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Quadrupole Shielding and Antishielding Factors for Atomic States~
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The atomic shielding (or antishielding) factor E for the quadrupole hyperhne structure has been evaluated
for several excited atomic states. The values of, R were determined by means of the perturbed wave functions
v&'(nl —+ l') as obtained by solving the inhomogeneous Schrodinger equation for each type of excitation of
the core electrons by the nuclear quadrupole moment Q, For the case of copper, the calculations provide a
quantitative explanation of the fact that the values of Q(Cu") obtained from two diferent excited con-
dgurations (3d'4s' end 3d"4p) differ considerably from each other (by )40/o), when the correction factor
1/(1 —E) is:not applied. The calculated values of R, namely 83&=+0.178 (shielding) and E4„———0.175
(antishielding), bring the two corrected values of Q into very good agreement. We thus obtain Q(Cu")
= (—0.195+0.004) X 10 "cm'. Besides the work on Cu 3d and 4p, the following calculations have also been
carried out: (1) E~q for the 5d states of Pr and Trn; (2) R2„and E~„for the 2p and 3p states of Li; (3) R ~
for the 2s2p 'P excited state of beryllium.

I. INTRODUCTION

HE purpose of the present paper is to give the
results of calculations of the quadrupole shieldiiig

(or antishielding) factor R for several atomic states. ' '
The factor R represents the change in the hyperfine
structure interval b for atomic states due to the quadru-

pole moment. induced in the electron core by the
nuclear quadrupole moment Q. Thus t/ can be written

b=hs(1 —R), (1)

where bs (which is proportional to Q) is the value
which b would have in the absence of the induced
effects in the core. The calculated values of E are
generally in the range from —0.3 to +0.3 where
positive R corresponds to shielding [see Eq. (1)].

Values of E have been previously obtained in several

papers. ' ' Even before last year (1966), there had
already been some good experimental evidence which

supports the calculated values of E. This evidence
concerns the following cases: (1) the 4f state of the
rare earths, for which the theoretical value, R~+0.2,
is in reasonable agreement with various experimental
determinations4; (2) the 5d and/or 6p states of La"',
Lu"' and Hg"' for which Murakawa'" showed that
values of E5d——0.4 and E.6„——O.i are required, to
fit the experimental data; (3) the 5'Ps/s 6'Ps/s, and

7 'P3~2 states of rubidium, for which zu Putlitz, Schenck. ,

*Work performed under the auspices of U. S. Atomic Energy
Commission.' R. M. Sternheimer, Phys. Rev. 80, 102 (1950);84, 244 (1951);
86, 316 (1952); 95, 736 (1954); 105, 158 (1957).' R. M. Sternheimer, Phys. Rev. 146, 140 (1966).

I R. Ingalls, Phys. Rev. 128, 1155 (1962); A. J. Freeman and
R. E. Watson, ibid. 131, 2566 (1963); 132, 706 (1963); M. N.
Ghatikar, A. K. Raychaudhuri, and D. K. Ray, Proc. Phys. Soc.
(London) 86, 1239 (1965).

4R. G. Barnes, R. L. Mossbauer, E. Kankeleit, and J. M.
Poindexter, Phys. Rev. Letters 11, 253 (1963); Phys. Rev. 136,
A175 (1964); R. L. Cohen, ibH. 134, A94 (1964); S. Hiifner, M.
Kalvius, P. Kienle, W. Wiedemann, and H. Eicher, Z. Physik
175, 416 (1963); S. Hiifner, P. Kienle, W. Wiedemann, and H.
Eicher, ibid. 182, 499 (1965).

~ K. Murakawa and T. Kamei, Phys. Rev. 105, 671 (1957);
K. Murakawa, ibid. 110, 393 (1958); J. Phys. Soc. Japan 16,
2533 (1961);17, 891 (1962).

and Schussler' have obtained evidence for the existence
of an antishielding factor 8„„,and its slow variation
with the principal quantum number e.

It has been noticed recently that the quadrupole
moment of Cu", Q(Cu") as obtained without ap-
plying the correction factor i'=1/(1 —R) [see Eq.
(1)] differs considerably, "depending upon whether
the hyperfine structure is measured in the atomic
excited state with configuration 3d'4s' (sDs/s or 'Ds/s)
or in the excited state 3dm4p (sP3/s). According to
two recent high-precision experiments, ' '

Q [from
3d'4ss ('D;/s)]= (—0.161&0.003)&(10 '4 cm', whereas

Q [from 3dm4p (Ps/s)]= (—0.228+0.005)X10 " cm'

It was pointed out by Fischer, Huhnermann, and
Kollath' that the large difference between these two
values (a factor of 1.42) may be due in large part to
the fact that the correction factor 8„~=1/(1 —R„~) is

appreciably different for the 3d electron hole and the

4p electron in the two excited states.
In the present work, we have carried out an accurate

calculation of E for these two states of the copper atom
(including the exchange terms of R). The result is that
(1—R4„)/(1—R,&) = 1.429, in very good agreement with
the experimental ratio of the two uncorrected values
of Q(Cu"). The comparison between theory and ex-

periment for Cu thus provides a very good confirmation
of the existence of the atomic shielding effect.

It may be noted, by way of contrast, that the induced
effects for ions, ' represented by the ionic antishielding

' G. zu Putlitz and A. Schenck, Z. Physik 183, 428 (1965);
H. A. Schiissler, ibid. 182, 289 (1965);H. Bucka, H. Kopfermann,
M. Rasiwala, and H. Schussler, ibid. 176, 45 (1963). See also the
review article of G. zu Putlitz, Ergeb. Exakt. Naturw. 37, 105
(1965).' H. Bucka (private communication); J. Ney, Z. Physik 196,
53 (1966)~

8 W. Fischer, H. Huhnermann, and K. J. Kollath, Z. Physik
194, 417 (1966); 200, 158 (1967). I am very much indebted to
Dr. Hiihnermann for sending me a copy of the second paper
before publication. See also M. Elbel and H. Wilhelm, Ann.
Physik 18, 42 (1966).' H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.
93, 734 (1954); R. M. Sternheimer and H. M. Foley, ibid. 102,
731 (1956); R. M. Sternheimer, ibid. 130, 1423 (1963); 132, 1637
(1963); 159, 266 (1967).
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factor y„, are much larger (y„10—100), and for this
reason it was much easier to verify them experimentally,
as has been done in a number of experiments. "

