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The atomic shielding (or antishielding) factor R for the quadrupole hyperfine structure has been evaluated
for several excited atomic states. The values of R were determined by means of the perturbed wave functions
o1'(nl — I') as obtained by solving the inhomogeneous Schridinger equation for each type of excitation of
the core electrons by the nuclear quadrupole moment Q. For the case of copper, the calculations provide a
quantitative explanation of the fact that the values of Q(Cu®) obtained from two different excited con-
figurations (3d*4s?and 3d1%4p) differ considerably from each other (by 240%), when the correction factor
1/(1—R) is not applied. The calculated values of R, namely Rss=+0.178 (shielding) and Rsp=—0.175
(antishielding), bring the two corrected values of Q into very good agreement. We thus obtain Q(Cu®)
= (—0.19540.004) X 1072 cm?. Besides the work on Cu 3d and 4p, the following calculations have also been
carried out: (1) Rs, for the 5d states of Pr and Tm; (2) Rsp and Rsp, for the 2p and 3p states of Li; (3) R.,

for the 252p 3P excited state of beryllium.

I. INTRODUCTION

HE purpose of the present paper is to give the
results of calculations of the quadrupole shielding

(or antishielding) factor R for several atomic states.!?
The factor R represents the change in the hyperfine
structure interval b for atomic states due to the quadru-
pole moment induced in the electron core by the
nuclear quadrupole moment (. Thus & can be written

as follows: b=by(1—R), M

where by (which is proportional to () is the value
which & would have in the absence of the induced
effects in the core. The calculated values of R are
generally in the range from —0.3 to 0.3 where
positive R corresponds to shielding [see Eq. (1)].
Values of R have been previously obtained in several
papers.!—® Even before last year (1966), there had
already been some good experimental evidence which
supports the calculated values of R. This evidence
concerns the following cases: (1) the 4f state of the
rare earths, for which the theoretical value, R~+4-0.2,
is in reasonable agreement with various experimental
determinations?; (2) the 54 and/or 6p states of La'®,
Lu', and Hg®!, for which Murakawa® showed that
values of R;=~—0.4 and Re,=~—0.1 are required to
fit the experimental data; (3) the 52P3,, 6 2Py, and
72Pg, states of rubidium, for which zu Putlitz, Schenck,
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and Schiissler® have obtained evidence for the existence
of an antishielding factor R,,, and its slow variation
with the principal quantum number #.

It has been noticed recently that the quadrupole
moment of Cu®, Q(Cu®) as obtained without ap-
plying the correction factor €=1/(1—R) [see Eq.
(1)] differs considerably,”® depending upon whether
the hyperfine structure is measured in the atomic
excited state with configuration 3d%s? (2D or 2Dy2)
or in the excited state 3d%4p (*P3,). According to
two recent high-precision experiments,”® Q [from
3d%s? (2D5;2) 1= (—0.16140.003) X 102 cm?, whereas
Q [from 3d4p (2P32)]= (—0.22820.005)X 10-* cm?.
It was pointed out by Fischer, Hithnermann, and
Kollath® that the large difference between these two
values (a factor of 1.42) may be due in large part to
the fact that the correction factor @,;=1/(1—R,;) is
appreciably different for the 3d electron hole and the
4p electron in the two excited states.

In the present work, we have carried out an accurate
calculation of R for these two states of the copper atom
(including the exchange terms of R). The result is that
(1—=R4p)/ (1—R3q)=1.429, in very good agreement with
the experimental ratio of the two uncorrected values
of Q(Cu®), The comparison between theory and ex-
periment for Cu thus provides a very good confirmation
of the existence of the atomic shielding effect.

It may be noted, by way of contrast, that the induced
effects for ions,® represented by the ionic antishielding
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factor 7., are much larger (y,~10—100), and for this
reason it was much easier to verify them experimentally,
as has been done in a number of experiments.?

In addition to the calculations for Cu, we have also
obtained the theoretical values of Rz; for Pr and Tm
(for comparison with the work of Murakawa’) and
also of Ry, and R;, for Li and R for Be 252p 3P, in
connection with atomic beam measurements of the
hyperfine structure of lithium'! and beryllium.!

II. CALCULATIONS OF R
A. Cu 3d%s® and 3d'%p

As has been previously discussed by the author,?
the atomic shielding (or antishielding) factor R is ob-
tained by the use of suitable functions vyang(r) and
Yraa(r) which are defined as follows. We introduce a
function y(#l — I’; r) of the distance » from the nucleus,
by the equation

1 r
y(nl—1; r)E-Q—[ﬁ Qi(nl —: dr'+r
X / 0i(nl—> l’)r'“5dr’:| @

where Q;(nl— 1) is the density of induced moment
pertaining to the excitation (nl— ') of the nl shell of
the core. Q; (nl — ') is given by

Qi(nl— V)y=c(nl — U)Quy (nl)vy ml— )2, (3)

where c¢(nl— ') is a coefficient arising from the inte-
gration over the angular variables and the summation
over the magnetic substates of the shell #nl; uy (1l) is 7
times the unperturbed radial wave function, normalized

according to
o0

/ uddr=1. @)
0

In Eq. 3), v/(wl— 1) is the radial wave function
pertaining to the excitation (nl—1); v/’(wl—1) is
determined by the following equation:

a Ui+
[———+
dr? 7

+Vo— Eo:|'01' (nl—1)

S RS

and by the orthogonality condition (for /'=1)

)

/ ud (nl)vy (nl— )dr=0. (6)
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In Eq. (5), V, is the effective (unperturbed) potential
pertaining to the state nl, and E, is the unperturbed
energy eigenvalue. According to a method previously
employed by the author,}21 Vo—E, is obtained from
the function %y’ (1) by means of the relation

1 dug 10+1)
Vo"- Eo= I - . (7)

uy dr? 72

The coefficient ¢(nl — ') in Eq. (3) has the following
values for the various excitation modes of the Cu
atom!?: 8/5 for ns — d and nd — s; 48/25 for np — p;
72/25 for np — f; 16/7 for nd — d; and 144/35 for
nd— g.

The direct interaction of the (ul— 1) perturbed
density with the valence electron is proportional to
the integral T'p(nl—;n.d,), which is defined as
follows:

Tp(l—1snd)=y(nl—157)/1)a,

]

- / (= U A[wnd) Prdr, (8)

where w(n,) is 7 times the radial part of the valence
electron wave function (with quantum numbers #.l,),
normalized in the same manner as #,’ [Eq. (4)]. Thus,

/ " Cond) Pdr=1. ©)

In the following, for simplicity of notation, we will
often refer to w(n.l.) simply as w.

