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Photoelectric cross sections for K through My subshells of iron, tin, and uranium have been numerically
computed for x rays from 412 to 1332 keV using a relativistic multipole expansion of the matrix element.
Electronic orbitals and partial waves were computed in the central-field approximation. Comparison of
screened withunscreened results shows that angular distributions and polarization correlations are essentially
unaffected by central-potential screening; total cross sections are merely renormalized by a factor equal
to the square of the ratio of screened to Coulomb bound-state normalizations. This normalization effect is
used to develop a table of realistic total cross sections for energies 10 to 3000 keV, and atoms Z=13 through
92. These predictions are compared with existing experimental data.

I. INTRODUCTION

HEORETICAL predictions for atomic photo-

electric cross sections require the calculation of
integrals over electron wave functions in the potential
which represents the atom. In the relativistic region
such calculations have usually been done numerically,
beginning with the work of Hulme, McDougall,
Buckingham, and Fowler! on K-shell total cross sections
for a few point-Coulomb model atoms (i.e., no electron
screening). Using modern electronic computers, these
results have been extended by Hultberg, Nagel, and
Olsson? and by Pratt, Levee, Pexton, and Aron.?
Alling and Johnson* obtained L-shell Coulomb cross
sections. More recently, cross sections in various
screened potential models have been reported by Hall
and Sullivan,® Matese and Johnson,® and Rakavy and

Ron.”
This paper® is a report of further numerical calcu-
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lations of photoelectric cross sections, following the
methods of P1, undertaken to understand the effects
of electron screening and the properties of emission
from higher shells. In particular we have verified the
argument that the only significant effect of electron
screening comes from the change in normalization of
the bound-state wave function®: Cross sections for
two atomic models vary as the square of the corre-
sponding bound-state normalizations. (This has the
consequence that angular distributions and polarization
correlations are essentially independent of screening.)
This result has been established for each subshell K
through My and for ranges of photon energy down to
about twice the binding energy. We are thus able to
compare with all previous work™ and to utilize this
“normalization effect” in constructing tables of total
photoelectric cross sections, by shells, for realistic
potential models in the range Z>13 and 10 keV<£<3
MeV.

In Sec. IT we summarize the mathematical formalism
for these calculations, and in Sec. III we discuss our
numerical methods. We do not attempt a complete
presentation, referring the reader to P1, but rather
give only as much of the theory and numerical methods
as are needed to understand the new features in this
work and to permit a discussion of our results. In Sec.
IV we present the results we have obtained for total
cross sections, differential cross sections, and polariza-
tion correlations. We use these data to demonstrate
that screening is a normalization effect; with similar
ideas we can also understand the relationships of cross
sections from states of the same angular momentum.
We then prepare tables of photoelectric cross sections
and compare these with theory and experiment,

9 R. H. Pratt, Phys. Rev. 119, 1619 (1960),
104
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II. MATHEMATICAL FORMALISM

Following P1 we write the differential cross section
for photoeffect as'

do/dQ= (27)2pe| H|?,

subject to energy conservation, where

(2.1)

H= 2nak™1)12 / & Y- € exp (k- 1. (2.2)

The initial electron wave is square normalized to unity,
and the final wave is asymptotically normalized to a
unit amplitude plane wave of 4-momentum (e,p) plus
an incoming spherical wave. The incident radiation is
specified by 4-momentum (kk) and 4-polarization
(0,e). Both ysin and yin are solutions of the Dirac
equation for a screened central potential.

The initial state is given by Eq. (2.10) in P1, and
the final state by Eq. (2.16) in P1. With the exceptions
that we use the phase shifts §; instead of &, and use K
for the bound-state “kappa’” quantum number, but
with all other notation the same as in P1, we have

Gr(")Qrru(?)
in= ) 2.3
(iFK(?’)QJL:M(f)> ( )
wd () %un)
Bx\" Nijim
=47 jm‘r‘ 4 N\1,—~ib1, . R
biamtr T [0l G016 (f o (f)) 2.4)

We insert (2.3) and (2.4) into (2.2), and choosing
the z axis along k, we obtain*

H(M)=A4n ()L 2nak™1)12

for e, =e,41¢,. Here we have explicitly displayed the
M dependence. The factor (3)* is a choice of the phase
designed to give real integrals later on. The functions
J+ (M) and K, (M) are complex scalar functions which
we call reaction amplitudes, after the definition of
Nagel?; we will write them out explicitly later.

The cross section is obtained for definite M by
putting (2.5) into (2.1). This gives bilinear products
of ey, and ey *, and also of the components of U, and
U4, These are combinations of the polarization
parameters® £ and §; (4, =0, 1,2, 3), as defined in

10 We use the unrationalized “natural” unit system, k=m
=¢=1. Hence e¢=a=1/137. We shall also continue to use the
notation of P1 and P2.

11 We use the coordinate system of P1:

=k, 9= (kXp) [kXp|™, £=9X2.

2 B, Nagel, Arkiv Fysik 18, 1 (1960). In this work, and other
works of HNO, the 2 axis is chosen along p, not along k. Thus,
the 4, B, C, D reaction amplitudes of HNO are related to our
J4, K by a rotation transformation.

13 The &; are Stokes parameters of the photon polarization. The
¢; define the direction of the electron spin n s rest frame.
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P1. The & and {p are both unity and give the only
contribution for unpolarized photon and electron beams
respectively. The algebra yields

do(M)/dQ= (47 peak™) 2 EEBiy(M),  (2.6)

where each of the sixteen B;;(M) is a bilinear function
of the reaction amplitudes. Our interest here is in the
cross section summed over all allowed values of M for
the given subshell, so we sum Eq. (2.6) over all M from
—J to 4 J. Eight of the 8;;(M) are even in M, and eight
are odd; so upon summation we are left with only eight
terms, which can be written as sums over positive M
only:

do/dQ= (8wpeak™) 3 £:{iBij 2.7

for
J
Bij= 2 Bu(M).
prom?