In addition to the calculations for Cu, we have also
obtained the theoretical values of R5~ for Pr and Tm
(for comparison with the work of Murakawa') and
also of Rp~ and Rp„ for Li and R for Be 2s2p 'I', in

connection with atomic beam measurements of the
hyper6ne structure of lithium" and beryllium. "

II. CALCULATIONS OF R

A. Cu 3d'4s' and 3d"4P

As has been previously discussed by the author, "
the atomic shielding (or antishielding) factor R is ob-
tained by the use of suitable functions y, ,(r) and

y„p(r) which are defined as follows. We introduce a
function y (nl —+ l'; r) of the distance r from the nucleus,

by the equation

1
y(nl ~ l', r) = ——Q, (nl ~ l') dr'+r'

In Eq. (5), Vp is the effective (unperturbed) potential
pertaining to the state NL, and Ep is the unperturbed
energy eigenvalue. According to a method previously
employed by the author, ' ' Vp —Ep is obtained from
the function up'(nl) by means of the relation

Vp —Ep=
1 d'up' l(l+1)

Np' dr'
(7)

r (nl 1', n.l,)=(&(nl l'; r)/»P)„, ,

p(nl ~ l'; r)[w(n, l,)]'r 'dr, (8)

The coefficient c(nl -+ l') in Eq. (3) has the following
values for the various excitation modes of the Cu
atom' p 8/5 for ns ~ d and nd —+ s; 48/25 for np —+ p;
72/25 for np~ f; 16/7 for nd~ d; and 144/35 for
nd —+ g.

The direct interaction of the (nl —+l') perturbed
density with the valence electron is proportional to
the integral Pii (nl —+ l'; n, l,,), which is defined as
follows:

X Q;(nl -+ l')r' 'dr', (2)
r

Np Qf= j.. (4)

In Eq. (3), pi'(nl —+l') is the radial wave function
pertaining to the excitation (nial'); pi'(nl —+ l') is
determined by the following equation:

d' l'(l'+1)
+ +Vp —Ep pi'(nl -+ l')

dr' r'

where Q;(nl~ l') is the density of induced moment
pertaining to the excitation (nl —+ l') of the nl shell of
the core. Q; (nl-+ l') is given by

Q, (nl ~ l') =c(nl ~ l')Qup'(nl)pi'(nl ~ l')r', (3)

where c(nl —& l') is a coefficient arising from the inte-
gration over the angular variables and the summation
over the magnetic substates of the shell nl; up'(nl) is r
times the unperturbed radial wave function, normalized
according to

where w(n, l,) is r times the radial part of the valence
electron wave function (with quantum numbers n, l,),
normalized in the same manner as up' LEq. (4)].Thus,

Lip (n, l,)]'dr = 1.

[n the following, for simplicity of notation, we will
often refer to w(n, l,) simply as w.

The direct (i.e., nonexchange) contribution of R from
the perturbation (nl-+ l') is given by

where

r (nl l';n, i,)
Ri)(nl —+ l'; n, l,) =

(y ')"i.
(10)

The exchange interaction of (nl —+ l') with the
valence electron involves the following integral (for
one or more values of I.):

1
=up'(nl) —— Ii), , (5)

nl

and by the orthogonality condition (for l'= l)

K(nl~ l'; n,l„I,)=
where gL is given by

up'(nl)w(n, l,)gidr, (12)

up'(nl) pi'(nl ~ l)dr= 0. (6)
gi, (nl ~ l', n, l,)=

rL+1
wi'(nl —& l') uir'zdr'

"A. Dalgarno, Advan. Phys. 11, 281 (1962). See p. 312."R. Isler, S. Marcus, and R. Novick, Bull. Am. Phys. Soc.
11, 62 (1966);K. C. Brog, T. G. Eck, and H. Wieder, Phys. Rev.
153, 91 (1967).

~'A. G. Blachman and A. Lurio, Phys. Rev. 153, 164 (1967).

+rz p, '(ni ~ p)icy' r-'dy' (13)—
'3 R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565

(1957); 115, 1198 (1959); 127, 1220 (1962).
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c{»(20 40)
c&'&{21 41)
c&l& {22 42)
c&'&(40 10)
c&'&(41 10)
c&»(42 10)
c{4)(40; 20)
d4) (41;20)
c&'& (42; 20)

Value

6/P (5)"'3
6'~'/'/

31/2/f

4(3)'/'/2l
5lil/'/

2/I
20(5)'i'/231
1/(5)'e/231
8 (5)'~'/231

The interaction energy I'e(nl l P; n, l„L), which is
analogous to 1'Il Lcf. Eq. (8)j, is given by

T~z.z I. Coegicients c{~)(lm; l'm') required to obtain the
values of C (nd -+ g; 3;p), C(ed -+ g; 2; d) and C (Nd -+ g; 4; d).
Note that c{»(2m; 4m) =v{2)(4m; 20).

of three terms which behave as Pj, I'g, and I'5, respec-
tively, where 7 I, is the I.cgendre polynomial. Similarly,
the interacting density sI&&(nP)w(3d) is a sum of two
terms having I'~ and I'3 behavior. Hence the electro-
static (exchange) interaction will consist of two terms
having I.g ——1 and L2——3. This follows frown the ex-
pansion of 1/i is in spherical harmonics )see Eqs. (25)
and (26) of Ref. 2j.

