have been made with
the recent compilation of experimental data by
McMaster et al. '7 These comparisons indicate agree-
ment of present theory with experiment to within 2%
over a wide range of known cross sections. "

In addition to absolute cross sections we can compare
relative cross sections and ratios for different states,
atoms, or energies. Hultberg's experiment has already
been discussed. Latyshev" gives K/A ratios" for Z= 73
and Z=82 at 2.62 MeV; these are 0.815~0.035 and
0.80+0.035, respectively, to be compared with our
values of 0.844 and 0.842. He also gets K/L ratios of
5.4 and 4.9, where we predict 6.5 and 6.0. These 20%
discrepancies help to explain why our E/A ratios differ
from his. Latyshev also measured the proportions
ag(Z= 29):ag(Z=47):a~(Z= 73):a~(Z= 82) at 2.62
MeV, and he found them to be (1&0.2): (9.5&1.1):
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relative cross sections of Sergkvist ver-TABLE IX. Comparison of relative
=79 k=412 keV.sus present theory. These data are for Z =

0.5

Function

&X/&L,

&Z~/& J.I

0 I rr/& /-I

O'Lr I I/O'I r

{01.1+0I.rr}

3ergkvist

5,7 &0.4
8.5 &0.5
0.30~0.03
0.18&0.02

7.2 ~0.8

Present theory

6.11
8.73
0.251
0.179

6.97

0.3

bing

-fb
0.2

——PRESENT
K, Lr, Mr

——--ALLING S Lr

74+8): (120~11). Present theory predicts propor-
tions of 1.12): (10.1):(72.1):(120), in good agreement.

have been experimentally determined
by Grigor ev anby G

' ' and Zolotavin. ' For exampe, ey g'

/'A f 603 keV photons incident on P,
ratios being 0.058+0.005 and 0.818+0.02.

f (Lr+Irr)/Irrr for 265 keV photons on»s
5.0~0.5, and our prediction is ~.~~. ee er
measured the K-shell cross section of Pb at 2754 keV

d 1368 keV. They report a ratio of 0.30&0.02compare to e
recentas compare o ourd t theoretical value of 0.304. A

B k ist4' has yielded cross sectionexperiment by Berg vis
~ ~

for old at 412 keV. These are summarized inratios for go a
is a ain excellent,T bl IX.Agreement with our theory is again .a e

ntal resultsWeconclu et a od h t t the extent that experimental
t em. Thereare consis en w

'
tent we are in agreement wit t em. ere

eor untils to be no reason to question present theory

effect cross sections in the ranges indicate .
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FIG. 3. Polarization corI'elatlons Clo
for s, ply, and pe~2 subshells of tin for
412-keV incident radiation.
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FIG. 4. Polarization correlations Cel
for s, ply2, and py~ subshells of tin for
412-keV incident radiation.
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The Rnguiar distributions computed ln thc present
work can be compared with a few sample calculations

by otbcls. OUI' E-shell dlstrlbutlons RI'c identical with
those of I'j. and HNO. However, we disagree with the
I.-shell distributions of Ailing and Johnson. ' For
example, the dotted hne in Fig. 4 indicates their result
for I.I, and it is obvious that there is a systematic
di6erence between curves. 4' In view of our agreement
with I' j and HNO, and the agreement, as expected,
between E and I I, we believe that Ailing's distributions
are slightly in error. However, his total cross sections
are correct.

Vfe cannot directly compare our distributions with
experment, since our choices of Z and k are not found
in any published experimental study of distributions,
but we can point out indirect comparisons. Experi-
mental wol'k oIl UrRnlulTl by Su]kowskl coIQparcs wclI
with E-shell predictions of HNO, considering the

"An early version of Ailing and Johnson's article contained
a E distribution-for uranium at 412 keV which did not agree
with P1, HNO, or the present work, nor was it the same dis-
tribution that was later published. This indicates that they
discovered an error in that particular case, and suggests that some
of their other distributions may be incorrect.

Z. SU)kOWSkl~ Al'klV Fgslk 20( 269 (1961).

di@cuj.ties involved in unfolding the true angular
distributions from the raw data. Bcrgkvist'S4' E-shell
distributions for gold are in excellent agreement with
HNO, and his JI distributions are the same as his E
dlstrlbutlons) ln RgrccITleHt with oui results. Most of
these measurements are limited by experimental prob-
lems to 8&20'. Ke conclude that the available experi-
mental angular distributions show excellent agreement
with the theory for 8&20'. Extreme forward distri-
butions are not known well enough experimentally to
make reliable comparisons.

There are only two sources in the current literature
with which we can compare our polarization corre-
Iations. These are the numericaIIy computed corre-
lations of HXO and E2.' Both of these sources calcu1ate
the correlations for E shells only. Experimentally,
there have been investigations of the azimuthal asym-
metry of unpolarized photoelectrons from plane-
polarized photons, "from. which one could obtain Clo,

"K.K. Pergkvist, CRef. 41); see also, K. E. Bergkvist and S.
Hultberg, Arkiv Fysik 27, 321 (1964).

4' For more detail on these comparisons, see Chap. 12 of Ref. 8.
4' 1..%.Fagg and S. S.Bann.a, Rev. Mod. Phys. BI, 711 (1959),

pages 724-5.
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I IG. 5. Polarization"correlations Cag
for s, p~~m, and- pg~g subshells of tin for
4I2-keg lncldcnt radlatlon.

CL

80 lO0 )20
8 (d~g)

however, the data is contradictory. Other correlations
have not been investigated experimentally.

It is generally true of all of the present E-shell
correlations that they agree extremely mell with both
HNO and I'2. In addition the correlations for a given
z) kq I) and K werc thc same %'h.cn computed fol
different central potentials; i.e., they are independent
of scI'ccnlng. In general the correlations for states of
the same angular momentum K were essentially
identical for 10'&8&120'; slight deviations werc
noticed for 8&10' or 0& I20', but these could not be
measured experimentally with present techniques.
Thus, it appears that the normalization CBect is vahd
for polarization correlations in the main regions of
photoelectric emission.

Thc prcccding facts allow us to make siIDplifying
generalizations in a presentation of the data. We shall
label the states of diferent angular momentum by I,
II, III col'I'cspolldlIlg to s s'tRtcs (E& Lr& Mr)~ pl~2
StRteS (Lll~ Mzz), Rnd p3I2 StRtCS (Lzzz, Mzzz). One plot
of each C,; can represent all subshclls of angular mo-
mentum I, or II, or III. No distinction need be made
between screened or unscreened calculations.

Only a fcw representative graphs are presented to

indicate the shapes of some of these functions. Other
graphs and tables of such functions can be found in
HNO, I'2, and Ref. 8. We show Clo in Fig. 3, Csl in
Fig. 4, and C33 in Fig. 5, all for 412 keV x rays on tin.
The physical meaning of these and other correlations is
discussed ln I2 and Rcf. 8. Wc only Dlcntlon that Cqo

measures photocGect from linearly polarized photons,
Cey IQcasux'cs thc ploductlon of transversely polax'lzcd
photoclcctrons with circularly polarized photons and
C33 governs thc transfer of helicity from photons to
photoclectrons. For bound states with J=—' this must
hc +1 at t|=0, hilt fol' J)g lt ls Ilot 11111'ty, IlldlcatlIlg
incomplete forward helicity transfer for states of higher
angular momentum.
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