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A theory of the electron mobility in compensated semiconductors for ionized-impurity scattering is
developed. It differs from the existing theory due to Brooks and Herring in that it avoids the expansion
of Fermi functions in powers of the electrical potential over the temperature. The mobility depends es-
sentially on the pair correlation function between acceptors and donors. A simple model for this correlation
is presented as an example, and an attempt is made to extract the pair-correlation function from the experi-
mentally measured values of the mobility. Strong screening and antiscreening effects are obtained from

an analysis of the experiment.

1. INTRODUCTION

HE electron mobility in doped semiconductors,
mostly Ge and Si, has been the center of atten-
tion of many investigations,® both experimental? as well
as theoretical,®® in the last twenty years. In particular,
the influence of ionized impurity scattering on the
motion of the electrons has been the subject of the now
classical papers by Conwell and Weisskopf,® Brooks,+4
and Herring.!5 In all cases mentioned above, the scat-
tering potential due to all the ionized impurities is ap-
proximated by the superposition of Coulomb potentials
of point charges in a dielectric, continuous medium.
However, since the total scattering cross section of a
Coulomb charge diverges due to the long-range char-
acter of the potential, proper care should be taken in
screening the ‘“bare” charge or introducing otherwise
suitable cutoffs. In the first paper on the subject?, the
differential cross section was cut off at a given angle
corresponding to an impact parameter equal to half the
averagedistance between neighboring scattering centers.
The approach of Brooks* and Herring® is more ac-
curate and consists of letting the carriers and ionized
impurities redistribute themselves in such a way so as
to produce mutual screening. Since our theory is es-
sentially an extension of that of Brooks and Herring,
which can be applied to compensated semiconductors
at low temperatures where the original treatment fails,
it is important for our purposes to review the salient
features of their calculations and to show explicitly
where their approximations break down.
Let us consider a compensated semiconductor with

* Work supported in part by the National Science Foundation
and the Air Force Office of Scientific Research.

t Alfred P. Sloan Research Fellow.

1 For a review of the field, which includes many important con-
tributions see e.g., F. G. Blatt, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957).
Vol. 4, p. 200; E. G. S. Paige, in Progress in Semiconduciors,
edited by A. F. Gibson and R. E. Burgess (John Wiley & Sons,
Inc.,, New York, 1964), Vol. 8; H. Brooks, Advan. Electron.
Electron Phys. 7, 85 (1955).

2 M. Cuevas, preceding paper, Phys. Rev. 164, 1021 (1967),
referred to as I; many other references are quoted there.

3 E. M. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).

4 H. Brooks, Phys. Rev. 83, 879 (1951).

8 C. Herring (unpublished results).
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Np donors and IV 4 acceptors per unit volume, such that
Np>Ny.

The following notation is used throughout this paper:
Npt[N 4~ ]averagedensity of ionized donors [acceptors],
No(r)[Ma(r)] local density of donors [acceptors],
Npt@E)[Ma—(x)] local density of ionized donors
acceptors], #. average density of electron carriers in
the crystal, 97.(r) local density of electron carriers, e
(negative) charge of the electron, ¢(r) self-consistent
electric potential in the crystal, { Fermi level measured
from the bottom of the conduction band, ep(e4) energy
of the donor (acceptor) level measured from the bottom
of the conduction band, k¥ macroscopic dielectric con-
stant of the crystal, m* effective mass of the electron
carriers, @ volume of the sample. The electron carriers
are scattered by the potential ¢(r) which satisfies
Poisson’s equation

Vo= (4me/k)[IMe(r)+Ia~(1) —9pH(r) ], (1.1)

where, according to the well-known statistical formulas,®

f)"(,,(r)= ze ’ (1.2)
1+-exp{[ee(r)—{/ksT)
MNa(r)
()= u (1) — , (1.
Na (1) =9 (r) 143 exp{[i—eateod) ) 2aT) (1.3)
N p+(r) =N (1) — o -(1.4)

143 exp{[ent+eo(r)—{1/ksT}

If Eq. (1.1) is solved for ¢ (r), the matrix element for
electron scattering is then given by

MkK)=(e/Q2(k—k), (1.5)

where ®(k) is the Fourier transform of o(r). If the
electron carriers are assumed to have a parabolic
isotropic dispersion law

e(k) = 12/ 2m* (1.6)