In order to evaluate the coefllcients C(nl-+ l', e.l, ; L)
of Eq. (15),we used the tables of Condon and Shortley"
for the integrals c&n&(lm; Pm') Th.ese tables give all of
the required coefficients for the case of Cu, except for
those involved in the 3d —+ g excitation of the 3d shell.
For this latter CRsc Qlnc ad(4tlonal cocfBclcnts are
required (for n,l,=3d and 4p). Their values are listed
in Table I. In this connection, we note that

c"'(2m; 4m)=c&'&(4m; 20).1'lI {nl-+ P; e.l.; L)
=—C(nl -+ P; e.l.; L)X(nl ~ P; n.l„L),

where the cocfllcient C(nl~P;n, l„L) is given by
Eq. (37) of Ref. 2, namely,

4 Q c&s&(lm; P )m&ic&(lm; l,m, )c&i&(Pm; l,m, )

(14) For this reason, the coefFicients c&'&(4m; 20) were not
listed scpRrately in Table I,

Table 1l gives the resulting values of C (nl —+P;n,l„L)
for an atom with 6lled s, p, snd d shells, and with an
external p d &&r f clcctl'oI1 (or clectl'GI1 hole). rt may
be noted that some of these results have been obtained
previously in Refs. 1 and 2. %c also mention that the
table includes the results for C(nf + f; n.l.—; L) with
l.=p, d, or f. Note that

c&'& (l,m. ; l,m.)
(15)

in complete analogy to Eq. (10).
rn Eq. (15), the coeKcients c&n&{lm; Pm') a« thc

sRQM Rs those of Condon and Shortlcy, Qanlcly,

Finally, the contribution to R due to the exchange
term arising from (el -+ l') is given by

1'e(nl -+ l'; nj„L)
gg {el + l'; n,l, ;'.L)=

C(nl ~ l'; n, l,, ; L)=C(nl'~ l; n,l„L). (19)

Thus, tile cocfFIclcnts for nd ~ s snd nf l p arc not

TanlE 11 The coeKclents C(Nl ~ p; e,l~l I) pertajnlng to the
exchange terms I'g(nl ~l'; IJ„'L), where l, is the azimuthal
quantum number of the external. (valence) electron. The value
of I (=I l, I e, ol I l) ls listed nl palelltlleses after each coefEelent.
For /, . =3, there is an additional coefEcient not given in the table,
namely C(nf~ f;n f; 6)=+500/128/, pertaining to I4=6.
Note that C(el-+l';N, l, ;L,)=C(NP —+I;N,l.;L,). Thus the co-
eKi{cients for ed ~ s and If~ p are not listed separately. The
table consists of three parts, corresponding to the case of an
external p, d, or f electron.

c&n& (lm; l'm')

= L2/(2L+ 1)jl» e;='elm&. "' sin{&d0, (17)

vrhcre Bp is the spherical harmonic normalized to f.
The result of Eq. (15) is independent of the value of

yg„ the magnetic quantum number of the valence
electron. In practice, thc cxprcsslon ls evaluated for
the case m, =o, and can then be checked by using
m.=+1.

In order to sho%' how the rclcvRnt values of I Rrc

determined, vre take as an example the perturbation
(ep-+ f) interacting with an external d electron (or a
single hole in a 611ed 3d shell, as is the case for Cu).
The density sl(nP —l f)w(3d) can be written as a sum

"E.U. Condon and 6. H. Shortly, Theory of Afoeric SpeeAu
(Cambridge University Press, London, 1935), p. j.75.

(Nl ~ l'; l,)
(Ns -+d: p)
{NI ~P'P)
(Np~f p)
(Nd -+d; I&)

(nd —+g; p)
(+f~f' p)
(ns —+d; d)
(np ~ p; d)
(Np-+ f; d)
(Nd ~d;d)
(nd —+g; d)
(+f~f d)
(es ~d; f)
(Np-+p; f)
(NP f f)
(ed-+d; f}
(ef-+ f; f)

C (L,1)

4/3(1)
4(0)
36/25(2)
4/3{1)
'6/49 (3)
24/»(2)
4/5(2)
28/25(1)
12/25 {1)
4(0)
144/245 (2)
48/25(1)
4/~(&)
108/j.75(2)
72/j. 75 (2)
72/49(1)

4/21(4)
4/'l(4)
44/14' (3) 500/161/(5)
76/225(2) -4/yy(4)
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listed separately. The values of I. (denoted by I.i, 1.&, I.s)
are given in parentheses after each value of C.

We will now discuss specihcally the case of Cu, with
either a 3d electron hole (3d'4s'), or a 4p electron out-
side closed shells (3d"4p). Referring to Eq. (5), the
perturbed wave functions vr'(2p ~ p), vi'(3p ~ p), and
vi'(3d —+ d), for which l'=l, have been previously ob-
tained" in connection with the calculation of the ionic
antishielding factor y„(Cu+). For the "angular" modes
of excitation, i.e., those with l'=l~2, we have previ-
ously carried out calculations of vi'(3d -+ s) and
vi'(3d ~ g)."'r The remaining angular modes, namely
vr'(Is~ d), vt'(2s~ d), vi'(2p~ f), vr'(3s~ d), and
vi'(3p~ f) were obtained in the present work. The
solutions were found by inward integration of Eq. (5)
on the CDC-6600 Computer, using a machine program
written by Dr. R. F. Peierls.

As has been previously discussed in Refs. 1 and 2,
for the case l'=l+2, the inward integration of Eq.
(5) is carried. out with several trial starting values
vi'(ri) at a large radius ri. The correct value of vi'(ri)
is that for which the resulting solution vi'(r) is well-

behaved at the nucleus (r=0). For the (ns —+ d) per-
turbation, it is easily shown from Eq. (5) that vi' has
the following value at r=0: vi'(0)=ai/6, where a, is
given by [ue'(ns)/r), =e. In a similar fashion, for the

(np ~ f) perturbation, vi'=0 at r=0, with the following
slope:

(20)

where as=—[ue'(np)/r'], =e. Thus vi'(np ~ f)= (as/12)r
near the nucleus.

In the computer program, the correct value at r=0
is speci6ed within very narrow limits, and the computer
is instructed to try a sequence of starting values vi'(ri),
and in each case to compare the resulting vi'(0) with
the predetermined correct value [e.g., ai/6 for ns -+ d;
or 0 for np —+ f] The proced. ure is self-correcting, in
the sense that each successive trial value vi'(ri) is based
on a comparison of the previous vi'(0) with the desired
value at the nucleus. The computer program stops the
calculation when two functions vi'(r) have been found,
for both of which vt'(0) differs from the desired vi'(0)
by a very small amount. As an example, for vi'(3s —+ d),
two functions were computed for which vi'(0)=5.858
and 5.899, the correct value being 5,875. The actual
solution was then obtained by linear interpolation of
these two Anal functions. In a similar manner, for
vi'(2p -+ f), where vi'= 0.285 at r =0.005 air [from Eq.
(20)], two functions were found by the computer, with
vi'(0.005)=0.2704 and 0.2999. It may be noted that
the values of vi'(nl —+l+2) away from the nucleus,
and particularly in the region of the outermost maxi-

~ R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(&956).