The eight nonzero B,; are given explicitly in terms of
the reaction amplitudes by Egs. (2.25) in P1, where
we understand that the right-hand side is to be summed
over positive M. For example,

Boo=MZ;EIJ.<M)I2+IK—(M>12+IJ+(MW
+ K. (0)|7].

The cross section (2.7) is for a general pair of photon-
electron polarizations specified by the §;, ;. For the
case of unpolarized photons and photoelectrons we
average over incident photons and sum over final
electrons to obtain

(do/d2) unpor= (16w peak™) Byy. (2.8)
We then rewrite (2.7) as
L—ig = <ﬁ) 32 £6iCa, (2.9)
dQ  \dY ynpo1 i

where the Cij(=Bi;/Bo) are called polarization cor-
relation functions.

The cross sections are given in terms of the reaction
amplitudes. We must write these amplitudes in terms
of quadratures suitable for numerical computation.
Carrying through the matrix multiplications and
angular integrations we obtain

J+(M)
(Ki( ):Z VR (M)Q1arr1(P)

2.10
M)/ x (210)

where
2
Rx:F (M) = Z QV:F (K)KyM)
y=1
X2 P (KM ;NS (KN, (2.11)
PN
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The functions on the right-hand side of (2.11) are!:
O1F (K, M) = +ne(— )MFL (20 +1) 2LA4-1) ]2
XCivus1 Crru*;
Q2" (K, M) = —nx (= 1) [ (204-1) 2L+ 1) ]2
XCimr1T Crrrm*;

Py¥ (kKM ; \)= () '+ (2A-1)
(l’ L >\>
0o 0 o

4 L A
{ S
—M+; MF; 0
PoF (k, K,M ; \)= (1) 2 (2A41)
l L X\ I L' X
“( G o o
—M+: MTF: O 0 0 0
S1(k,K; )\)=/ Fo(")Gx(7) jx(kr)ridr;
0
Sz(K,K;)\)=/ & (r)F(r) ja(kr)ridr. (2.12)
0

In (2.11) the summation over A, denoted by >/, is
carried from Amin t0 Amax 97 Steps of two, where

Amin=min[ |I—L'|,|/—L|],
Amax=max[ (I4-L), "'+L)].

We point out four properties of the Egs. (2.10)
through (2.12): (1) The RT(M) are real; (2) the
spherical Bessel functions in the .S integrals come from
the multipole expansion of exp(ik-r); (3) the sum in
(2.10) is over all k=1, &2, ---; (4) the R matrices
of (2.11) and the reaction amplitudes of (2.10) reduce
exactly to those in P1 when K=—1, M=% (ie., for K
shells).

Upon inserting (2.11) into the expression for (do)unpol,
and integrating over dQ(p), we obtain

Cunpor= (16w peak™)
X3 Y [REMP+R-O0F], (2.13)

x M=}

which agrees with P1 for K shells.

III. NUMERICAL METHODS

The problem of computing photoelectric cross sec-
tions has been reduced to computing the Q and P
factors and S integrals of (2.12). The Q and P factors
present no great problem. But the S integrals must be

14 The Csou® are the same as defined by Eq. (2.13) in P1
[However, there is a typographical error in that expression; the
sign of C* for J=L—% should be (=), not (+).] The Qs are
given by (2.12) in P1. The », and 7k are the negative of the sign
of the subscript (k or K), as defined in P1.
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obtained by numerical integration of the threefold
products of continuum wave functions, bound wave
functions, and spherical Bessel functions.

Spherical Bessel functions were obtained with the
method of Corbaté and Uretsky.!® The continuum and
bound radial wave functions were obtained by numerical

integration of the pair of equations:

d 14K
(d_+___>cx (N—[E+1+6¢()IFx(n)=0;
s ¥
(3.1)
d 1-K
(_+
dr 4

Equations (3.1) are written for the bound state (E<1).
The same equations hold for the continuum state,
except that we use g.(r), fc(7), k, and ¢(>1).

The function ¢(r) is just —V(r), where V is the
screened central potential for the atomic electron in
question. We have specified the screening by a factor
X(r), defined by

)FK<7>+[E—1+¢<r>JGK<r>=o.

o (r)=(a/r)X(r) (3.2)

for a=Za. In the present work we have made calcu-
lations for four different central potentials:

(3.3a)
(3.3b)

Coulomb, X(r)=1,
Thomas-Fermi, X(r)=®(aqr),

for  ¢=2[4/(3xZ)]3,

and  ®, the “universal TF function’6;
Kerner,! X(r)=[141.5250ZV3 ] 1; (3.3¢)
Yukawa, X(r)=exp(—Nr), (3.3d)

for  A=1.12a2Y3,

Values of N were taken from Matese and Johnson® in
an effort to reproduce their results as a check of our
program.

The bound states were computed from (3.1) with the
methods developed in P1. However, we required that
the relative variation of the binding energy, 6T/T
(rather than of the fofal energy, 6E/E) be small. This
provides a more sensitive measure of deviations which
is needed for the higher shells since the energy levels
become too closely spaced if measured by E instead of
T(=1—E). Also, it was necessary to use Coulomb-like
radial wave functions, which had the proper number of
nodes, to start the iteration scheme. (In P1 only the
nodeless K-shell functions were considered.) Finally,
due to instabilities in the integration scheme, we im-

1 [, J. Corbat6 and J. L. Uretsky, J. Assoc. Comp. Mech. 6,
366 (1959).

16 We used ® as given by V. Bush and S. Caldwell, Phys. Rev.
38, 1898 (1931). A more accurate tabulation is given by S.
Kobayashi, T. Matsukuma, S. Nogai, and K. Umeda, J. Phys.
Soc. Japan 10, 759 (1955).