The direct (i.e., nonexchange) contribution of R from
the perturbation (! — ') is given by

Toml—1;nl,)

Rp(nl—1;nd,)=
<r-3>"cle

, (10

where

0

= / wiridr. (11)
0

The exchange interaction of (#l—1') with the
valence electron involves the following integral (for
one or more values of L):

Knl—U;nd,; L)E/ ud (m)wnde)grdr, (12).
0
where g, is given by
1 4
gr(nl—1U;nde) =—/ vy (nl — I)wr'Ldy’
rIt Jo

]

+rL/ o) (nl — wr'~ Iy’ . (13)

13 R, M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565
(1957); 115, 1198 (1959); 127, 1220 (1962).
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TaBLE I. Coefficients ¢ (lm;I'm') required to obtain the
values of C(nd — g;3;p), C(nd — g;2;d) and C(nd — g; 4; d).

Note that ¢® (2m; 4m) =c® (dm; 20)

Coefficient Value
¢ (20; 40) 6/L7(5)v2]
¢ (21;41) 612/7

¢ (22; 42) 312/7

¢® (40; 10) 4(3)12/21
¢® (41; 10) 51277

¢® (42; 10) 2/7

¢ (40; 20) 20(5)2/231
¢ (41; 20) 17(5)12/231
¢ (42; 20) 8(5)12/231

The interaction energy I'g(nl—'; n..; L), which is
analogous to I'p [cf. Eq. (8)], is given by

Te(nl—U;nd.; L)
=—Cl—=V;nde; L)Kml—U;nd.; L), (14)

where the coefficient C(nl—V;nl.; L) is given by
Eq. (37) of Ref. 2, namely,

Cml—1;nde; L)

1
4 3 c®0Um;Vm)cD (m;lan)c ™ Um;lam,)

m= -l

c® (lgme; lome) )

(s (15)
Finally, the contribution to R due to the exchange
term arising from (#l— ') is given by

Te(ml—1U;n.e; L)
Re(ml— 1 ;nde L)= , (16)
<7—3>“ele

in complete analogy to Eq. (10).
In Eq. (15), the coefficients ¢ (Im;'m’) are the
same as those of Condon and Shortley,** namely,

¢ (Im;U'm")

—[2/QL+1)]" / 0100, singdd, (17)
0

where ©;™ is the spherical harmonic normalized to 1.

The result of Eq. (15) is independent of the value of
m., the magnetic quantum number of the valence
electron. In practice, the expression is evaluated for
the case m,=0, and can then be checked by using
me=-+1.

In order to show how the relevant values of L are
determined, we take as an example the perturbation
(np — f) interacting with an external d electron (or a
single hole in a filled 3@ shell, as is the case for Cu).
The density v (np — f)w(3d) can be written as a sum

14 E, U. Condon and G. H. Shortley, Tkeory of Atomic Spectra
(Cambridge University Press, London, 1935), p. 175.

of three terms which behave as Py, P;, and P, respec-
tively, where Py is the Legendre polynomial. Similarly,
the interacting density #,(np)w(3d) is a sum of two
terms having P; and P; behavior. Hence the electro-
static (exchange) interaction will consist of two terms
having L;=1 and L,=3. This follows from the ex-
pansion of 1/71, in spherical harmonics [see Egs. (25)
and (26) of Ref. 2].

In order to evaluate the coefficients C (nl — I'; n.l,; L)
of Eq. (15), we used the tables of Condon and Shortley™
for the integrals ¢ (Im; I'm’). These tables give all of
the required coefficients for the case of Cu, except for
those involved in the 3d — g excitation of the 3d shell.
For this latter case, nine additional coefficients are
required (for n.,=3d and 4p). Their values are listed
in Table I. In this connection, we note that

¢® (2m; 4m)=c® (dam; 20). (18)

For this reason, the coefficients ¢® (4m; 20) were not
listed separately in Table I.

Table II gives the resulting values of C (nl— 1 ; n.l,; L)
for an atom with filled s, p, and d shells, and with an
external p, d, or f electron (or electron hole). It may
be noted that some of these results have been obtained
previously in Refs. 1 and 2. We also mention that the
table includes the results for C(nf— f;n..; L) with
l;=p, d, or f. Note that

Cl—Vinde; L)=Cul' > l;nde; L).  (19)

Thus, the coefficients for nd — s and #f— p are not

TaBLE II. The coefficients C(nl — I'; nole; L) pertaining to the
exchange terms I'gz(nl —I';nd,; L), where I, is the azimuthal
quantum number of the external (valence) electron. The value
of L (=L, Ly, or Ly) is listed in parentheses after each coefficient.
For I,=3, there is an additional coefficient not given in the table,
namely C(nf— f;n.f; 6)=-500/1287, pertaining to Ls=6.
Note that Cnl —V;nl.; L)=C@ul’ —I;n.; L). Thus the co-
efficients for #nd — s and #nf— p are not listed separately. The
table consists of three parts, corresponding to the case of an
external p, d, or f electron.

ml—1;1,) C (Ly C (Ly) C(Ly)
(s —d: p) 4/3(1)

(mp—>p;p)  4(0) 4/25(2)

(mp— f; )  36/25(2)

md—d;p)  4/3(1) 12/49(3)

(md—g;p)  72/4903)

(mf—f;0)  24/25(2) 8/27(4)

(ns > d; d) 4/5(2)

mp—p;d)  28/25(1) 36/175(3)

mp— f;d)  12/25(1) 144/175(3)

(nd — d; d) 4(0) —12/49(2) 16/49(4)
(nd —g;d)  144/245(2)  40/49(4)

(nf—f;d)  48/25(1)  —88/225(3)  40/99(5)
(ns —d; )  4/7(3)

mp—p;f)  108/175(2)  4/21(4)

(mp— f; f) 72/175(2) 4/7(4)

(md—d; f)  72/49(1)  —44/147(3)  500/1617(5)
mf—f;0)  4(0) 76/225(2) —4/11(4)
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listed separately. The values of L (denoted by Ly, L, Ls)
are given in parentheses after each value of C.