I R. M. Sternheimer, Phys. Rev. 127, 812 (1962).
~ R. M. Sternheimer, Phys. Rev. 159, 266 (1967).
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FIG. 1. The perturbed wave function vr(3s ~ d) and the 3s
function uo(3s) for Cu+. The left-hand ordinate scale pertains
to e&, the right-hand scale pertains to Np.

mum of uo'(nl), are determined to a very high accuracy
by Eq. (5) (of the order of one part in 10' to 10'), for
the given values of Vo—Eo. The great stability of the
solution is probably due to the presence of the cen-
trifugal term l'(l'+1)/r' in Eq. (5).

The unperturbed wave functions ue'(nl) used in the
present work were the same as in our earlier calculations'
for Cu, namely the Hartree-Fock wave functions deter-
mined by Hartree. 's The five functions vi'(nl ~ l+2)
obtained here have been tabulated in a separate paper. '
This paper also includes tables of vi'(3d-+ s), vi'(3d ~g),
and the radial modes vi'(nl —+ l) which have been de-
termined in earlier work. " '

As an example of the results obtained, we show the
following perturbed wave functions in Fig. 1 and 2:
vi'(3s -+ d), vi'(3d —+ s) and vi'(3d ~ g), together with
ue'(3s) and ue'(3d). Figure 1 shows that vi'(3s —+ d) has
generally the same sign as the unperturbed ue (3s). In
a similar manner, vi'(3d —+g) and ue'(3d) have the
same sign, as illustrated in Fig. 2. These two examples
are special cases of a general property of the relative
sign of vi'(nl -+ l+2) and ue'(nl), as previously dis-
cussed in Refs. 1 and 2. This property also leads to the
shielding of the nuclear moment Q by the modes
(nl —+ l+2).

As shown by Fig. 2, vi'(3d-+ s) has opposite sign
to that of ue'(3d) near the nucleus. This feature of the
excitation modes (nd —+ s) has been previously pointed
out by the author in Sec. III of Ref. 17. It will be seen
below that for a relatively penetrating electron such
as 3d, this feature leads to a small antishielding eGect

'8 D. R. Hartree and %. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

"Tables of the perturbed wave functions ej,'(el ~ l') obtained
in connection with the present calculations are given in a supple-
mentary paper. This paper also contains tables of the valence
wave functions calculated in the present work, namely m(2p) and
m (3p) for Li, m(4P) for Cu, and m(5d) for Pr and Tm. The supple-
mentary paper has been deposited as Document No. 9592 with
the ADI Auxiliary Publications Project, Photoduplication Service,
Library of Congress, Vi?ashington 25, D. C. A copy may be
secured by citing the Document number and by remitting $3.75
for photoprints, or $2.00 for 35-mm microfilm. Advance payment
is required. Make checks or money orders payable to: Chief„
Photoduplication Service, Library of Congress.
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There are altogether 10 perturbed wave functions
ni'(nl —+ l') (7 with ('=l~2; 3 with /'=l) H. ence the
total number of integrals involved in the terms F~
(nl —+ f'; n, l,) for both n, l, =3d and 4p is 20. In addi-

tion, it can be easily shown by Ineans of Table II that
the number of exchange terms I'~(nl ~ l'; n.l„L) is 17
for 3d and 13 for 4p, giving a total of 50 integrals
(both direct and exchange).

In our previous calculations of E, in which only the
direct terms were included (with some exceptions), it
was not necessary to evaluate the separate terms
rD(nl~l', n.l.) Inst. ead, we had def ned two func-
tions y, ,(r) and y„a(r), as follows:

1
V. (r)—=— Q;,,„,dr'+ r' Q;,„,r' ,

'dr', (26)

1 00

y„,s(r) —=— Q;,„ddr'+r' Q;,„sr' 'dr', (27)

where Q...„s(r) is given by Eq. (21), and similarly

i,rad r
= P c(nt + t)g—s'(nl)ei'(n1 + t)r—', (28)

where the sum extends over the filled p and d shells
of the ion. The total correction factor R (excluding
exchange terms) is now given by

where
+=+ang++rad y

I ang

~aIlg
n, le

(29)

(30)

with

~1'ad
(r ')..i.

(31)

y,„,(r) rto'dr, -
(32)

I 1'ad y„d(r)u'r 'dr. -(33)

Equations (26)—(33) show that if one is considering
the direct interaction alone, it is not necessary to
evaluate the individual terms I'ii(nl ~ l'; n.l,) in order
to obtain the total E. The reason is, of course, that the
direct interaction involves only the total induced
density: Q4„~s+Qi,„z.

However, the preceding procedure will obviously not
work for the exchange terms I' s(nl ~ f'; n.l. ; L), each
one of which has to be evaluated separately. The cal-
culation of the double integral Iz, [Eq. (25)j was
programmed for the CDC-6600 computer by Dr.
R. F. Peierls. The computer program was basically
straightforward. The integrations were carried out

TaiiLx III. Values of I'(441-+l', 3d) (in units air ') for the
angular modes of excitation of the copper atom in the state
3d'4s' (l'= l&2).

Excitation

r{1s—+ d; 3d)
r(2s —+ d; 3d)
1'(2p ~ f; 3d)
r(3s d; 3d)
1 (3p-+ f;3d)
r{3d—&s; 3d)
r(3d —& g; 3d)
Sum

{3d)

Direct

0.1743
0.2731
0.4193
0.1304
0.2039

—0.0953
0.2181
1.3238
0.1760

Exchange

—0.0057
—0.0766
—0.0910
—0.0501
—0.0739
+0.0476
—0.0576
—0.3073
—0.0409

Total

0.1686
0.1965
0.3283
0.0803
0.1300

—0.0477
0.1605
1.0165
0.1351

I'44(nl ~ t'; 3d) =—P I'a (nl —+ t'; 3d; L4), (34)

where the sum goes over the I.;values listed in Table II.