17 K. H. Kerner, Phys. Rev. 83, 71 (1951).
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posed a cutoff on the calculated functions at a radius of
1.5 to 3 times the classical turning radius. Beyond that
point the functions were continued with their asymp-
totic approximations; the errors so induced in term
values and wave functions (where they contribute to
the integrals) are negligible.

The continuum functions were also computed with
methods developed in P1, but with some important
modifications. We first convert g, and f, to g, and f,,
which are finite at the origin:

ge(r)= g, (r),
L) =r=1),

v=[kt—a?]\2.

In P1 the first few points of §, and f, were obtained by
a Taylor series expansion about the adjacent preceding
point. [See Eq. (3.32) in P1.] However, we found it
more satisfactory to expand each point about the
origin. The coefficients of the expansion will of course
depend upon the choice of potential ¢(r). Although we
used a different formula for each potential, we found
that these differences cause insignificant deviations
from expansions using the pure Coulomb potential.
This is because near the nucleus the electron essentially
sees a strong unscreened Coulomb potential.

The power series expansion was used for the first
2|k| points, after which the integration was continued
by the Runge-Kutta method.!® Upon reaching the first
minimum of f(r), near r=|«|/p, we switched from
computing g, and f, to computing g, and f,, defined by

g8:(r)=prg.(r),
L =prf).

It is desirable to do this because these new functions
are asymptotically sinusoidal. The resulting numerical
integration will always be within machine limits and
thus requires no scaling factors as needed in P1.

The functions g,(r) and f,(r) are normalized with a
method which generalizes that of P1. If we assume an
approximate asymptotic form based upon a phase-
shifted free-field solution,

(3.4)

for

(3.5)

et+1712 .
g(r)=4 K[:—Z_i| prlcoséyj(pr)
€
+ (= 1)*sindeje1(pr)],
» (3.6

2e

172
:| prcosdeg1(pr)
— (= 1)*sindej(pr)],

J=4]

where

=8+ (x—1)ir,

18 See, for example, J. B. Scarborough, Numerical Mathematical
Analysis (Johns Hopkins University Press, Baltimore, Maryland,
1958), 4th ed., p. 317.
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then 4, and §; (or §,) are to be determined by matching
the right-hand sides of (3.6) with the numerically
computed g,(r) and f,(#) at some point 7, in the free-
field region of the atom. However, values of 7 for which
the integration of g, and f, is feasible without excessive
computation time are not sufficiently large: Applying
(3.6) we do not get constants 4, and §;, but some
functions 4 (r) and 6(r). Thus, a modification of (3.6)
is needed.

We observe that in P1 the argument of the trigono-
metric functions in (3.6) was nof just §,, but was actually
(8c+n In2pr), for n=ae/p. The distortion is due to
persistence of the Coulomb potential. Similarly here,
we change the argument to [8,4+Q(r)], where Q(r) is
yet to be determined. We now make the transformation

e+1
@m=Am[2

12
] sin[ pr—}ir+86(r)+Q ()],

€

and similarly for fe(r). Putting these into the equations
for g.(r) and fi(r), we obtain equations for 4 (r) and
6(r), and from these we deduce the asymptotic forms
for A(r) and 8(r):

Ind (r)~x(2pr)~' sin2 pr+const ;

3(r)~k(2pr)~! cos2pr—const
(3.7)

—HawfaoW—mn.

It is clear that we want 4 (r) — A4, and 6(r) — §; as
r— o, So if we set the first constant to In4,, and the
second to &;, then we see that for the Coulomb potential

@p)~t
00==p[  os=Gap) 12, (30
and for screened potentials

Q(r)=— (e/p)f o(s)ds. (3.8b)

With these choices In4 (r) oscillates about 4, and 8(r)
oscillates about §;, with amplitudes decreasing as 7,
and periods /3.

Thus if we use the approximate forms (3.6), but with
6.+ Q(r) replacing §, in the trigonometric functions, we
can obtain 4, and §; neglecting terms of O |«|/(2p70)],
where 7, is the matching point. However, we can do
even better if we average 4 (r) and &(r) over one (or
more) period(s). Doing so reduces the errors to
O[|x|/(4p*#)]. This averaging method was used in
our present work.’® We emphasize that Q(r), which we
call the phase correction integral, is extremely important,
being of order 0.1 to 1 rad in most of our cases.

¥ A more complete description of this method is found in Chap.
7 of Ref. 8.
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Having obtained 4, we normalized our computed
wave functions by dividing by it. These functions were
then combined with the normalized bound-state waves
and the spherical Bessel functions, and we numerically
integrated the .S integrals with Simpson’s rule. In the
present programs the integration grid was Ar=0.125/%,
so that Akr was constant. This enabled us to use stored
values of the j)(kr) rather than compute these each
time. The S integrals were combined with the Q and
P factors to give R matrices, and these were combined
to give amplitudes and cross sections.

We should finally discuss the accuracy of our nu-
merical methods. Errors in the calculations of wave
functions are discussed in P1, and present errors are of
the same order, <10~% Errors in Bessel functions,
associated Legendre polynomials, 3-5 symbols, etc. are
completely negligible. The two major sources of error
are (1) finite grid size in the S integration (histogram
error), and (2) truncation error due to limitation of the
number of «’s in the series (2.10) and (2.13).

To estimate the histogram errors in S integrals we
made tests during the early stages of this work. Various
grid sizes Ar ranging from 0.005 to 0.10 were used. The
results generally fluctuated by 0(0.19) for the grids
tested; a few R matrices changed by =19, when grid
sizes or integration techniques were altered. We esti-
mate that most of our integrations are accurate to
<19, probably =0.5%,.