We will now discuss specifically the case of Cu, with
either a 3d electron hole (3d%4s?), or a 4p electron out-
side closed shells (3d°4p). Referring to Eq. (5), the
perturbed wave functions v’ (2p — p), v/ (3p — p), and
9,/ (3d — d), for which /=1, have been previously ob-
tained!® in connection with the calculation of the ionic
antishielding factor v,,(Cut). For the “angular” modes
of excitation, i.e., those with //=/+2, we have previ-
ously carried out calculations of v,/(3d—s) and
91/ (3d — g).1%17 The remaining angular modes, namely
9/ (Is—d), v/ (2s— d), v/(2p— f), v/(3s— d), and
91/ (3p — f) were obtained in the present work. The
solutions were found by inward integration of Eq. (5)
on the CDC-6600 Computer, using a machine program
written by Dr. R. F. Peierls.

As has been previously discussed in Refs. 1 and 2,
for the case =142, the inward integration of Eq.
(5) is carried out with several trial starting values
1/ (r1) at a large radius 7;. The correct value of vy (ry)
is that for which the resulting solution v,"(r) is well-
behaved at the nucleus (r=0). For the (ns — d) per-
turbation, it is easily shown from Eq. (5) that »," has
the following value at r=0: v,/(0)=a,/6, where a, is
given by [#o (#s)/7]r=0. In a similar fashion, for the
(np — f) perturbation, v;"=0 at =0, with the following

slope:
dv;’) as
( dr /o 12°
where a2=[uy' (p)/r*Jr=0. Thus v/ (np — f)= (a2/12)r
near the nucleus.

In the computer program, the correct value at r=0
is specified within very narrow limits, and the computer
is instructed to try a sequence of starting values v/ (ry),
and in each case to compare the resulting v,/(0) with
the predetermined correct value [e.g., a1/6 for ns — d;
or 0 for np — f7]. The procedure is self-correcting, in
the sense that each successive trial value v;’(r1) is based
on a comparison of the previous v;’(0) with the desired
value at the nucleus. The computer program stops the
calculation when two functions v,’(r) have been found,
for both of which #,/(0) differs from the desired v,’(0)
by a very small amount. As an example, for v,/ (3s — d),
two functions were computed for which v,/(0)=5.858
and 5.899, the correct value being 5.875. The actual
solution was then obtained by linear interpolation of
these two final functions. In a similar manner, for
2 (2p — f), where v;'=0.285 at r=0.005 ay [from Eq.
(20)], two functions were found by the computer, with
21/(0.005)=0.2704 and 0.2999. It may be noted that
the values of v/(nl— I4-2) away from the nucleus,
and particularly in the region of the outermost maxi-

(20)

(1;5516{)‘ M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
16 R, M. Sternheimer, Phys. Rev. 127, 812 (1962).
17 R. M. Sternheimer, Phys. Rev. 159, 266 (1967).
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v, (3s-+d)
0.8 v, (0)=5.875 4 .00
uy(3s)
0.6}~ -4 0.75
Y - 0.50
I { - Uo
0.2 y3sd) 4 025
(o] (o]
-0.2} --0.25
-0.4}- --0.50
b S TR TR TN T SO T S SR AN S
-0.6 -0.7!
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RADIUS r (a,,)

F16. 1. The perturbed wave function #;(3s —d) and the 3s
function #o(3s) for Cu*. The left-hand ordinate scale pertains
to 91 the right-hand scale pertains to #o.

mum of %o’ (nl), are determined to a very high accuracy
by Eq. (5) (of the order of one part in 10* to 108), for
the given values of Vo—E,. The great stability of the
solution is probably due to the presence of the cen-
trifugal term ' (/’+1)/7? in Eq. (5).

The unperturbed wave functions #o’(#l) used in the
present work were the same as in our earlier calculationst
for Cu, namely the Hartree-Fock wave functions deter-
mined by Hartree.!® The five functions v/ (nl — I+2)
obtained here have been tabulated in a separate paper.?®
This paper also includes tables of 1/ (3d — s), v/ (3d — g),
and the radial modes v’ (#l — !) which have been de-
termined in earlier work.!5-17

As an example of the results obtained, we show the
following perturbed wave functions in Fig. 1 and 2:
9/ (3s — d), v/ (3d — s) and v/(3d — g), together with
uo' (3s) and uy’(3d). Figure 1 shows that v,"(3s — d) has
generally the same sign as the unperturbed ' (3s). In
a similar manner, v/(3¢d — g) and %¢'(3d) have the
same sign, as illustrated in Fig. 2. These two examples
are special cases of a general property of the relative
sign of v/ (nl— I42) and uy (nl), as previously dis-
cussed in Refs. 1 and 2. This property also leads to the
shielding of the nuclear moment Q by the modes
(nl—142).

As shown by Fig. 2, v/(3d — s) has opposite sign
to that of %, (3d) near the nucleus. This feature of the
excitation modes (#d — s) has been previously pointed
out by the author in Sec. III of Ref. 17. It will be seen
below that for a relatively penetrating electron such
as 3d, this feature leads to a small antishielding effect

18D, R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

19 Tables of the perturbed wave functions v,"(#l — I’) obtained
in connection with the present calculations are given in a supple-
mentary paper. This paper also contains tables of the valence
wave functions calculated in the present work, namely w(2p) and
w(3p) for Li, w(4p) for Cu, and w(5d) for Pr and Tm. The supple-
mentary paper has been deposited as Document No. 9592 with
the ADI Auxiliary Publications Project, Photoduplication Service,
Library of Congress, Washington 25, D. C. A copy may be
secured by citing the Document number and by remitting $3.75
for photoprints, or $2.00 for 35-mm microfilm. Advance payment
is required. Make checks or money orders payable to: Chief,
Photoduplication Service, Library of Congress.
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0.3 u,(30) 4 o6
2v,(3d+g)
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I'16. 2. The perturbed wave functions : (3d — s5) and v:(3d — g)
and the 3d function #0(3d) for Cut. The left-hand ordinate scale
pertains to the functions #;; the right-hand scale pertains to uo.

arising from 3d — s. On the other hand, for the more
external 4p electron, the external region (rZlan),
where ,(3d)v1(3d — 5)>0, predominates and leads to
a net shielding effect. The same also holds true for the
contribution v.(3d — s) to the ionic factor v,, which
is shielding (positive), although rather small

[v.(3d— s)=+0.524].