using Simpson's rule. However, it should be noted that
if the values of fi and fs [Eq. (25)] are specified on a
grid: 0, ri', rs', r, ', r~ i', r~' (i.e., the set of r values
corresponding to the tables of Ref. 19), then the inte-
grals over r' will be obtained only at the points r=r2,
r4, rid s, re (assuming that 1V is even). Therefore, in
order not to lose accuracy in performing the second
integration (over r), it is necessary to carry out an
interpolation procedure so as to obtain the values of
the first integral at r~, r3, rs, r~ ~. For this reason,
two features were incorporated into the program: (1)
An interpolation was carried out to obtain the values
of the first integral at r~, r3, etc., so that the grid for
the two integrations was always the same. In addition,
the number of points for both integrations could be
increased. As an example, it was possible to use twice
the number of points on the first integration over fifs,
by interpolation on fifs, i.e., at —',ri', s (ri'+re'),
si (rs'+rs'), . Then the interpolation was repeated on
the integral over fr fs, which was thus also obtained for
r= sr» s (ri+r&), —', (rs+rs), and subsequently Simpson's
rule was used for this finer mesh to obtain Ir,. (2) As
concerns the method of interpolation, both quadratic
and cubic interpolation were employed.

In practice, an integral (for a given type of inter-
polation) required about 4 sec of CDC-6600 computer
time. For each type of integral Ir, (i.e. , given functions

f, and value of L), two integrations were carried out:
(1) Ir„i obtained with the same number of points as
the original wave function set of r values, and using
quadratic interpolation; (2) Iz„s calculated with twice
the number of mesh points and using cubic interpola-
tion. The two results IJ., ~ and II., ~ for each integral Il.
differ generally by less than 1'P& (and usually by a few
parts in 10'), which confirms the accuracy of the
integration program.

In Table III (pertaining to the angular modes only),
we have listed the resulting values of I'~(nl & l'; 3d)—
defined as follows:
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Excitation

I'(1s d; 4p}
r (2s —d; 4p)
r(2p f; 4p
r(3s —+ d; 4P)
r(3p~ f &p)'
r(M s; 4p)
&(3& r; 4P)
Sum

Z, (4p)

Direct

0.01493
0.00575
0.01034
0.00599
0.00942
0.00836
0.01208
0.06687
0.0524

Exchange

—0.01019
—0.00046
—0.00210
—0.00080
—0.00114
—0.00708
—0.00112
—0.02289
—0.0179

Total

0.00474
0.00529
0.00824
0.00519
0.00828
0.00128
0.01096
0.04398
0.0345

TABLE IV. Values of F(nl ~ l', 4p) (in units a& ') for the
angular modes of excitation of the copper atom in the state
3d"4p (t'=)+2).

would reproduce the experimental value of (r ')4„
=1.276u& ', as deduced by ElbeP' from the measured
fine structure. The determination of w(4p) is discussed
in Ref. 19, which also includes a table of values of
w(4p).

Table IV (which is completely similar to Table III)
pertains to the interaction of the angular modes el —+ l

g2 with a valence electron in the 4p state. In analogy
to Kq. (34), the total exchange term Fg(nl + l'—; 4p) is
given by

Fg(nl —&l', 4p)= Q Fg(nl —+l';4p; L;). (37)

As an example, we have

I'g(np~ f;3d)=Fg(np~ f;3d;1)
+Fg(np —+ f; 3p; 3), (35)

where the coefEcients C of the two terms on the
right-hand side have the values 12/25 and 144/175,
respectively.

The last column of Table III gives the corresponding
values of the total F(nl~ l'; 3d) defined by

I (nl ~'l'; 3d) =FD (n—l —+ l'; 3d)+Fg (nl ~ l'; 3d) . (36)

The bottom row of the table lists the direct and ex-

change terms of R,„,(3d). These results were obtained

by dividing the entries of the preceding row (marked
"Sum") by (r ')3&——7.52azz '. This value of (r ')3g was

calculated from the Hartree-Fock 3d wave function. "
Table III shows that except for 3d —+ s, all of the

direct terms are shielding, whereas the exchange terms

provide an antishielding, which, however, is quite weak

(less than xi of the dominant shielding term). For
3d —& s, the signs of the two eGects are reversed. The
reason for the negative value of Fn(3d-+ s;3d) has

been discussed above in connection with the negative
sign of wi'(3d —& s) near the nucleus (see Fig. 2).

The value of the total direct term R,„,(3d; direct)
=+0.176 can be compared with the value

R,„g-—2.02/7. 52 =0.269

which was previously deduced" by using the Thomas-

Fermi expression" for Q;,,„,LEq. (22)j.The factor by
which the two results differ is 0.269/0. 176=1.53, and

this confirms our previous discussion, ' ' according to
which the statistical model overestimates E,„~ by a
factor of 1.5 (see Fig. 3).

For the 4p electron in the excited 3d'04p state, we

used a modification of the Hartree-Pock wave function
obtained by Synek. 22 The modification consisted in

using a slightly more internal wave function which

» R. M. Sternheimer, Phys. Rev. 105, 158 (1957). See Table I
on p. 159.

"M. Synek, Phys. Rev. 131, 1572 (1963).

The contributions to R, ~(4p) given in the bottom row
of the table were obtained by dividing the sum of the
F terms (Fn, Fg, or F) by (r ')4„——1.276g —'.

It is seen that all of the terms F~ are positive
(shielding), whereas the exchange terms I'g are anti-
shielding. The net contribution of the angular terms,
R,„,(4p) is still shielding (=0.0345), although it is much
smaller than the corresponding R,„,(3d) (=0.1351).

In Table V, we have listed the results for the terms
due to the radial modes, for both 3d and 4p. For the 3d
case, the sum of the direct terms F~ is —0.108aII ', in
good agreement with our previous result" (—0.12ag '),
as was expected. The total direct term R„q (3d; direct)
is very small, as a result of the near-cancellation of the
contributions from 2p —+ p, 3p ~ p, and 3d —& d. This
result was previously noted in Ref. 21 (see p. 161).The
sum of the exchange terms I'g(nl-+ l; 3d) provides a
small shielding, which is numerically larger than the
direct term, resulting in a net shielding R„q(3d) =0.0426.