The other major source of error, truncation, can be
tested by looking at the truncated sums oy, which are
just the series (2.13) for « running from —N to V.
The truncation error is 1—oy/0. Plots of this truncation
error decrease exponentially with N/p. This behavior
can be used to predict the number of partial waves
required to obtain a given accuracy for a specified
momentum p. Computer storage/time requirements
caused us to limit |«| <20. However, this was sufficient
to calculate total cross sections with truncation error
<0.19, in most cases. A few high-energy higher shell
calculations had truncation errors 0(0.5%). In the
important regions of photoelectron emission the esti-
mated truncation errors are 0(19,) for angular distri-
butions and polarization correlations.

The combined effects of all errors are estimated to
be <0.89, for total cross sections, with most of these
<0.5%, and 0(19,) for angular distributions and
polarization correlations.?

IV. RESULTS

A. Total Cross Sections

A separate numerical computation of the photo-
electric cross section is necessary for each choice of
photon energy, atomic number, subshell, and potential
model. We present in Table I the total cross sections

2 See further comments on errors in Chap. 10 of Ref. 8,
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Tasre I. Total photoelectric cross sections in barns as com-
puted in this work. Symbols C, TF, K, and Y refer to Coulomb,

Thomas-Fermi, Kerner, and Yukawa potentials.

Shell Z  keV a(C) (TF) a(K) a(Y)
K 26 412 .239 .
26 662 .0704 .
26 1130 .0222 . cee
47 2719 e . 10.4
47 354 oo cee . 5.39
50 412 4.73 4.56 . e
50 662 ves 1.41 . .
50 1332 0.340 0.327 . .
92 412 599 58.5 58.9 .-
92 662 e 19.8 20.0 20.1
92 1332 4.95 4.84 4.88 491
Ly 26 412 0.0321 0.0211 oo
26 662 0.00949 0.00626
26 1332 0.00219 e e
47 279 e 1.15
47 354 oo e 0.598
50 412 0.597 0.477 see
50 662 0.186 0.149
50 1332 0.0432 0.0346
82 103 160.0 oo
82 279 13.0 oo
92 412 e 7.12
92 662 2.45
92 1332 0.668 . 0.601 0.631
Ln 26 412 0.000625 0.000311 .
26 662 0.000160  0.0000803
26 1332 0.0000300 ces oo
47 279 cee 0.0905
47 354 ok oo 0.0431
50 412 0.0502 0.0352 see
50 662 0.0138 0.00962
50 1332 0.00275 0.00192
92 412 e 2.89
92 662 . 0.893 e .
92 1332 0.237 e 0.203 0.220
Lir 26 412 0.000911 0.000444 e
26 662 0.000243 0.000121 ..
47 279 e cee 0.108
47 354 e e 0.0505
50 412 0.0565 0.0392 see
50 662 0.0152 0.0106
50 1332 0.00322 oo
92 412 e 1.64
92 662 0.452 L
92 1332 0.112 . 0.0924¢ 0.102
My 26 412 0.00952 0.00279 oo
50 412 .- 0.0912
50 662 0.0286
92 412 ‘oo 1.61
92 662 0.781 oo
Ma 26 412 0.000219  0.0000375
50 412 e 0.00724
50 662 0.00198
92 412 cee 0.700
92 662 0.338 cue
Mmoo 26 412 0.000319  0.0000532
50 412 e 0.00812
50 662 0.00219
92 412 s 0.428
92 662 0.196 e
My 26 412 0.0000015 oo
50 412 cen 0.0000702
50 662 0.0000148
92 412 e 0.0217
92 662 0.0120 e
My 26 412 0.0000020 ‘oo
50 412 cee 0.0000792
50 662 0.0000190
92 412 ces 0.0193
92 662 0.0110 ves
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TaBLE II. Normalization effect error for Thomas-Fermi cross sections.

VA 26 50 92

Subshell\keV 412 662 1332 412 662 1332 412 662 1332

K —0.0076%  +40.0025*  —0.0028=b —0.0027 —0.0025 -+0.0016 +0.0014 —0.0007>  —0.0008

Lx +40.0084 +0.0042 oo —0.0024 —0.0043 —0.0047 —0.0175 —0.0131 cee

L +0.012 +0.0040 —0.0036 -+0.0035 -+0.0014 —0.0132+ —0.0143»

L +4-0.0265 —0.0006 —0.0083 —0.0132 e —0.0323=  —0.0145=

My +0.0026 cee v vee . —0.0122¢

Mn -+0.0048 —0.0172¢

M +0.0166 —0.0307¢

Myv s —0.0064¢

My —0.050°

a Coulomb cross sections taken from other sources.
b This point for 1130 keV.
¢ Thomas-Fermi cross sections from G. Rakavy and A. Ron.

in barns per atom obtained from about one hundred
such computations, each taking about five minutes of
computer time on Stanford’s IBM-7090. We chose
these cases to gain insight into the effects of central
potential screening, to study the relationships of cross
sections of various subshells, and to permit comparisons
with previous calculations. We shall look at these three
points in order; then we shall present tables of ‘“real-
istic” cross sections which combine the theoretical
results of this and other works.

In the absence of numerical results two approximate
methods to take account of screening effects have been
discussed. The best known method is to use the results
for Coulomb cross sections, but everywhere replacing
Z by Zess=Z—s, where s is a screening constant chosen
to produce observed binding energies from the point
Coulomb energy expression. It has been pointed out’
that this “effective charge” method fits the atomic wave
functions over the regions which give the main contri-
bution to the normalization integral, but at least for
energies well above threshold these are not the regions
important for the photoeffect matrix element. Con-
sequently the method is incorrect.