The total induced moment density Q;,ang arising from
the angular modes of excitation (nl— I=42) for the
Cut ion is shown in Fig. 3. The quantity which is
plotted, namely Qs .ne/Q, is given by [cf. Eq. (3)]:

Qi.ang(f')

Q

where the sum goes over all occupied shells %/, and
=142, except for (3d — s), where I =1—2. The values
of Eq. (21) are shown in Fig. 3 as Q;(WF), to denote
the fact that they were obtained from the wave func-
tions vy’ (nl— ). The maxima of Q;(WF) at r=0.1ax,
0.24ay, and 0.9ay correspond to the electron shells
with n=1, 2, and 3, respectively. Furthermore, there
is a barely noticeable inflection point at r~2.0ax,
which is due to the shielding provided by (3d — s).
For comparison, we have also shown in Fig. 3 the
Thomas-Fermi induced moment density, denoted by

Qi(Th-F):
Qi(Th-F) =150 (xx)'*(x/7) , (22)

where X and x are the Thomas-Fermi function and
variable, respectively. We have: x= (Z2'3/0.8853) (r/ax)
=3.470(r/ax) for Cu.

It is seen that Q.(Th-F) overestimates Q.(WF)
throughout the region of 7. As has been previously
discussed,!? the use of (1/1.5) times the Thomas-Fermi
density gives a reasonably good approximation to the
angular part Rune of R, as obtained from the actual
wave function calculations. For this reason, we have
also shown a plot of (1/1.5)Q:(Th-F) in Fig. 3. This
curve cuts rather evenly through the maxima and

S ol — Uud (nl)v (nl— 12, (21)

nl
V=132

2R, M. Sternheimer, Phys. Rev. 80, 102 (1950).
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minima of Q;(WF) which are due to the atomic shell
structure, as was to be expected from the preceding
arguments.

It may be noted that the contribution of (nl— 1)
to the ionic antishielding factor v,(Cut) is given by

Yol — 1) =c(nl— l’)/ uy (m)vy (nl — U)r2dr.  (23)
0

The values of v, (#l — I') (which are also listed in Ref.
19) are as follows: (1) for the radial modes: v, (2p — p)
=—0.618,7.,(3p — p)=—17.995, v,,(3d — d) = —8.306,
which gives a total v,,(rad)=—16.92; (2) for the angu-
lar modes: v, (1s — d)=0.02377, v,,(2s — d)=0.05942,
Y (2p—> 1)=0.08100, v, (35— d)=0.1592, ysr(3p — f)
=0.2439, 7,,(3d — 5)=0.5244, 7.,(3d — g)=0.3719, 50
that the total y,(ang) = —+1.464. Finally, we obtain for
the total v, of the Cut ion:

vo(Cut)=—16.92+1.46=—1546.  (24)

Wewill nowdiscuss the calculation of I'p (nl— I’ ; n.l,)
and Tg(nl—1U;nd.; L) from the wave functions
v’ (nl—1'), using Egs. (2), (8) and (12)-(14). We
note that the integrals involved in both I'p and I'y, are
special cases of the following general type of double
integral:

0| 1 r
— . £ LI
IL——-‘/O l:rL+l/; f1f21’ df

+rt /T ) Jif zflmL_ld":lf sfadr, (25)

where f1, fe, f3, f4 are four arbitrary functions of the
radius 7.

We obtain the integral for I'p by taking: fi=wu (#l),
fo=v/(nl—1); fi=fi=w(nd,), and L=2. On the
other hand, for 'y we must take: fi=v/(nl—1);
fo=wnde); fa=ud (ml); fa=w(nd.); and L has any
of the values Ly, Lo, or L; listed in Table II.

0.9 T T T T T
Qj,ang FOR Cu* B

o
@
T
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ey
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Q,(Th-F) B
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0.5( ,
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0.2 Q (WF)

0.1 |- -

INDUCED MOMENT DENSITY Q o, /Q
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F16. 3. The induced moment density Qiang (in units of Q)
pertaining to the angular modes of excitation (I'=I%2) of the
Cut ion, The curve marked Q;(WF) shows the result obtained
from the calculated wave functions v’ (wl — I') [Eq. (21)]. The
curves marked Q;(Th-F) and (1/1.5)Q:(Th-F) were obtained
from the Thomas-Fermi expression for Qs ang [EQ. (22)].
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There are altogether 10 perturbed wave functions
v/ (nl—1') (7 with ’=142; 3 with I’=1[). Hence the
total number of integrals involved in the terms I'p
(nl—1'; ndl.) for both #l.=3d and 4p is 20. In addi-
tion, it can be easily shown by means of Table II that
the number of exchange terms I'g(nl— ' ; nl.; L) is 17
for 3d and 13 for 4p, giving a total of 50 integrals
(both direct and exchange).

In our previous calculations of R, in which only the
direct terms were included (with some exceptions), it
was not necessary to evaluate the separate terms
Tp(nl—1;nl.,). Instead, we had defined two func-
tions Yang (7) and yraa(7), as follows:

iF o -
'Yang(’)—:—a[/ Qi,axxgd7/+75/ Qi,ang"’_sd"l] y (26)
0 r

1r »
Yrad (7') 55[/ Qi,raddr’+r5/ Qi,radrl—adr,} ) (27)
0 r

where Qi,ang (7) is given by Eq. (21), and similarly
Qi,rad (7‘)

=3 c(nl— Duy (n)vy (nl — 1)72,

nl

(28)

where the sum extends over the filled p and d shells
of the ion. The total correction factor R (excluding
exchange terms) is now given by

R= Rang+ Rrad ’ (29)
where
Rungm (30)
ang™ 3
¢ (7_3>n,le
Frad ( )
Riaa= ) 31
. (r—3>”¢ le
with
| —— / Yang ()W 3dr (32)
0
I‘ra.d = / Yrad (7)1027’-3617 . (33)
0

Equations (26)-(33) show that if one is considering
the direct interaction alone, it is not necessary to
evaluate the individual terms I'p(nl — U’; #.l,) in order
to obtain the total R. The reason is, of course, that the
direct interaction involves only the total induced
density : Qi,ang+Qi,rad.

However, the preceding procedure will obviously not
work for the exchange terms I'g(nl — V'; n.l.; L), each
one of which has to be evaluated separately. The cal-
culation of the double integral I [Eq. (25)] was
programmed for the CDC-6600 computer by Dr.
R. F. Peierls. The computer program was basically
straightforward. The integrations were carried out
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TaBLE IIL. Values of T'(nl —1';3d) (in units ax™®) for the
angular modes of excitation of the copper atom in the state
3d%s? (I =1+2).