Thus the total R factor for the 3d'4s' state becomes

R(3d) =R,„,(3d)+R...(3d)
=0.1351+0.0426=0.1777, (3g)

which amounts to an appreciable net shielding.
Referring now to the second part of Table V, which

pertains to 4p, we find that the direct terms result in
an appreciable antishielding, mainly on account of the
external character of the 4p wave function. The ex-
change terms reduce this eGect somewhat, but the
resultant total R, z(4p)= —0.2097 is still definitely
antishielding. The antishielding which has been ob-
tained from the direct radial terms for 4p is similar
both in origin and in magnitude to the antishielding
which has been previously calculated for the np excited
states of the alkali atoms. '

Finally, from Tables IV and V, we obtain for the
total E. factor of 3dI04p:

R(4p) =R-.(4p)+R*"(4p)
=0.0345—0.2097= —0.1752. (39)

2' M. Elbel, quoted by W. Fischer, H. Huhnermann. and K. J.
Kollath, Z. Physik 200, 158 (1967).
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1—R(4p) 1.175
= 1.429,

1—R(3d) 0.822
(41)

in very good agreement with the experimental result
[Eq. (40)].

Another way of showing the agreement is to calculate
the corrected values of Q from the hfs of both states.
We thus obtain from 3d'4s':

0.161&0.003

0.822
= —0.196+0.004 b, (42)

and from 3d"4p

0.228+0.005
= —0.194+0.004 b, (43)

1.175

The good agreement which has been obtained gives
support to the assumption that the difference between
the two uncorrected values of Q(Cu") is indeed due to
the shielding and antishielding effects produced by the
Cu+ core. We thus obtain: Q(Cu") = —0.195+0.004 b
and Q (Cu") = —0 211+0.004 b.

It may be noted that the inQuence of the exchange
terms on the final result, Eq. (41), is quite small.
Thus, from Tables III—V, one 6nds for the values of
R without exchange (i.e., including only the direct
terms): Rhh(3d) =0.1616,Rhh (4P) =—0.2266, which give

1—Rrh(4p) 1.227
= 1.464.

1—Rhh (3d) 0.838
(44)

This value is quite close to our previous result (1.429),
from which it can be concluded that the effect of the
exchange terms is rather unimportant in the present
case.

B. Pr Sd and Tm Sd

For praseodymium and thulium, we have previously
obtained' the shielding factor R for the 4f electrons in
the ground state. The results of this calculation are
given in Table VII of Ref. 2. They indicate a small
shielding R 0.13, in reasonable agreement with various
experimental determinations using the Mossbauer
effect.4

As discussed above, Murakawas has shown that for
the 5d states of La"' and Lu'", the spectroscopic hfs
data require the presence of a rather strong anti-
shielding, namely Rs&——0.4. Since lanthanum (Z= 57)
and lutetium (Z=71) are at the two ends of the rare-

As was discussed in the Introduction, the ratio of
the two uncorrected values of Q is

Q(3dho4p) 0 228~0 005
=1.416+0.04. (40)

Q (3d'4s') —0.161+0.003

The theoretical value of this ratio is

TABLE V. Values of I'(nl -+ l; 3d) and I (Nl —+ /; 4p) (in units
orr ') for the radial modes of excitation of the copper atom
(P =l).

Excitation

r(2p~p;3d)
r(3p p;3d)
I'(3d ~d; 3d)
Sum

R~(3d)
r(2p-+ p;4p)
r(3p ~ p;4p)
I'{3d —+ d; 4p)
Sum
R s(4p)

Direct

—1.973
+1177
+0.688
—0.108
—0.0144
—0.0297
—0.1871
—0.1392
—0.3560
—0.2790

Exchange

+1.532
—1.114
+0.011
+0.429
+0.0570
—0.0002
+0.0004
+0.0882
+0.0884
+0.0693

Total

—0.441
+0.063
+0.699
+0.321
+0.0426
—0.0299
—0.1867
—0.0510
—0.2676
—0.2097

earth region, it seemed of interest to calculate E5@ for
the neighboring elements: Pr (Z=59) and Tm (Z=69),
in order to see whether agreement with a value of the
order of —0.4 could be obtained.

The determination of E5~ for Pr and Tm did not en-
tail an excessive amount of calculation, because the per-
turbed wave functions for the radial modes vh'(nl-+ l)
had been previously obtained, ' 9 in connection with the
calculation of y„and of E4y. In the same manner as in
Ref. 2, we used the Thomas-Fermi density divided by
1.5 for Q;, s [see Eq. (22) and Fig. 3].

The radial wave functions for the Sd state were ob-
tained by means of the tables of Herman and Skillman, '4

whose calculations are based on the Hartree-Fock-
Slater method. '5 The actual determination of the 5d
functions is discussed in Ref. 19, which also gives a
table of their numerical values. The resulting values of
(r s)sq are 3.354u~ ' for Pr and 4.403urr ' for Tm. A
comparison of these results with the corresponding
values of (r ')4j(=5.369uir ' for Pr and 12.86alr ' for
Tm) shows that the Sd wave function is considerably
more external than the 4f function, as was expected.
This difference is responsible for the fact that for 5d,
the radial term I'„a [see Eq. (33)] predominates,
giving a net antishielding, in contrast to 4f, where
I', ,)~F„q~, which results in an over-all shielding
effect.

The calculations were carried out by means of Eqs.
(26)-(33), in which Q;,, = (1/1.5)Q;(Th-F) [Eq. (22)]
and Q;...s was evaluated using the perturbed wave
functions thh'(nl ~ l).

The results are presented in Table VI. As mentioned
above, F„q predominates over F, ~, and gives an anti-
shielding factor E„~ —0.4 in both cases, which is in
good agreement with the experimental determination
of Murakawa. It should be pointed out, however, that
the calculated values of both Rsq and R4r (Ref. 2) do not
include the effect of the exchange terms. Therefore,
the agreement with experiment is meaningful only if

&4 I. IIerman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall Inc., Englewood CliGs, New Jersey, 1963).

» J. C. Slater, Phys. Rev. 81, 385 (1951).
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TAilI, K VI. Values of quantities involved in the calculation of
the atomic antishielding factor Egg for the Pr M and Tm M
excited states. The values of I' and (r ') are in units a~ 3,

K, (1s~ d) == w'(np)g. dr,

I ang

I rag

I total

(r-'&5d

Rang

R,&(total)
t/(t —~t~)

+0.354
—1.643
—1.289

3.354
+0.106
—0.490
—0.384

0.723

+0.428
—2.377
—1.949

4.403
+0.097
—0.540
—0.443

0.693

r

g. (r) —=—,
0

No'(1s)t t'(1s -+ d)r"dr'

+r' ne'(1s) vg'(1s —+ d)r' 'dr'. -(49)

In a similar manner, the exchange term E~(np) is
obtained from Eqs. (12)—(16), with l.= 1 and C= ts.

the exchange terms are relatively small compared to
the direct Coulomb terms, as is the case for Cu 3d
and 4p.