It has been argued® that for energies well above
threshold screening is simply a “normalization effect.”
The reasoning is as follows. First, the main region of
importance for the matrix element is the region of space
where r=0(1/A), A being the minimum momentum
transfer to the nucleus. For photon energies well above
threshold, A=0(1). Second, the bound-state wave
functions in the region »=0(1) are in the field of the
bare nuclear Coulomb potential and differ from exact
Coulomb wave functions in normalization only, not in
shape. Third, except at very low energies the con-
tinuum electron is not much affected (in shape or
magnitude) by screening at distances r=0(1), so the
final state can be approximated by an exact Coulomb
wave function. Similarly the shift in energy of ejected
electrons due to the shift in binding energy for a
screened bound state is negligible provided e—1>>a2
Thus the screened cross section should be proportional
to the Coulomb cross section for the same photon
energy, the constant of proportionality being the square

of the ratio of screened to Coulomb bound-state nor-
malization, independent of emergy. This we call the
normalization effect due to central potential screening.
We have used our data to test this argument. First
define
E= 1in(”)1 Gx*(r)/Gx°(r), 4.1)
which is the ratio of screened (s) to Coulomb (C)
bound-state normalizations for a given state K. If the
normalization effect works, then the product =2 (C)/

o (s) should be unity. We define the normalization effect
error NE(s) by

NE(s)=E%(C)/a(s)—1. (4.2)

Using our data we computed this error for several
cases, a few of which we show in Table II. These errors
are of the order of computational errors, indicating
that the effect works quite well for the Thomas-Fermi
potential. Similar results were obtained for Kerner and
Yukawa potentials.

In fact, the agreement is quite good even for energies
of the order of a few times the binding energy. At these
energies the continuum factor pe in (2.1) can change
by as much as 159, due to screening effects on the
bound-state energy. The continued agreement with the
normalization effect can be understood as follows. For
very low energies, and at distances »=0(1), the energy
dependence of a continuum Coulomb wave function is?
(pe), so |H|? varies as (pe)~'. But this is exactly
canceled by the factor (pe) in Eq. (2.1). Hence, for
low energies as well as high energies we get no variation
in cross section due to the change in energy of the
continuum wave. (It is known that for given p the
normalization of a continuum wave is uneffected by
screening down to very low energies.)

We conclude that it is possible to use &2 to account
for screening over a wide range of photon energies. For
example, using our values of &2, Alling and Johnson’s?
values of o(C), and Rakavy and Ron’s? values of

2 As p — 0, the normalization (at » =0) goes as [ | ek—+|/pe V2.
For p<a/|«| we neglect the variation of the numerator.
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Tasre III. Normalization effect errors (NE) for low photon
energies. Coulomb (C) data from Alling and Johnson; Thomas-
Fermi (TF) data from Rakavy and Ron; normalizations from the
present work. All data for Z=92.

pe(TF)

k -
Subshell (keV) NE(TTF) pe(C)
K 279 +0.0028 1.087
L 279 —0.0083 1.047
103 —0.0015 1.116
81 —0.0013 1.157
Lu 279 —0.0016 1.050
103 —0.0005 1.123
81 +0.0007 1.165
Lin 279 —0.0043 1.046
103 —0.0020 1.111
81 —0.0010 1.146

o(TF)2 we obtain the NE(TF) shown in Table III.
Also listed are the factors pe. Even though this factor
changes by 159, for 81 keV photons, the screening factor
E? gives correct results. So the normalization effect
works for photon energies as low as 250 keV for the K
shell of uranium (i.e., about 2Xbinding energy), and
as low as 80 keV for the L subshells. Perhaps the method
is valid at still lower energies, but present data is in-
sufficient to test this. Similar results were obtained for
the M shell and for lower Z.

These ideas can be extended to predict approximate
ratios of cross sections for states having the same
angular momentum K. This follows because in a given
atom the wave functions of same K, but different #,
are proportional in the important region r=0(1), and
the proportionality is independent of Z if relative 0(a?)
is neglected.’ Thus, for example, the ratios of Coulomb
cross sections from s states are given by the n-cubed
rule,

o(K):o(Ly)io(Mp):a(Np)=1:(1/8): (1/27): (1/64),

where relative O(a?) is neglected, independent of %.
However, the Z dependence of O(a?) is not negligible
in heavy elements, being 109, to 309, for uranium.®
From the success of the normalization theory of
screening, it is clear that these results will also hold
in screened potentials: Present calculations indicate
that the ratios of screened cross sections for same K
are indeed independent of k to within 0(1%) over the
energy range tested, 400 to 1300 keV.

With the normalization effect we are able to convert
screened cross sections into Coulomb cross sections and
vice versa, and so we can make comparisons with other
calculations. We agree with the data of P1, HNO,
Alling and Johnson, Hall and Sullivan, and Rakavy
and Ron to within 0.8, for all points compared, with
the exception of the L; results for Coulomb potential,

22 We use the notation: C=Coulomb; TF=Thomas-Fermi;
K =XKerner; Y=Yukawa. . .

2% For a more detailed discussion of this effect see Sec. 11.5 in
Ref. 8.
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Z=282, k=103 keV. This energy is below the limit
required for good accuracy of our program, so we
suspect that Alling’s result (153.9b) is better than ours.
With this exception we are in excellent agreement with
all these calculations. However, we do not agree with
the results of Matese and Johnson, as shown in Table
IV, and we believe their results are incorrect. Matese
and Johnson did not use a screened bound-state wave
function, but instead used a Coulomb-like analytic
function and varied some of the parameters until it
gave the proper experimental binding energy. As with
the Z; method this need not give the correct wave
function in region of importance for the photoeffect,
namely r=0(1).