¢ See, for instance, J. P. McKelvey, Solid-State and Semiconduc-
tor Physics (Harper & Row, New York, 1966), p. 271.
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the relaxation time 7 then is given by’
1 m*kQ
T

B 2 hd

/ M) (1 — cos@)d(cos®), (1.7)

where © is the angle between k and k’. Finally, the
mobiltly is obtained by the usual formula.’

we=(2|e|/3m*ksT){er(e)), (1.8)

where the angular brackets symbolize an average over
the electron distribution in energy

<f(6))5/ f(eo(e) exp(—e/kBT)de/

/ o(e) exp(—¢/ksT)de. (1.9)

Consequently, the object of any theory is the cal-
culation of the self-consistent potential ¢(r), as given
by the Egs. (1.1)-(1.4).

The approximation used by Brooks and Herring
consists of expanding the right-hand side of (1.1) in
powers of [eo(r)/ksT] as well as in powers of the de-
parture of the local densities from their average values

[9a(®)—Na]l,
[ERD(I)_IVD]’

and keeping only terms linear in these three quantities.
When this procedure is followed and charge neutrality

is invoked,
net+Ns——Npt=0, (1.10)

a straightforward calculation yields for the matrix

elements
4mre

| (k=) |2= ’M(">‘2=§13(72)2

47|'2 —2
e A RCSCR IR ED
T

kkp

where ¢=k—k’ is the Fourier conjugate variable of r,
ns=netmetNa)[1—m+Na)/Np], (1.12)

F 4~ and Fp* are the Fourier transforms of the functions
[E)”LA(r) '—NA]NA—/NA and [Slp(r) —“ND]]\TD+/./\/TD re-
spectively, and the double angular brackets indicate the
ensemble average over the distribution of impurities.
In addition, if complete randomness is assumed,
N4 Q
Fa(0)= ZZ exp(—io 1), (1.13)
=1

N. 1>+ﬂ

Fpte)= X exp(—io-1:),

=1

(1.14)

7 See e.g., Ref. 6, p. 313.
8 See e.g., J. M. Ziman, Electrons and Phonons (Clarendon Press,
London, 1960), p. 424.
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{(JFa(@]H)=N410, (1.15)
{|Fpt(e)|®))=Np*Q, (1.16)
((Fp*(@)Fa*(0)))=0, (1.17)

and, since at ordinary temperatures for an #-type semi-
conductor N 4= N4, a final result is obtained

1 /4me?\ ? 4re? 2
IM(o)l2=—<—> [aur———n,,] (2N g+ne), (1.18)
Q K K BT

which yields for the mobility
272312k g T)3 %2 | e | =m* 122N 440, ]
wr=
In(145)—b(1+0)7

, (1.19)

where
b=[6x(kpT)*m* /me*h’n, ]. (1.20)

Formulas (1.1) to (1.20) constitute in essence the
theory as originally developed for only one kind of im-
purities* (donors) and extended to include both majority
(donors) and minority (acceptors) impurities.! The most
drastic approximation made in this approach is the
linearization of Eqs. (1.2)-(1.4) coupled to the assump-
tion of random distribution in the calculation of the
ensemble averages.

The linearization of the source term in Poisson’s
equation is equivalent to an expansion in ep(r)/ks7. It
is thus evident that this approximation is valid if the
electric potential resulting from the ionized impurities
is small compared with the thermal energy. This condi-
tion is satisfied in two cases:

(a) at high enough temperatures for any kind of im-
purity content;

(b) at all temperatures for semiconductors doped
with only one kind (donors) of impurities.

In the latter case, as the temperature goes down the
thermal energy decreases linearly with 7" while the num-
ber of ionized impurities (equal in this case to the num-
ber of carriers) decreases exponentially with 7', so that
the ratio e¢(r)/ksT remains always small.

In the caseswhich are of interest to us, as 7" approaches
zero the average density of ionized minority impurities
N 4~ remains finite and equal to N4; the number of
carriers 7, decreases exponentially to zero and, due to
requirements of charge neutrality, the density of ionized
majority impurities Np* approaches the same value,

%)

lim ND+=NA.

T-0

(1.21)

Under such circumstances the electric potential ¢(r)
remains finite and large at very low temperatures, and
the linearization of Poisson’s equation to first-order
terms in eo(r)/ksT becomes meaningless.