C. Li 2P and 3P

with

Et(ls~ d)
A' s(n . p)

= —(4/3)
(r ')-.

Kt(1s —t d) =— uo'(1s)w(np)gtdr, (51)
In connection with atomic beam measurements on

the excited 2p and 3p states of the lithium atom, "we

have obtained the values of E. for these states. In
carrying out the calculations, it is essential to use
wave functions which approximate as closely as pos-
sible to the experimental values of the energy (ioniza-

tion potential) and of (r-') „(n=2 or 3). For this

rcRson, we hRvc CRleulRtcd thc VRlcnec w'Rvc functions

w(2p) and w(3p) by integrating the Schrodinger equa-
tion in the effective potential obtained by Seitz."This
potential was determined from the condition that it
should reproduce the experimental spectroscopic eigen-

values of the lithium atom. The resulting functions

w(2p) and w(3p) are tabulated in Ref. 19. The calcu-
lated values of (r ') „are very close to the values

deduced by Marcus and Novick" from the experimental
6ne structure and magnetic hyperfine structure. Thus
for 2p, (r ')„t,——0.06494trII ', as compared to (r '), „
=0.06451aII '. Similarly for 3p, the calculated and

experimental values are 0,01983m~ ' and 0.01909@11 ',
respectively.

For the 1s electrons, we used the same wave funct, ion

as was employed by James(' namely

gb(r) = ~)—'(1—s —+ d)w(np)r'dr'
r2 0

+r vt'(1s -+ d)w(np)r' 'dr' (52).

K, (1s—e d) =K,,;„t+K...„ (53)

The resulting values of E~, R~, and the total R
(=Eo+Rx) are presented in Table VII. This table
also includes the values of the correction factor
1/(1—E), as well as (r ')„„(calc) and (r ') „(exp). It
is seen that. both for Li 2p and Bp, the shielding due to
the direct term E~ predominates over the smaller

(negative) exchange term Ex, thus leading to a net
shielding effect. The correction factors 8=1/(1—E)
are practically the same for the two excited p states,
and the values of Q(Li) should be increased by about

10% to take into account the shielding effect.
If we denote the two terms on the right-hand side

of Eq. (49) by g, ,;„, and g...„„respectively, we can
write

no'(1s) =2Z,3"r exp( —Zor), (45) where

with Z0=2.69. For such a hydrogenic wave function,
~~'(ised) is given by

+e, int— w'(np) g.„,dr, (54)

g 3/2

t t'(is —+ d) = Ll+ (Z0/3)rj exp( —Zor) . (46)
3

Ke,ext= w (np)ga, extdr. {55)

The direct interaction term of E. can be obtained
from Eqs. (2), (3), (8), and (10), with c(ns-+ d)=8/5.
We thus find

8K, ( l+sd)
Rn (np) =—, (47)

&6 F. Spritz, Phys. Rev. 47, 400 (1935); W. Kohn and N. Ros-
toker, ibjd. 94, 1111 (1954).

2' H. James, J. Chem. Phys. 2, 794 (1934).

Each of the two terms E,;„t and E,, t makes a con-

tribution to R&(np) )see Eq. (47)j.
For 2p, these two terms of ED are 0.1682 and 0.0137,

respectively, which shows that the integral, i.e., g, ;„tfor
which the ls —t d density No'vq' lies inside the 2p
electron makes the predominant contribution to ED.
This was, of course, to be expected since the is wave

function is localized close to the nucleus {maximum of
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Ns' at, r=l/Zp=0. 37air), whereas the 2p function is

quite external (maximum at r =3.8arr).

TABLE VIII. Values of terms of the shielding factor R for the
is'2s2p 'I' state of beryllium. The value of y„(is'2s') pertains to
the atom in the ground state.

D. Be 2s2P 'P Excitation Total

In connection with atomic beam measurements on
the excited sP state of beryllium (with configuration
1s'2s2p) by Blachman and Lurio, " we have obtained
the value of R for the 2s2p configuration, using the
Hartree-Fock wave functions obtained by Hartree. "In
the same manner as for I.i and Cu, we have included
both the direct and the exchange terms.

The equations used to obtain R&(2p) and R&(2p)
are completely similar to those used for lithium [Eqs.
(47)—(52)],with one exception, namely that for 2s —+ d,
the coefficient of E,(2s~ d)/(r s)» [see Eq. (47)] is

4/5 instead of 8/5, since there is only a single 2s

electron for the state considered.
The perturbed wave functions et'(Is ~ d) and

vt'(2s —+ d) were obtained from the following equation,
which is a special case of Eq. (5):

d' 6 us'(es)
+—+Vs—1's vt'(ns —+ d)=—,(56)

dy y yiQ

TABLE VII. Values of terms of the shielding factor R for the
2p and 3p excited states of lithium. The values of (r ') „are in
units uII '.

State

R~
Rg
R (total)
1/(1 —R)
(r 3)„„(calc)
&y ') ~(em)

Ll 2p

0.1819
—0.0663

0.1156
1.131
0.06494
0.06451

Ll 3p

0.1734
—0.0744

0.0990
1.110
0.01983
0.01909

in which Vs Es is obta—ined from us'(Ns) by means of

Eq. (7) (with l=0). Equation (56) was integrated
numerically on the CDC-6600 computer, using the
machine program described above (in Sec. IIA). Tables
of the wave functions vt'(ns —+ d) are given in Ref. 19.

The results of tlie calculations of ED, R~, and R

(total) are presented in Table VIII. The second and
third columns list separately the contributions of 1s—& d

and 2s —&d, respectively; the last column gives the
resulting total values for ED, Eg, and E. The final
value of Ris +0.040, and. hence the correction factor
8= 1/(1—R) = 1.042.