By combining previous work?=%7 with our present
data, incorporating the normalization theory to fill in
gaps and estimate higher shells, we have calculated a
set of cross sections for a ‘“‘realistic” screened potential.
The “realistic” screened potential which we used is the
relativistic Hartree-Fock-Slater potential computed by
Liberman, Waber, and Cromer,* which we call the
LWC potential. From their bound-state functions for
the various subshells of several atoms we obtained
values of Z% These ratios were multiplied by Coulomb
cross sections, either calculated or interpolated, re-
sulting in predictions of what would be obtained by
direct calculation using the LWC model. We present
results for the K shell in Table V, and for the total
atom in Table VI. Not shown are similar results for
Ly, Lrry Lirr, L, M, and estimates for N4+0+4-: .2
The data in Table V are believed accurate to <0.1%
for Z>20, and =0.59, for Z=13. Estimated errors
for Table VI are £0.5%, for Z>20 and £<1332 keV.
For Z=13 the errors may be 29,; for £>1332 keV the
errors may be 19, to 2%,.

TasLE IV. Comparison of Yukawa cross sections as calculated by
Matese and Johnson (M&]) and the present authors (S&P).

o (S&P)

k ¢ (S&P) o (M&]J) ———

VA Subshell (keV) (barns) (barns) s M&J)
47 K 279 10.38 10.21 1.0167
47 K 354 5.393 5.283 1.0208
47 Ly 279 1.155 0.9740 1.1858
47 Ly 354 0.5980 0.5100 1.1725
47 L 279 0.09047 0.0720 1.2565
47 Lt 354 0.04311 0.0340 1.2679
47 L 279 0.1077 0.093 1.1581
47 L 354 0.05046 0.044 1.1468
92 K 662 20.13 20.04 1.0045
92 K 1332 4.905 4.884 1.0043
92 Ly 1332 0.6307 0.6140 1.0272
92 Ly 1332 0.2195 0.2050 1.0707
92 L 1332 0.1015 0.0980 1.0357

2D, Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev.
137, A27 (1965). We wish to thank Dr. Liberman for kindly
making available to us several listings of bound-state functions.

%5 A complete set of tables for all of these subshells and shells is
given in Lockheed Rept. No. LMSC 5-10-67-11 Suppl. A, available
in limited supply from the authors. All results are also in the
dissertation, Ref. 8.
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Tasre VII. Comparisons of experimental total atomic photo-
effect cross sections with predictions of the present work. Experi-
menters are (I) Titus, (II) Parthasaradhi et al., (III) Latyshev,
and (IV) Colgate.
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TasLE VIII. Comparisons of experimental K-shell cross sections
with predictions of the present work. Experimenters are (I)
Missoni, (II) Seeman, (III) Bleeker e al., (IV) Latyshev, and
(V) Hultberg and Stockendal.

Exp. value Exp. value
Experi- Photon  Exp. value  Predicted ——  Experi- Photon  Exp. value  Predicted ————
menter Z (keV) (barns) (barns)  Predicted menter Z (keV) (barns) (barns) Predicted
I 29 662 0.1254-0.009 0.133 0.944-0.07 I 79 662 10.2 +0.03 10.44 0.984-0.03
I 42 662 0.700+0.016 0.735 0.95+0.02 IT 82 511 23.4 0.7 22.06 1.064-0.03
I 47 320 7.65 +£0.46 7.96 0.9640.06 IIT 82 1332 3.2440.13 2.94 1.1040.04
I 47 662 1.1984-0.028 1.227 0.9840.02 v 82 2620 1.0440.42 1.09 0.95+0.4
II 50 320 102 0.6 10.43 0.984-0.06 111 82 2754 0.93+4-0.07 0.85 1.09-£0.07
1 50 2620 0.11 +0.03 0.123  0.8940.27 \Y 92 1172 7.2 +£0.5 6.16 1.1740.08
I 73 662 8.55 +0.14 8.90 0.964-0.02 A% 92 1332 5.4 +0.3 4.84 1.12+0.06
I 73 2620 0.47 =£0.05 0.657  0.7240.07
} ;g 223(2) 1(1)21 ::tg(l)g 1(2)836 82(2)i88é (F;;Pdl;i)s. value was obtained by multiplying Latyshev’s o4 by his values of
11 8% 2320 7?.5 :i:g.6 8?(6) (l)ggigog
IIT 8 620 3 +041 .08 .2040.3 .
v 92 412 732 +0.2 73.5 1.00+0.00 smaller than Hultberg’s but our ¢(K)/o(L) ratios are
v 92 662 249 +0.2 24.8 1.0040.01  the same.
I 92 662  23.9= 24.8 0.96 .
v 92 1332 59 =+0.1 5.08 0.99-£0.02 We know of no other direct measurements of absolute

a This figure was obtained by S. Hultberg from data of W. F. Titus, and
appears in Arkiv Fysik 15, 307 (1959).

In Table VII we compare our predictions for total
atoms with the experiments of Titus,? Parthasaradhi
et al.?” Latyshev,?® and Colgate.®® The data of Titus
are consistently below the present calculations, usually
not even within the stated limits of experimental error.
The results of PL]J are in agreement with us for Z=47
and 50, but for Z=282 there is wide discrepancy. We
agree quite well with Latyshev and with Colgate. In
Table VIII we compare K -shell predictions with experi-
ments of Missoni,? Seeman,®! Bleeker et al., Latyshev,?
and Hultberg and Stockendal.®® The predicted values
are always too small for the data of Seeman, Bleeker
et al., and Hultberg and Stockendal. It is not likely
that our K-shell predictions could be too small while
our total-atom predictions are too large, as would be
the case if we accepted Titus’s data as correct. Such a
situation could be explained only if our predictions for
higher shells were much too large. To see whether this
could be the case we look at ratios ¢(K)/a(L), o(K)/
o(M+---),0(L)/o(M+--+), and o (K+L+M+---)/
o(K), which Hultberg®® measured for uranium with
photons between 412 and 1332 keV. He found nearly
k-independent values of 5.34:0.2, 13.94-0.7, 2.62-0.15,
and 1.26+0.01 respectively. Our predictions are
5.354+0.21, 16.941.2, 3.160.10, and 1.2454-0.013.
This indicates that our M+ --- contributions may be

26 W, F. Titus, Phys. Rev. 115, 351 (1959); Bull. Am. Phys.
Soc. 4, 269 (1958) ; Nucl. Phys. 69, 179 (1965).

27 K. Parthasaradhi V. Lakshminaryana, and S. Jnananda,
Phys. Rev. 142, 9 (1966). Hereafter we shall call this PLJ.

28 3, D. Laytshev, Revs. Mod. Phys. 19, 132 (1947).