In Sec. 2 we propose a modification of the existing
theory which is valid in the limit of low temperatures
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in the compensated case. This theory is compared with
experiment in Sec. 3, where general conclusions are
also drawn.

2. MODIFIED THEORY AND SIMPLE MODEL

In this section we propose to solve Poisson’s Eq. (1.1)
without resorting to an expansion in a series of
eo(t)/kpT. We rather consider the distribution of
carriers 97.(r), ionized acceptors 914—(r), and ionized
donors 9 p*(r), as actually “frozen” in the configuration
of minimum electrostatic energy, but, on the other
hand, we take fully into account the statistical correla-
tions between charges. This correlation provides the
necessary ‘“‘static” screening of the individual charges
and eliminates the unwanted divergences of the
Coulomb interaction. In this respect our theory re-
sembles the classical Debye-Hiickel theory of electro-
lytic solutions.

We think of our system as composed of three species
in a continuous dielectric medium:

(1) electrons, whose coordinates are given by x; ,
1=1,23,- - nL;
(2) ionized acceptors, with coordinates y; ;

1=1,23,---N4Q;
and
(3) ionized donors, with coordinates z,,

s=1,23,---NptQ.

In general, charge neutrality requires
Npt=Na+mn.,

and the existing concentration of impurities is such that

N4a<Npt<Np. (2.2)

(2.1)

At low temperatures and for compensations
K=N4/Np (2.3)

not too small, the number of carriers is much smaller
than the number of acceptors, and consequently it is a
good approximation to assume that only two species
are present, and that

ne=0, Npt=N,4. (2.4)

The solution of Poisson’s equation proceeds now as
follows. We write

WA’(Y)=>; 6(r-Yz)=Z; explio-(r—y)] (2.5)

and similarly for the donors and electrons. If we now
take the Fourier transform of (1.1), we obtain

4
020(0) = — HS" explio-x1+3 explioy1]
K 13
—2_ explio-z,]}, (2.6)
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and with the use of (1.5) and the ensemble averages,
the square of the matrix element is given by

22

4ren? 1
IO = (=) ——(( T explio- (-5 1)

K

+( lZ exp[io+ (y1—ym) 1))+ Z; explio- (z:—2)]))
+( Zl 2 cosLo+ (xi—y2) 1) —(( 2 2 cos[o- (xi—2,)]))
—( fl.: 2 cos[o+ (i—z) )} . (2.7)

In the Appendix we introduce pair-distribution func-
tions and pair correlation functions, and, by assuming
that charge distributions of the same species are uncor-
related, we arrive at the following result, valid for 6540

|M<k,k'>|2=(4—”-e—2)2—1—

k / Qo*
X {n,,+]\74+ND++2n3NADeA(a,T)
'—'2%.;N1)+D3D(0',T)—ZZVA]VD"‘DAD(O’,T)} 3 (2.8)

where the three functions D(e,T) ate directly connected
with the Fourier transform of the pair correlation func-
tions. At this point it is important to point out that if
correlations are neglected, i.e., if we take D(s,7)=0,
(2.8) yields a divergent cross section for scattering due
to the ¢ factor in the matrix element. The limiting
behavior of the D functions as ¢ approaches zero
guarantees, for any type of distribution, convergence
in all integrals involved in the calculation of the
mobility. Physically this means that in the long-wave
limit ¢— 0, the carriers and the impurities as well as
the impurities among themselves screen each other so
as to look like a neutral system. This is reflected in the
vanishing of the bracket in the right-hand side of (2.8)
in that limit.

If the number of electrons is small and can be neg-
lected, the use of (2.4) yields for the bracket in (2.8)

2N A[1—=N4Dap(s,T)] (2.9)

which, by taking, for example, the temperature in-
dependent exponential distribution discussed in the
Appendix [formula (A29)7], reduces to

2N 4[0*(2a*+0%)/(a?+0?)?], (2.10)
where @, a function of N4 and Np, is given by
@*=8r(Np—Nya). (2.11)

In general, we could express that bracket by an ex-

pression of the form
ZZVAF(O‘,ZVA,]VD,T] N (212)

where F is a dimensionless function of ¢ which vanishes
a o approaches zero. If F is known, the rest of the cal-
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culation proceeds as before, i.e., it is necessary to cal-
culate the relaxation time by integrating, as in (1.7),
over the angle © and calculate the mobility, as in (1.8),
by computing the average over the electron energy
distribution (1.9).