Excitation Direct Exchange Total
T'(ls —d; 3d) 0.1743 —0.0057 0.1686
T'(2s —d;3d) 0.2731 —0.0766 0.1965
T'(2p— f;3d) 0.4193 —0.0910 0.3283
T'(3s —d; 3d) 0.1304 —0.0501 0.0803
T@p— f;3d) 0.2039 —0.0739 0.1300
T'3d —s; 3d) —0.0953 +0.0476 —0.0477
T'3d — g; 3d) 0.2181 —0.0576 0.1605
Sum 1.3238 —0.3073 1.0165
Rang(3d) 0.1760 —0.0409 0.1351

using Simpson’s rule. However, it should be noted that
if the values of fi and f» [Eq. (25)] are specified on a
grid: 0, 7/, 7o/, 7y, - -rn_t/, r&’ (i.e., the set of 7 values
corresponding to the tables of Ref. 19), then the inte-
grals over 7’ will be obtained only at the points r=r,,
74, » -7y_2, 75 (assuming that N is even). Therefore, in
order not to lose accuracy in performing the second
integration (over r), it is necessary to carry out an
interpolation procedure so as to obtain the values of
the first integral at #y, 73, 75, + -#y—1. For this reason,
two features were incorporated into the program: (1)
An interpolation was carried out to obtain the values
of the first integral at rq, 73, etc., so that the grid for
the two integrations was always the same. In addition,
the number of points for both integrations could be
increased. As an example, it was possible to use twice
the number of points on the first integration over fifs,
by interpolation on fifs, i.e., at 37/, 3(r/4ry),
2(ro/+ry), - -. Then the interpolation was repeated on
the integral over fif,, which was thus also obtained for
r=3ry, 3 (r1-+7s), 3 (r2+7;), and subsequently Simpson’s
rule was used for this finer mesh to obtain I. (2) As
concerns the method of interpolation, both quadratic
and cubic interpolation were employed.

In practice, an integral (for a given type of inter-
polation) required about 4 sec of CDC-6600 computer
time. For each type of integral I, (i.e., given functions
fi and value of L), two integrations were carried out:
(1) I, obtained with the same number of points as
the original wave function set of » values, and using
quadratic interpolation; (2) Ir,. calculated with twice
the number of mesh points and using cubic interpola-
tion. The two results I1,; and Iy,s for each integral I,
differ generally by less than 19, (and usually by a few
parts in 10%), which confirms the accuracy of the
integration program.

In Table IIT (pertaining to the angular modes only),
we have listed the resulting values of I'g(nl— I'; 3d)
defined as follows:

Te(nl—1U;3d)= 3 Tenl—1U;3d; L),

Lg¢

(34)

where the sum goes over the L; values listed in Table II.
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Tasre IV. Values of T'(nl —1'; 4p) (in units ax™®) for the
angular modes of excitation of the copper atom in the state
3d%4p (' =14-2).

Excitation Direct Exchange Total
T'(ls - d;4p) 0.01493 —0.01019 0.00474
T'(2s — d;4p) 0.00575 —0.00046 0.00529
T'(2p— f;4p) 0.01034 —0.00210 0.00824
I'3s —d;4p) 0.00599 —0.00080 0.00519
T@p— f;4p) 0.00942 —0.00114 0.00828
T'@3d—s; 4p) 0.00836 —0.00708 0.00128
T'3d — g; 4p) 0.01208 —0.00112 0.01096
Sum 0.06687 —0.02289 0.04398
Rang(49) 0.0524 —0.0179 0.0345

As an example, we have

Ig(np— f;3d)=Tg(np— f;3d;1)
+Te(np— f;30;3),

where the coefficients C of the two terms on the
right-hand side have the values 12/25 and 144/175,
respectively.

The last column of Table III gives the corresponding
values of the total I'(nl — I’; 3d) defined by

(35)

I'(nl—1';3d)=Tpul—1';3d)+Tr(nl—1;3d). (36)

The bottom row of the table lists the direct and ex-
change terms of Rgng(3d). These results were obtained
by dividing the entries of the preceding row (marked
“Sum”) by (r*)s¢=7.52ax%. This value of (r—3)3s was
calculated from the Hartree-Fock 3d wave function.!s

Table III shows that except for 3d— s, all of the
direct terms are shielding, whereas the exchange terms
provide an antishielding, which, however, is quite weak
(less than % of the dominant shielding term). For
3d— s, the signs of the two effects are reversed. The
reason for the negative value of I'p(3d — s;3d) has
been discussed above in connection with the negative
sign of v//(3d — s5) near the nucleus (see Fig. 2).

The value of the total direct term Ryng(3d; direct)
=--0.176 can be compared with the value

Rung=2.02/7.52=0.269

which was previously deduced* by using the Thomas-
Fermi expression? for Q; ang [Eq. (22)]. The factor by
which the two results differ is 0.269/0.176=1.53, and
this confirms our previous discussion,'* according to
which the statistical model overestimates Rang by a
factor of ~1.5 (see Fig. 3).

For the 4p electron in the excited 3d4p state, we
used a modification of the Hartree-Fock wave function
obtained by Synek.? The modification consisted in
using a slightly more internal wave function which

21 R. M. Sternheimer, Phys. Rev. 105, 158 (1957). See Table I
on p. 159.
an. Synek, Phys. Rev. 131, 1572 (1963).
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would reproduce the experimental value of (r=%).,
=1.276a57%, as deduced by Elbel® from the measured
fine structure. The determination of w(4p) is discussed
in Ref. 19, which also includes a table of values of
w(4p).

Table IV (which is completely similar to Table IIT)
pertains to the interaction of the angular modes %l — !
=2 with a valence electron in the 4p state. In analogy
to Eq. (34), the total exchange term I'g(nl— I'; 4p) is
given by

Teml—1U;4p)= > Tl —1V';4p; L;). (37)
Ls

The contributions to Rne(4p) given in the bottom row
of the table were obtained by dividing the sum of the
I' terms (I'p, T'g, or T') by (r3)4,=1.276a;72.

It is seen that all of the terms I'p are positive
(shielding), whereas the exchange terms I'y are anti-
shielding. The net contribution of the angular terms,
Ring(4p) is still shielding (=0.0345), although it is much
smaller than the corresponding Ry, (3d) (=0.1351).