It is seen from Table VIII that for Be, the total ex-
change term (—0.1214) almost cancels the direct term
(0.1613), which leads to a very small amount of net
shielding. The reason is that there is a great deal of over-

lap between the 2s and 2p wave functions, and as a

RD

R8
R (total)
1/(I —R)

0.1296
—0.0579

0.0717

0.1883

0.0317
—0.0635
—0.0318

0.8062

0.1613
—0.1214

0.0399
1.042
0.9945

result the exchange term pertaining to nt'(2s~ d) is

relatively large, and actually exceeds the direct (shield-

ing) term by a factor of 2 (see Table VIII). However,
for 1s —+ d, the situation is reversed [Rn) ~R~~], and

upon taking the sum of the two contributions (1s and
2s), one finds the small net shielding factor R=+0.040.
It should be noted that the exchange terms of E are
theoretically somewhat uncertain, ' and therefore one
can conclude only that for Be 2s2p, the value of R is

small, of the order of 0.05, and probably shielding. It
is possible that a more reliable calculation of R for
beryllium could be carried out by using the unrestricted
Bar tree-Fock method. "

In the same manner as in Eqs. (53)—(55), we can
write Rii(ass ~ d) as a sum of two parts: RD, ;„& and

RD,,„~, which arise from the integrals E„;„tand E,, t,,
respectively. As expected, for 1s—+ d, the internal con-
tribution predominates (Rii, „„i=0.1169,Rii,.„i=0.0127),
whereas for 2s —+ d, the two contributions are of the
same order of magnitude (RD, ;„„——0.0171, RD, , „
=0.0146), because of the large amount of overlap of
u '(2s) and No'(2p).

III. SUMMARY

In the present paper, we have given the results of
calculations of the quadrupole shielding (or antishield-

ing) factor R for several excited atomic states. The
calculations of R for Cu 3d'4s' and 3d"4p and their
agreement with the experimental data' ' provide a very
good confirmation of the existence and method of cal-
culation of the atomic shielding and antishielding
effects. The test of the theoretical values of E is espe-
cially accurate for Cu, since the experimental uncor-
rected values of Q are known with an uncertainty of
only 2%, whereas the size of the total induced effect
is larger than 40%.

A further point of agreement concerns the fact that
the values of E5~ for Pr and Tm were found to be
antishielding (Rss —0.4) and of the same order of
magnitude as the values required by the experimental
determinations of Murakawa' for the neighboring ele-

'8D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London}
A154, 588 (1936).See also D. A. Goodings, Phys. Rev. 123, 1706
(1961}.

'9 R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955);
R. E. Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963);
A. J. Freeman and R. E. Watson, ibH. 131, 2566 (1963); 132,
706 (1963}.
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ments, lanthanum and lutetium. This result for E5~ is
in contrast to the shielding effect for the 4f ground
state (R4f +0.2) which was previously obtained in

Ref. 2, and which is also in agreement with the experi-
mental determinations' for the 4f electrons.

Finally, the results for Li 2p and 3p, and for Be 2p
indicate a small shielding effect (R 0.1), and place an
upper limit on the correction factors 8=1/(1—R) to
be applied to the values of Q derived from the hyperfine
structure of these states.
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Optical emissions produced in collisions of protons and hydrogen atoms incident on nitrogen molecules
were studied in the spectral region from 1200 to 6000 A. Relative emission cross sections were measured in
the energy range from 10 to 130 keV. The prominent features of the nitrogen spectrum below 2000 A were
the Lyman-o, line and atomic nitrogen lines. The Lyman-Birge-Hop6eld system appeared also, but it was
weak. At the longer wavelengths, the N2+ first negative and the N& second positive systems dominated the
spectrum. Relative emission cross sections for the production of the erst negative bands in collisions of
hydrogen atoms with nitrogen molecules were nearly constant as a function of energy, and at an energy of
40 keV the cross section was one-half as large as the cross section for proton collisions. The cross section
for the second positive band due to hydrogen-atom impact was about 3X10 ' cm' at 25 keV, whereas
for proton impact the cross section was about 2)&10 "cm' at its maximum value. The cross sections for the
atomic nitrogen lines produced in hydrogen-atom impact were approximately 75% of the cross sections for
the same lines produced in proton impact. Hydrogen-atom collisions had higher cross sections throughout
the energy range for the production of Lyman-0. emission.

INTRODUCTION

1
~~NE method for studying collisions between two

systems is to measure the photon energy which
is emitted in optical transitions resulting from the
collision. For particular cases, a measurement of the
photon emission provides a direct means of obtaining
cross sections for exciting atomic and. molecular states.
A comparison of these experimentally obtained excita-
tion cross sections with theoretical predictions can assist
in understanding collision mechanisms.

Atmospheric research indicates that fast protons are
entering the atmosphere and contribute to the produc-
tion of auroras. ' Because of the charge-exchange process
whereby protons pick up electrons from atmospheric
gases, there would also be fast hydrogen atoms present.
It is evident from the work of Allison and others' that

*Supported in part by the National Aeronautics and Space
Administration under the Sustaining University Program, Grant
No. NsG-430.

t National Science Foundation Science Faculty Fellow on leave
from Concordia College, Moorhead, Minnesota.

1 A. B.Meinel, Astrophys. J. 113, 50 (1951).' S. K. Allison. Rev. Mod. Phys. BO, 1137 (1958).

the equilibrium fraction of hydrogen atoms produced in
charge exchange is significant for projectile energies of
a few keV to 100 keV. It is of interest, therefore, to
determine the effectiveness of the hydrogen atoms in
exciting the atmospheric gases and also their contribu-
tion to the auroras. The knowledge of hydrogen-atom
excitation cross sections is also important in studying
the history of a proton entering the atmosphere.

For these reasons optical emissions produced in
collisions of protons and hydrogen atoms with nitrogen
molecules have been studied. Spectral scans of the
light emitted in the collisions of protons with nitrogen
gas in the spectral region from 1200 to 6000 A indicated
which transitions of the molecules, of the atoms and
ions originating from molecular dissociation, and of the
incident particle produced su6icient light intensities
for emission cross-section measurements. The results

of the scans led to relative emission cross-section mea-

surements for the production of the N~+ first negative

band system (8'Z„+-X'Z,+), the Nz second positive
band system (C'II„-B'lI,), atomic and ionic nitrogen

lines, and the Lyman o. line. The emission cross sections