As an example of the kind of effects involved here,
we work out in detail the exponential distribution
and calculate the resulting mobilities. By making the
substitutions

2x=1-—cos®, (2.13)
o=4h%, (2.14)
n=4k%"2, (2.15)

and replacing (2.10) and (2.8) in (1.7), we obtain fo
the relaxation time

1 m*Na/dme\2 1 n
_z__~<*_~> —{ln(l-l-n)-l——*—}- (2.16)
T 4ahd K k3 1+77

The factor %? constitutes the most important energy
dependence of 7; the factor [In(14-n)+5(1+9)"1] " is
also energy-dependent but very weakly so. Following
the usual practice of taking the latter outside the
integral over the energies and replacing for %4 in 5 the
value where the remaining integrand takes its maxi-
mum value,? we obtain for the mobility

27125812 p T)3/%2 [ e i 3 *—LI2(QN 4)
In(1+4n6)+no(14-10)~*
6(ksT)m*

no:,rzlshz(]\rl)_NA)zls ’

M= , (2.17)

where
(2.18)

which differs from the Brooks and Herring formulas
(1.19)=(1.20) in the sign of one of the terms in (2.17)
and the fact that the inverse screening radius R™! of

their formula
4re? P
R1= [ n,:' ,
kksT

which diverges as 7" approaches zero, is replaced by the
static inverse correlation length @, which is essentially
temperature-independent in the range of temperatures
of interest. In Fig. 1 we plot for comparison the screen-
ing radius R of formula (2.19) as a function of tempera-
ture together with the value ¢, The values correspond
to sample C3 of I. Figure 2 shows for 7'=20° the de-
pendence of R and ¢! on the concentration of majority
impurities.

It should be emphasized that the exponential assump-
tion for the correlation function is only introduced here
as an example, but it shows the important features of
the theory and demonstrates how the correlation be-
tween charges has to be necessarily taken into account
and how it gives a ‘“‘static” screening which explains

9 P. P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).

(2.19)
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BROOKS & HERRINGT|

EXPONENTIAL CORRELATION

CONWELL & WEISSKOPF -

0 - ! ! 1
10 20 30 40

T K

_F16. 1. A comparison between the screening radius R as a func-
tion of the temperature in the theory of Refs. 4 and 5 with the
present theory (simple model). The curves correspond to a sample
with V5 =2.9X10% cm™ and N p=3.9X10' cm™3.

why, at higher concentrations of majority impurities,
it is possible to obtain larger mobilities. In other words,
the presence of extra impurities improves the screening
but alters only slightly the number of ionized scattering
centers. The number of neutral impurities is, however,
increased.

The exponential example gives for the screening
radius a function which is independent of temperature
(in the range 7.&KN 4) and depends on concentration as
(Np—N4)~1/3. In contraposition to this, the Conwell-
Weisskopf theory yields a cutoff radius which varies
approximately like V4~1/% (i.e., is essentially constant
for all samples and temperatures of I), and the Brooks-

-
e | -
7 - -
? ~ .|
3
bar 1
o |- CONWELL & i
2k - .
EXPONENTIAL —————
CORRELATION
I . Na .
1. 1 li 1 1 1 1 L L 1 1 1
o 2 4 8 10 12

- 6
Np (10 cm™)

F1c. 2. A comparison between the screening radius R as a
function of majority impurity concentration Np for samples
at T=20°K.
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Herring theory gives a screening radius which varies
like 712N 4~Y2N pl2(N 4— N )12,

It is seen in the next section that an analysis of the
experimental data presented in I proves that the actual
correlation functions encountered in the experiments
cannot be approximated by any of these models, and
that it is possible to invert the procedure described in
this section and obtain the pair correlation function
from the experimental values.

3. CONCLUSIONS AND COMPARISON
WITH EXPERIMENT

We have seen that the values of the mobility depend
essentially on the function F(a,N 4,V p,T) introduced in
(2.12) and related, in the case #.KN4, only to the
Fourier transform D4p(s,T) of the acceptor-donor pair
correlation function by

F(o,N4,Np,T)=1—NaDup(s,T).  (3.1)

We attempt in this section to obtain from the experi-
mental values of ur some information about the func-
tion DAD(O',T).