In Table V, we have listed the results for the terms
due to the radial modes, for both 3d and 4p. For the 3d
case, the sum of the direct terms I'p is —0.108a572, in
good agreement with our previous result?! (—0.12a¢573),
as was expected. The total direct term Ry,q (3d; direct)
is very small, as a result of the near-cancellation of the
contributions from 2p — p, 3p — p, and 3d — d. This
result was previously noted in Ref. 21 (see p. 161). The
sum of the exchange terms I'p(nl— [; 3d) provides a
small shielding, which is numerically larger than the
direct term, resulting in a net shielding Ry,q(3d) = 0.0426.

Thus the total R factor for the 3d%4s? state becomes

R (3d> = Rzmg(sd) +Rrad (3d)
=0.135140.0426=0.1777, (38)

which amounts to an appreciable net shielding.

Referring now to the second part of Table V, which
pertains to 4p, we find that the direct terms result in
an appreciable antishielding, mainly on account of the
external character of the 4p wave function. The ex-
change terms reduce this effect somewhat, but the
resultant total Riq(4p)=—0.2097 is still definitely
antishielding. The antishielding which has been ob-
tained from the direct radial terms for 4p is similar
both in origin and in magnitude to the antishielding
which has been previously calculated for the np excited
states of the alkali atoms.

Finally, from Tables IV and V, we obtain for the
total R factor of 3d"%4p:

R(4f)) = Rang (4P) +Rmd (4]))
=0.0345—0.2097=—0.1752. (39)

% M. Elbel, quoted by W. Fischer, H. Hithnermann. and K. J.
Kollath, Z. Physik 200, 158 (1967).
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As was discussed in the Introduction, the ratio of
the two uncorrected values of Q is

0(3d4p) —0.228-:0.005

= =1416£0.04. (40)
0(3d%s?) —0.161=-0.003
The theoretical value of this ratio is
1—R(@4p) 1.175
p_=D 29, (41)

1—R(3d) 0.822

in very good agreement with the experimental result
[Eq. (40)]. .

Another way of showing the agreement is to calculate
the corrected values of Q from the hfs of both states.
We thus obtain from 3d%4s?:

0.161=£0.003
=——— = 0.196:0.004b, (42)
0.822
and from 3d"%4p,
0.228--0.005
= =—0.194:0.004 b,  (43)
1.175

The good agreement which has been obtained gives
support to the assumption that the difference between
the two uncorrected values of Q(Cu®) is indeed due to
the shielding and antishielding effects produced by the
Cut core. We thus obtain: Q(Cu%)=—0.19540.004 b
and Q(Cu®)=—0.21140.004 b.

It may be noted that the influence of the exchange
terms on the final result, Eq. (41), is quite small
Thus, from Tables ITI-V, one finds for the values of
R without exchange (i.e., including only the direct
terms) : Rp(3d)=0.1616, Rp (4p) = —0.2266, which give

1—Rp(4p) 1.227
1—Rp(3d) 0.838

1.464. (44)

This value is quite close to our previous result (1.429),
from which it can be concluded that the effect of the
exchange terms is rather unimportant in the present
case.

B. Pr 5d and Tm 5d

For praseodymium and thulium, we have previously
obtained? the shielding factor R for the 4f electrons in
the ground state. The results of this calculation are
given in Table VII of Ref. 2. They indicate a small
shielding R~0.13, in reasonable agreement with various
experimental determinations using the Mossbauer
effect.

As discussed above, Murakawa’ has shown that for
the 5d states of La’® and Lu!"5, the spectroscopic hfs
data require the presence of a rather strong anti-
shielding, namely R;;=~— 0.4. Since lanthanum (Z=>57)
and lutetium (Z=71) are at the two ends of the rare-
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TaBLE V. Values of I'(nl — 1; 3d) and T'(nl — I; 4p) (in units
(&1’1"3)0 for the radial modes of excitation of the copper atom

Excitation Direct Exchange Total
T'(2p— p; 3d) —1.973 +1.532 —0.441
T(3p— p;3d) +1.177 —1.114 +0.063
r3d —d; 3d) -+0.688 +0.011 +4-0.699
Sum —0.108 +0.429 +0.321
Rraa(3d) —0.0144 +4-0.0570 +4-0.0426
T(2p— p;4p) —0.0297 —0.0002 —0.0299
T(3p— p; 4p) —0.1871 +-0.0004 —0.1867
T(3d —d; 4p) —0.1392 -+0.0882 —0.0510
Sum —0.3560 +0.0884 —0.2676
Reaa(49) —0.2790 +0.0693 —0.2097

earth region, it seemed of interest to calculate Rjq for
the neighboring elements: Pr (Z=59) and Tm (Z=69),
in order to see whether agreement with a value of the
order of —0.4 could be obtained.

The determination of Rsq for Pr and Tm did not en-
tail an excessive amount of calculation, because the per-
turbed wave functions for the radial modes v,/ (nl— 1)
had been previously obtained,?? in connection with the
calculation of v, and of R4s. In the same manner as in
Ref. 2, we used the Thomas-Fermi density divided by
1.5 for Qi,ang [see Eq. (22) and Fig. 3.

The radial wave functions for the 5d state were ob-
tained by means of the tables of Herman and Skillman *
whose calculations are based on the Hartree-Fock-
Slater method.?s The actual determination of the 54
functions is discussed in Ref. 19, which also gives a
table of their numerical values. The resulting values of
(r—3)sq are 3.354ayx~? for Pr and 4.403a57% for Tm. A
comparison of these results with the corresponding
values of (r—%)4;(=5.369a5~% for Pr and 12.86ax~2 for
Tm) shows that the 5d wave function is considerably
more external than the 4f function, as was expected.
This difference is responsible for the fact that for 5d,
the radial term I'y.qa [see Eq. (33)] predominates,
giving a net antishielding, in contrast to 4f, where
I'ang> |Traa|, which results in an over-all shielding
effect.

The calculations were carried out by means of Egs.
(26)-(33), in which Q;,ang= (1/1.5)Q:(Th-F) [Eq. (22)]
and Qir.a Was evaluated using the perturbed wave
functions 1’ (nl — 1).

The results are presented in Table VI. As mentioned
above, I'raq predominates over I'nyg, and gives an anti-
shielding factor Rraa~—0.4 in both cases, which is in
good agreement with the experimental determination
of Murakawa.5 It should be pointed out, however, that
the calculated values of both Rsq and R4y (Ref. 2) donot
include the effect of the exchange terms. Therefore,

the agreement with experiment is meaningful only if

2 F, Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1963).
% J. C. Slater, Phys. Rev. 81, 385 (1951).
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TasLE VI. Values of quantities involved in the calculation of
the atomic antishielding factor R;¢ for the Pr 5d and Tm 5d
excited states. The values of I and (%) are in units ag™®.