2 S, A. Colgate, Phys. Rev. 87, 592 (1952).

3 G. Missoni, Report ISS 65/11, Istituto Superiore di Sanita,
Roma, Italy (unpublished).

31 K, W. Seeman, Bull. Am. Phys. Soc. 1, 198 (1956).

2 E. J. Bleeker, P. F. A. Goudsmit, and C. De Vries, Nucl.
Phys. 29, 452 (1962).

% S, Hultberg and R. Stockendal, Arkiv Fysik 15, 355 (1959).

photoelectric cross sections. However, we can estimate
“measured” cross sections by subtracting scattering
(coherent and incoherent) from measurements of total
x-ray attenuation. Wiedenbeck?® measured attenuation
in lead at 50, 1035, 208, and 412 keV, yielding photo-
effect components, by subtraction,® of 2335, 1484, 260,
and 45.3 b, respectively. We predict 2531, 1606, 264,
and 45.3 b. Agreement is good for the higher energies,
but as K-shell threshold is approached the disagreement
becomes 0(109%,), due in part to inaccurate scattering
cross sections near threshold. A similar analysis of the
data of Deutch and Metzger® gives 11343 b for 279-
keV photons on gold. Our prediction is 116 b, in agree-
ment. Finally, a few comparisons have been made with
the recent compilation of experimental data by
McMaster et al.®” These comparisons indicate agree-
ment of present theory with experiment to within 29,
over a wide range of known cross sections.®

In addition to absolute cross sections we can compare
relative cross sections and ratios for different states,
atoms, or energies. Hultberg’s experiment has already
been discussed. Latyshev?8 gives K /4 ratios® for Z=173
and Z=382 at 2.62 MeV; these are 0.8154+0.035 and
0.80+0.035, respectively, to be compared with our
values of 0.844 and 0.842. He also gets K/L ratios of
5.4 and 4.9, where we predict 6.5 and 6.0. These 209,
discrepancies help to explain why our K /4 ratios differ
from his. Latyshev also measured the proportions
04(Z=29):04(Z=47):04(Z="13):04(Z=82) at 2.62
MeV, and he found them to be (140.2):(9.5+1.1):

3 M. Wiedenbeck, Phys. Rev. 126, 1009 (1962).

35 We use scattering cross sections from G. W. Grodstein, U. S.
Dept. of Commerce, NBS Circ. No. 583, 1957 (unpublished).

38 B, I. Deutch and F. R. Metzger, Phys. Rev. 122, 848 (1961).

37 W. H. McMaster, N. Kerr Del Grande, J. H. Mallett, N. E.
Scofield, R. Cahill, and J. H. Hubbell, University of California
Lawrence Radiation Laboratory, Report No. UCRL-50174-II.
1967 (unpublished).

38 W. H. McMaster, N. Kerr Del Grande, J. H. Mallett, N. E.
Scofield, R. Cahill, and J. H. Hubbell, (private communication),

8 Letter A represents total atomic cross section.
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TaBLE IX. Comparison of relative cross sections of Bergkvist ver-
sus present theory. These data are for Z=79, k=412 keV.

Function Bergkvist Present theory
ox/oL 5.7 +£04 6.11
ox/o11 8.5 +£0.5 8.73
oL/ 0.30+0.03 0.251
oLm/o L 0.18+0.02 0.179
(O'L, +o1m)

_ 7.2 +0.8 6.97
O Lix

(74£8): (120411). Present theory predicts propor-
tions of (1.12): (10.1): (72.1): (120), in good agreement.
Several ratios have been experimentally determined
by Grigor’ev and Zolotavin.® For example, they give
K/L and K/A for 603 keV photons incident on Pt,
these ratios being 0.0584-0.005 and 0.8184-0.02.
Present theory predicts 0.062 and 0.827. Also their
value of (Li+ Li)/Lux for 265 keV photons on Bi is
5.040.5, and our prediction is 5.48. Bleeker ef al.?2 have
measured the K-shell cross section of Pb at 2754 keV
compared to 1368 keV. They report a ratio of 0.304:0.02
as compared to our theoretical value of 0.304. A recent
experiment by Bergkvist® has yielded cross section
ratios for gold at 412 keV. These are summarized in
Table IX. Agreement with our theory is again excellent.
We conclude that to the extent that experimental results
are consistent we are in agreement with them. There
seems to be no reason to question present theory until
the experimental situation is clarified. For now, our
tables should provide a satisfactory tabulation of photo-
effect cross sections in the ranges indicated.

B. Angular Distributions and Polarization Correlations

We define normalized angular distributions as
™ 1(do/dQ)unper. These were computed for each of the
hundred cases listed in Table 1.2 If screening is a
normalization effect, we expect that the normalized
angular distribution should be essentially unaffected
by screening. Significant deviations of screened from
unscreened results were seen only for extreme angles,
low energies, and high shells. Analytic comparisons
were made by computing rms deviations of shape
between the several screened results and the Coulomb
results. These rms errors were 0(29) for 412 keV,
0(19,) for 662 keV, and 0(0.5%) for 1332 keV. Thus,
the normalized angular distributions are not much
affected by central potential screening. In the following
discussion we shall not specify the potentials since all

W E. P. Grigor’ev and A. V. Zolotavin, Zh. Eksperim. i Teor.

l(*‘ 1253)6:I 393 (1959) [English transl.: Soviet Phys. —]ETP 9, 272
1959

1K, E. Bergkvist, Arkiv Fysik 27, 483 (1964).