Substitution of (2.8) in (1.7) and use of (2.13) and
(2.14) yields for the relaxation time

1 m*Ny 41r82>2—1—Q(kN Nou) (3.2
. 41rh3< ) g '
where  F(o. NaN o, T)
T,VA D
Q(,N 4,Np,T)=2 f — 1 e, (3.3)
0 g

If, as in the previous treatments, we assume that the
dependence of Q on % is very weak compared with the
k% dependence in 7, the integral over energies in (1.8)
yields for the mobility

27/27r—-3/‘2(kBT) 3/22 ] e [ —3m*—ll2(2NA)—l
Hz: ’

Q(k‘:NA;NDiT)

(34)

where
ko=t (6kgTm™)1/2, (3.5)

The use of (3.4)—(3.5) permits the calculation of
Q(o,N 4,Np,T) from the measured values of ur 1%; from
Q the acceptor-donor pair correlation function D can
then be determined:

ko 00
DAD(Zk.,T) = NA_I(I'—'— 70) . (3.6)

Table I shows the function Q(%¢,NV 4,Np,T") obtained
from the experimental values reported in I. In the

10 In obtaining Q from the experimental values of the mobility,
it should be remembered that m* appearing in (3.4) corresponds
to the ratio of the square of the conductivity average effective
mass to the density-of-states effective mass; m* appearing in
(3.5), on the other hand, is simply the density-of-states effective
mass. In the actual calculations, the better approximation of
taking (2N 4+#.) instead of (2V4) was made; the correction is in
the worst case considered only 10%,.
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TasLE L. Experimental values of the function
Q(ko,N 4,N p); N4=2.9X10% cm™3.

Q(ko,NA,ND,T)“
Np(10¥cm™3)  3.04 3.54 3.89 416 6.07 10.76
T ko
°K 108 ¢cm™!
10 1.22 11.0 6.5 5.3 4.1
15 149 74 5.8 4.8 3.7 2.6
20 173 17.7 7.2 5.8 4.8 3.8 2.45
25 193 15.8 7.2 5.9 5.1 3.7 2.3
40 24 7.7 6.6

s All values from I.

range of temperatures and impurity concentrations of
interest, it is possible to approximate Q by a formula of
the form

Q(ke,V 4,N p,T)~A(T)(4ko/a) , 3.7

where @ is defined by (2.11) and the function 4(7T) is
given in Table II. When (3.7) is replaced in (3.6), the
pair correlation function is approximately expressed by

Dap(o,T)~N s, Y1—A(T)(s/a)}.  (3.8)

It can now be seen that the acceptor and donors in
compensated Ge are very strongly correlated. As clearly
shown by (3.8), there is a strong screening effect in the
long-wavelength limit (¢ S4a) and a surprising anti-
screening effect at shorter wavelengths. It is worth re-
marking that (3.8) is only approximate and not to be
taken as even approximately valid beyond a given
maximum value of o; it is important also to point out
that the derivation of (3.8) depends on the accuracy of
the experiment as well as the way in which other scat-
tering effects were subtracted. However, we are con-
fident that the screening-antiscreening effect is a real
one and that the very strong correlation between ionized
impurities has been proved beyond any doubt.

A more complete and satisfactory theory should be
developed in which, in addition to the acceptor-donor
correlatlion, donor-donor as well as electron-donor and
electron-acceptor correlations are taken into account.
We feel that all these effects, although smaller than the
one considered here, are important enough to make
significant contributions.

In conclusion, we would like to point out that the
problem under consideration shows the inadequacy of
the approximation of linear screening, which yields an
infinite mobility as 7" approaches zero, while experiment
clearly indicates that in that limit x tends to zero. The

TasLE II. Values of the coefficient A4 (T).

T

°K A(T)
10 0.37
15 0.28
20 0.23
25 0.21
40 0.20
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)

°

' (!_O‘bm’sec" Volt ™)

HF1

o
o

o ) . T(K),

0 10 20 30 40
Fic. 3. A comparison of the various mobilities as a function of
temperature for the sample C3 of Fig. 1. (a) Experimental values.
(b) Brooks and Herring (Refs. 4 and 5) (c) Conwell and Weisskopf

(Ref. 3). (d) Simple exponential correlation. (e) From formulas
(3.4)~(3.7)with a temperature-independent coefficient 4 (7) =0.27.