State Pr 5d Tm 5d
Tang +0.354 +0.428
I'raa —1.643 —2.377
T'total —1.289 —1.949
)sa 3.354 4.403
Rang -+0.106 +0.097
Rraq —0.490 —0.540
Rsa(total) —0.384 —0.443
1/(1—Rsq) 0.723 0.693

the exchange terms are relatively small compared to
the direct Coulomb terms, as is the case for Cu 3d
and 4p.

C. Li2p and 3p

In connection with atomic beam measurements on
the excited 2p and 3p states of the lithium atom," we
have obtained the values of R for these states. In
carrying out the calculations, it is essential to use
wave functions which approximate as closely as pos-
sible to the experimental values of the energy (ioniza-
tion potential) and of (r3),,(n=2 or 3). For this
reason, we have calculated the valence wave functions
w(2p) and w(3p) by integrating the Schrédinger equa-
tion in the effective potential obtained by Seitz.2¢ This
potential was determined from the condition that it
should reproduce the experimental spectroscopic eigen-
values of the lithium atom. The resulting functions
w(2p) and w(3p) are tabulated in Ref. 19. The calcu-
lated values of {(r3),, are very close to the values
deduced by Marcus and Novick!! from the experimental
fine structure and magnetic hyperfine structure. Thus
for 2p, (r®)eac=0.06494az73, as compared to (%) exp
=0.06451ay~%. Similarly for 3p, the calculated and
experimental values are 0.01983a;~* and 0.01909ax %,
respectively.

For the 1s electrons, we used the same wave function

as was employed by James,?” namely
o (15)=2Z¢"% exp(—Z), (45)

with Zo=2.69. For such a hydrogenic wave function,
v/ (1s — d) is given by

203/2

3

v/ (Is—d)= [14 (Zo/3)r] exp(—Zor). - (46)

The direct interaction term of R can be obtained
from Eqgs. (2), (3), (8), and (10), with ¢(ns — d)=8/5.
We thus find

Ro(np) 8K.,(1s—d)
pnp)=——"",
5 ey
2% F, Seitz, Phys. Rev. 47, 400 (1935); W. Kohn and N. Ros-

toker, 7bid. 94, 1111 (1954).
27 H. James, J. Chem. Phys. 2, 794 (1934).
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o0

Kq(ls— d):—;/ | w(np)gadr , (48)
0

r

1
g,,(r)E—;/ wy’ (15)ed (1s — d)r%dy’
rJo

0

+r2/ o' (1s)v) (1s — d)r'=3dy’ . (49)

In a similar manner, the exchange term Rg(np) is
obtained from Eqgs. (12)-(16), with L=1 and C=4%.

Ky(1s—d)
Rp(np)=—4/3)———, (30)
r)un
with

Ky(ls— d)E/w uo' (1s)w(np)gudr, (51)

1 r
gb(r)E—2/ v’ (1s — d)w(np)r'dr’
0

r

o0

tr / o (15 — dyw(np)r’=dr’ . (52)

The resulting values of Rp, Rz, and the total R
(=Rp+Rg) are presented in Table VII. This table
also includes the values of the correction factor
1/(1—R), as well as (r3),, (calc) and (r—*)n, (exp). It
is seen that both for Li 2p and 3p, the shielding due to
the direct term Rp predominates over the smaller
(negative) exchange term Rpg, thus leading to a net
shielding effect. The correction factors €=1/(1—R)
are practically the same for the two excited p states,
and the values of Q(Li) should be increased by about
109, to take into account the shielding effect.

If we denote the two terms on the right-hand side
of Eq. (49) by ga,int and gs,.ext, respectively, we can
write

1{4(15 ad d) = ]ca,int"_Ka,ext ] (53)
where
K= / W (D)o imilr (54)
0
Ku,extE/ WA (1P)ga,extldr - (55)
0

Each of the two terms Kg,ing and K, exy makes a con-
tribution to Rp(np) [see Eq. (47)].

For 2p, these two terms of Rp are 0.1682 and 0.0137,
respectively, which shows that the integral, i.e., go,int for
which the 1s— d density u,/v)’ lies inside the 2p
electron makes the predominant contribution to Rp.
This was, of course, to be expected since the 1s wave
function is localized close to the nucleus (maximum of
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u at r=1/Z,=0.37ay), whereas the 2p function is
quite external (maximum at 7=3.8ax).

D. Be 252p 3P

In connection with atomic beam measurements on
the excited 3P state of beryllium (with configuration
152252p) by Blachman and Lurio,? we have obtained
the value of R for the 25s2p configuration, using the
Hartree-Fock wave functions obtained by Hartree.?® In
the same manner as for Li and Cu, we have included
both the direct and the exchange terms.

The equations used to obtain Rp(2p) and Rg(2p)
are completely similar to those used for lithium [Egs.
(47)-(52)], with one exception, namely that for 25 — d,
the coefficient of K,(2s— d)/{r %)z, [see Eq. (47)] is
4/5 instead of 8/5, since there is only a single 2s
electron for the state considered.

The perturbed wave functions v/(1s— d) and
/(25 — d) were obtained from the following equation,
which is a special case of Eq. (5):

@ 6 uy’ (ns)
[———-I—-——}— VD—E(,:"UI’ (ns — d)=———, (56)
d,2 1»2 7,3
in which Vy— E, is obtained from u,’'(#s) by means of
Eq. (7) (with I=0). Equation (56) was integrated
numerically on the CDC-6600 computer, using the
machine program described above (in Sec. IIA). Tables
of the wave functions v,/ (s — d) are given in Ref. 19.

The results of the calculations of Rp, Rg, and R
(total) are presented in Table VIII. The second and
third columns list separately the contributions of 15— d
and 25— d, respectively; the last column gives the
resulting total values for Rp, Rg, and R. The final
value of R is +0.040, and hence the correction factor
e=1/(1—R)=1.042.

It is seen from Table VIII that for Be, the total ex-
change term (—0.1214) almost cancels the direct term
(0.1613), which leads to a very small amount of net
shielding. The reason is that there is a great deal of over-
lap between the 2s and 2p wave functions, and as a

TaBLE VII. Values of terms of the shielding factor R for the
2p and 3p excited states of lithium. The values of (#3),, are in
units ag™®.