‘2 Complete tables of calculated angular_ distributions and
polarization correlations are given in Appendix E of Ref. 8, and
in Lockheed Report No. LMSC 5-10-67-12, available in limited
supply from the authors.
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F16. 1. Normalized photoelectron angular distributions for K, L1,
and M subshells of uranium for 412-keV incident radiation.

give essentially the same results. In Figs. 1 and 2 we
show typical examples of these shapes, all computed
for Z=92 and k=412 keV. In Fig. 1 the K, L1, and M;
are essentially coincident—a manifestation of the
normalization effect for subshells of same K. The Ly
and M shapes in Fig. 2 are the same for 6>20°, but
differ slightly for 6<<20°. We see similar behavior for
Ly and Myyr subshells, but with somewhat greater
deviations from coincidence. The saddle in the My
shape seems to be a real effect which was computed for
several cases.
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F16. 2. Normalized photoelectron angular distributions for Ly,
Ly, My, Mo, My, and My subshells of uranium for 412-keV
incident radiation.
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F16. 3. Polarization correlations Cio
for s, p12, and psje subshells of tin for
412-keV incident radiation.
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Fi16. 4. Polarization correlations Cyy
for s, P12, and pye subshells of tin for
412-keV incident radiation.
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The angular distributions computed in the present
work can be compared with a few sample calculations
by others. Our K-shell distributions are identical with
those of P1 and HNO. However, we disagree with the
L-shell distributions of Alling and Johnson* For
example, the dotted line in Fig. 1 indicates their result

for L;, and it is obvious that there is a systematic’

difference between curves.® In view of our agreement
with P1 and HNO, and the agreement, as expected,
between K and L, we believe that Alling’s distributions
are slightly in error. However, his total cross sections
are correct.

We cannot directly compare our distributions with
experment, since our choices of Z and % are not found
in any published experimental study of distributions,
but we can point out indirect comparisons. Experi-
mental work on uranium by Sujkowski* compares well
with K-shell predictions of HNO, considering the

4 An early version of Alling and Johnson’s article contained
a K distribution for uranium at 412 keV which did not agree
with P1, HNO, or the present work, nor was it the same dis-
tribution that was later published. This indicates that they
discovered an error in that particular case, and suggests that some
of their other distributions may be incorrect.

4 Z. Sujkowski, Arkiv Fysik 20, 269 (1961).

140 160 180

difficulties involved in unfolding the true angular
distributions from the raw data. Bergkvist’s®® K-shell
distributions for gold are in excellent agreement with
HNO, and his L; distributions are the same as his K
distributions, in agreement with our results.# Most of
these measurements are limited by experimental prob-
lems to §>20°. We conclude that the available experi-
mental angular distributions show excellent agreement
with the theory for 6>20°. Extreme forward distri-
butions are not known well enough experimentally to
make reliable comparisons.

There are only two sources in the current literature
with which we can compare our polarization corre-
lations. These are the numerically computed corre-
lations of HNO and P2.? Both of these sources calculate
the correlations for K shells only. Experimentally,
there have been investigations of the azimuthal asym-
metry of unpolarized photoelectrons from plane-
polarized photons,*” from which one could obtain Cjo;

4% K. E. Bergkvist, (Ref. 41); see also, K. E. Bergkvist and S.
Hultberg, Arkiv Fysik 27, 321 (1964).

46 For more detail on these comparisons, see Chap. 12 of Ref. 8.

4 L. W. Fagg and S. S. Hanna, Rev. Mod. Phys. 31, 711 (1959),
pages 724-5.
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Fic. 5. Polarizationcorrelations Cs3
for s, 172, and ps/s subshells of tin for
412-keV incident radiation.
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however, the data is contradictory. Other correlations
have not been investigated experimentally.

It is generally true of all of the present K-shell
correlations that they agree extremely well with both
HNO and P2. In addition the correlations for a given
Z, k, n, and K were the same when computed for
different central potentials; i.e., they are independent
of screening. In general the correlations for states of
the same angular momentum K were essentially
identical for 10°<0<120°; slight deviations were
noticed for §<10° or 6>120°, but these could not be
measured experimentally with present techniques.
Thus, it appears that the normalization effect is valid
for polarization correlations in the main regions of
photoelectric emission.

The preceding facts allow us to make simplifying
generalizations in a presentation of the data. We shall
label the states of different angular momentum by I,
II, III corresponding to s states (K, Lr, Mr), pys
states (L1, M), and pgs states (Lirr, M1ir). One plot
of each C;; can represent all subshells of angular mo-
mentum I, or II, or III. No distinction need be made
between screened or unscreened calculations.

Only a few representative graphs are presented to

60 80
8 (deg)

100 120 140 160 180

indicate the shapes of some of these functions. Other
graphs and tables of such functions can be found in
HNO, P2, and Ref. 8. We show Cyp in Fig. 3, Cs in
Fig. 4, and Cs; in Fig. 5, all for 412 keV x rays on tin.
The physical meaning of these and other correlations is
discussed in P2 and Ref. 8. We only mention that Cyo
measures photoeffect from linearly polarized photons,
Cs1 measures the production of transversely polarized
photoelectrons with circularly polarized photons, and
Css governs the transfer of helicity from photons to
photoelectrons. For bound states with J=% this must
be +1 at =0, but for J>3$ it is not unity, indicating
incomplete forward helicity transfer for states of higher
angular momentum.
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