breakdown of the linearized approach to the solution
of Egs. (1.1)—(1.4) is the fundamental reason which led
us to use statistical methods which look at the distribu-
tion of ionized impurities in a “frozen” state rather
than consider them as distributed in a “smooth” state
obtained by perturbation from a completely homoge-
neous distribution. In the limit of high temperatures,
when the eo/kpT expansion is valid, the theory of
Brooks and Herring becomes valid and can be inter-
preted as if it corresponded to an acceptor-donor pair
correlation function given by

Dap(0,N a,Np, T)~[ (14202R?)/N 4(1402R2)?], (3.9)

where R is the screening radius given by (2.19).
Finally, in Figs. 3 and 4 we plot the mobility us as a

function of temperature for the parameters of sample

C3 of I and the mobility us as a function of donor con-

{(10* cm®sec ™ volt™)

(281

Np (10®cm~®)

F1G. 4. A comparison of the various mobilities as a function of
majority impurity concentration for 77=20°K. (a) Experimental
values. (b) Brooks and Herring (Refs. 4 and 5). (c) Conwell and
Weisskopf (Ref. 3). (d) Simple exponential correlation. () From
formulas (3.4)-(3.7) with a temperature-independent coefficient
A(T)=0.27.
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centration for 7= 20°K. The various curves correspond
to

(a) Experimental values,

(b) Brooks and Herring theory,

(c) Conwell and Weisskopf theory,

(d) Exponential simple model (2.17),

(e) Empirical correlation function (3.8) for a tem-
perature-independent coefficient A (7)=0.27.

It can be seen from them that although satisfactory
in given regions, all the theoretical curves are far
from representing accurately the experimental mobility
in the whole range of temperatures and concentra-
tions. It is evident that the pair correlation function
D 4p(o,N 4,Np,T) is more complicated than any of the
simple forms proposed here.
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APPENDIX
We denote by
P(X;Y;Z)EP(X17X21 CLYLYe Izt ) (Al}
the ensemble distribution function for the
(ne+Na+NpH)Q
particles, and abbreviate the differentials by
Dx=d%c1d3xs - -d3x; -+ 1< i< 0,
Dy=d?1d%s- - -d¥;- - 1SISN4Q,
Dz=d%d%,- - -d3,- - - 1<s<NptQ,

(A2)

where the « coordinates correspond to electrons, the y
coordinates to ionized acceptors, and the z coordinates
to ionized donors. The normalization is such that

/ P(x,y,2)DxDyDz=1. (A3)

If we introduce generic indices 7, J such that they can
indicate ¢, 4 or D (corresponding to electrons, acceptors,
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and donors respectively), and redefine

na=N4, np=Npt,
&=x, EA=Y7 fp=z, (A4)
and
D¢=DxDyDz,
P(&)=P(x,y,z), (AS)

we can define pair distribution functions Cr;(r) such
that

Ci®)=% [ 8—EtE)PODE.  (A6)

These functions satisfy the normalization condition
/CIJ(r)d3T= ningQ2. (A7)

In a similar way we introduce pair correlation functions
grs(&ri,€77) by

o)’
susaskoi= [ P PO

. (A8)
{TD)=J7).
It can be seen that the formulas
Crr(r)=nQ(r)+ ;' / gr(&n,&m=En—1)d%n  (A9)
1 5%m
gIJ(EI:,ZJJ Eh'_‘r)dsgh I#J (AIO)

CIJ(r) = Z

relate pair distribution functions to pair correlation
functions.

In our calculations and for the sake of simplicity we
further assume that; (1) There is no correlation be-
tween particles of the same species, i.e.,

Cu(r)=n196(r)+n1(n19—~1) 5 (All)

(2) The system is macroscopically uniform and
isotropic:

/ gro(&ri,&ri= &i—1)d3E= Dy (r) for I#£T, (A12)

where Dr;(7) is independent of the index 7 and is only a
function of the scalar 7. It is easily seen that

C[J(l‘) = nszWEDIJ(r) I#J (A13)

and

4 / Drs(r)rtdr=1. (A14)
°

The most important of the D(r) functions is D4p(r),
since
n 3<<N AgN D+
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in the temperature range of interest to us. In addition,
since all acceptors are ionized, and only a fraction
Np*/Np of the total number of donors is ionized, we
would expect the donors to be preferentially ionized in
those locations which are close to acceptor sites. This
means that in the neighborhood of an acceptor the
density of ionized donors should reach the value Np,
while at large distances it takes the average value Np*.
Consequently

L (A15)
D r=0)= ,
DA ]\7D+Q
1 1 1
Dan(r—0)= [ : } (A16)
Q 2Q2\Na4 Npt

where in (A16) we have kept terms up to order Q2.