State Li2p Li3p
Rp 0.1819 0.1734
R —0.0663 —0.0744
R (total) 0.1156 0.0990
1/(1—R) 1.131 1.110
(r*)ap(calc) 0.06494 0.01983
(r)np (exp) 0.06451 0.01909

2 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
1(\1195641,)588 (1936). See also D. A. Goodings, Phys. Rev. 123, 1706
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TasLE VIII. Values of terms of the shielding factor R for the
15%2s2p 3P state of beryllium. The value of v« (15s22s?) pertains to
the atom in the ground state.

Excitation 1s—d 2s > d Total
Rp 0.1296 0.0317 0.1613
Rpg —0.0579 —0.0635 —0.1214
R (total) 0.0717 —0.0318 0.0399
1/(1—R) 1.042
Voo (152252) 0.1883 0.8062 0.9945

result the exchange term pertaining to v/ (2s — d) is
relatively large, and actually exceeds the direct (shield-
ing) term by a factor of ~2 (see Table VIII). However,
for 1s— d, the situation is reversed [Rp> | Rg|], and
upon taking the sum of the two contributions (1s and
2s), one finds the small net shielding factor R=--0.040.
It should be noted that the exchange terms of R are
theoretically somewhat uncertain,! and therefore one
can conclude only that for Be 25s2p, the value of R is
small, of the order of 0.05, and probably shielding. It
is possible that a more reliable calculation of R for
beryllium could be carried out by using the unrestricted
Hartree-Fock method.?®

In the same manner as in Egs. (53)-(55), we can
write Rp(ns— d) as a sum of two parts: Rp ny and
Rp ,ext, which arise from the integrals K, iny and Kg,ext,
respectively. As expected, for 1s— d, the internal con-
tribution predominates (Rp,int=0.1169, Rp ext=0.0127),
whereas for 25— d, the two contributions are of the
same order of magnitude (Rp,int=0.0171, Rp exs
=0.0146), because of the large amount of overlap of
uo’ (25) and uo’ (2p).

III. SUMMARY

In the present paper, we have given the results of
calculations of the quadrupole shielding (or antishield-
ing) factor R for several excited atomic states. The
calculations of R for Cu 3d%4s® and 3d'%4p and their
agreement with the experimental data’ 8 provide a very
good confirmation of the existence and method of cal-
culation of the atomic shielding and antishielding
effects. The test of the theoretical values of R is espe-
cially accurate for Cu, since the experimental uncor-
rected values of Q are known with an uncertainty of
only 2%, whereas the size of the total induced effect
is larger than 40%,.

A further point of agreement concerns the fact that
the values of R;q for Pr and Tm were found to be
antishielding (Rza~—0.4) and of the same order of
magnitude as the values required by the experimental
determinations of Murakawa® for the neighboring ele-

» R, K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955);
R. E. Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963);
A. J. Freeman and -R. E. Watson, ibzd. 131, 2566 (1963); 132,
706 (1963).
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ments, lanthanum and lutetium. This result for Rsq is
in contrast to the shielding effect for the 4f ground
state (Rayy~-0.2) which was previously obtained in
Ref. 2, and which is also in agreement with the experi-
mental determinations® for the 4 f electrons.

Finally, the results for Li 2p and 3p, and for Be 2p
indicate a small shielding effect (R~0.1), and place an
upper limit on the correction factors €=1/(1—R) to
be applied to the values of Q derived from the hyperfine
structure of these states.
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Optical emissions produced in collisions of protons and hydrogen atoms incident on nitrogen molecules
were studied in the spectral region from 1200 to 6000 A. Relative emission cross sections were measured in
the energy range from 10 to 130 keV. The prominent features of the nitrogen spectrum below 2000 A were
the Lyman-« line and atomic nitrogen lines. The Lyman-Birge-Hopfield system appeared also, but it was
weak. At the longer wavelengths, the Nyt first negative and the N second positive systems dominated the
spectrum. Relative emission cross sections for the production of the first negative bands in collisions of
hydrogen atoms with nitrogen molecules were nearly constant as a function of energy, and at an energy of
40 keV the cross section was one-half as large as the cross section for proton collisions. The cross section
for the second positive band due to hydrogen-atom impact was about 310718 cm? at 25 keV, whereas
for proton impact the cross section was about 2107 cm? at its maximum value. The cross sections for the
atomic nitrogen lines produced in hydrogen-atom impact were approximately 75% of the cross sections for
the same lines produced in proton impact. Hydrogen-atom collisions had higher cross sections throughout

5§ DECEMBER 1967

the energy range for the production of Lyman-a emission.

INTRODUCTION

NE method for studying collisions between two
systems is to measure the photon energy which
is emitted in optical transitions resulting from the
collision. For particular cases, a measurement of the
photon emission provides a direct means of obtaining
cross sections for exciting atomic and molecular states.
A comparison of these experimentally obtained excita-
tion cross sections with theoretical predictions can assist
in understanding collision mechanisms.

Atmospheric research indicates that fast protons are
entering the atmosphere and contribute to the produc-
tion of auroras.! Because of the charge-exchange process
whereby protons pick up electrons from atmospheric
gases, there would also be fast hydrogen atoms present.
It is evident from the work of Allison and others? that

* Supported in part by the National Aeronautics and Space
Administration under the Sustaining University Program, Grant
No. NsG-430.

t National Science Foundation Science Faculty Fellow on leave
from Concordia College, Moorhead, Minnesota.

1 A. B. Meinel, Astrophys. J. 113, 50 (1951).

2 S. K. Allison. Rev. Mod. Phys. 30, 1137 (1958).

the equilibrium fraction of hydrogen atoms produced in
charge exchange is significant for projectile energies of
a few keV to 100 keV. It is of interest, therefore, to
determine the effectiveness of the hydrogen atoms in
exciting the atmospheric gases and also their contribu-
tion to the auroras. The knowledge of hydrogen-atom
excitation cross sections is also important in studying
the history of a proton entering the atmosphere.

For these reasons optical emissions produced in
collisions of protons and hydrogen atoms with nitrogen
molecules have been studied. Spectral scans of the
light emitted in the collisions of protons with nitrogen
gas in the spectral region from 1200 to 6000 A indicated
which transitions of the molecules, of the atoms and
ions originating from molecular dissociation, and of the
incident particle produced sufficient light intensities
for emission cross-section measurements. The results
of the scans led to relative emission cross-section mea-
surements for the production of the Nyt first negative
band system (B%E,H-X22;*), the N, second positive
band system (C°II,-B*II,), atomic and ionic nitrogen
lines, and the Lyman « line. The emission cross sections