Finally, the Fourier transform of the D functions
D(o) is defined by

Dr;(e)=0Q / Drs(r) explic-1)d?r, (A17)
where
D[J(0'= 0) = ) (A18)
Dr=0)Q
/DIJ(a)d3a=——-— , (A19)
8xd
and, from (A16) and (A18)
1(1 1
hm D(o)=- { —~+-—l> (A20)
2IN4 Npt

up to terms of order unity.

It is necessary for our purposes to calculate expecta-
tion values of the form

Grr={(Z exp[io- (&:—£1))]))
=2 | explio: (&ri— &) IP(§)DE  (A21)

which after a few simple manipulations can be ex-
pressed in the form

Grs(o)= / d?r exp(io-1)Crs(r), (A22)
or equivalently from (A11)
Gri(o) = nQ+nrQ(nQ—1)6,0, (A23)

and from (A13) and (A17)

GIJ(U‘) =1’LI%,/QD[J(0) y I#J. (A24)
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It is worth emphasizing that the expectation values
Grs(e) are discontinuous at =0, Values at =0 are of
the order Q2, while values at 0520 are of the order Q. In
particular, with our assumptions

Gr(0) = ns?Q?

. (A25)
hrrul Gr(o)=nQ
and for I#£J
GIJ(O) = %I”JQz
. nmy (1 1
lim Gu(a)=-———9{—+—-—} . (A26)
o0 2 nr nrs

As a final illustration of the statistical distributions in-
volved in this paper, we include as an example an ex-
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ponential correlation function:
1 11 1

Dap(r)= “—W{W-i——“*}
Q 20* (N4 Npt

Np—Np*
+—————exp(—ar), (A27)
+Q

D
where the normalization condition requires
a®=16wN 4 (J\TD - 1‘7\71)"') (NA+]\7D+>—1 .

The Fourier transform, for 70, takes in this case the

form
171 1 at
DAD(O')=—[ } }
2lN4 Npti(a2+o2)2

1 at

N4 (a*-0%)? -

(A28)

(A29)

~,
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Strong-Coupled Piezoelectric Polaron

WayNE E. TEFFTT
Research Laboratories, Xerox Corporation, Rochester, New York
(Received 12 May 1967)

A semiclassical, variational calculation for the strong-coupled piezoelectric polaron gives the following
results for the ground-state energy and polaron radius, respectively:

* 2
Uo= —0.47(—'5'-)(5) eV,
m €
€ m o
R=35( E)(-”?) A,

where m* is the band effective mass, « is the electromechanical coupling constant, and e is the strain-free
dielectric constant. The theory is expected to be valid when |Up| is larger than thermal energies and R is
considerably larger than unit-cell dimensions. A calculation of the polaron effective mass, having a more

and

limited region of validity, gives

2|Uo|

m,,zm*[1+——~—-

where 2, is the velocity of sound.

I. INTRODUCTION

GREAT deal of effort has been devoted to the

polaron problem in recent years.! Most papers
have been concerned with the case of electron coupling
to the optical modes of ionic crystals. In both the weak-
and strong-coupling limits this problem is now well
understood and, in addition, some insight has been
gained in the intermediate coupling region.! Much less

T Present address: Department of Physics, University of
Missouri at Rolla, Rolla, Missouri.

1 Several pertinent articles and an extensive bibliography are
contained in Polarons and Exitons, edited by C. G. Kuper and G.
D. Whitfield (Plenum Press, Inc., New York, 1962).

m*v2 |’

attention has been devoted to the case of coupling to
acoustic modes, either through a deformation poten-
tial,"? or the piezoelectric constant.? In the latter case
the weak-coupling limit has been, with only one excep-
tion,? the only region considered. The reason for this is
evident: For most materials the weak-coupling theory
is adequate except at extremely low temperatures,
where impurity effects dominate.

However, a weak-coupling theory may not always

2 G. D. Mahan, Phys. Rev. 142, 366 (1966).
3 George Whitfield, Bull. Am. Phys. Soc. 10, 388 (1965).



