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Double-ionization processes in helium by photon and electron impact are analyzed, and it is shown that
the inclusion of atomic correlation is very important. Detailed calculations are performed for the case of
photo-ionization over the whole range of photon energies, and the asymptotic behavior of the cross section in
the limit of large photon energies is discussed. Excellent agreement is found with recent experimental data.
Conclusions are drawn concerning the related electron-impact problem at high incident electron energies.
The leading term of the cross section is evaluated, and comparison is made with the presently available

experiments.

I. INTRODUCTION

ECENT experiments on multiple-ionization phe-
nomena in noble gases by photon! or electron?*
impact have stimulated interest in the theoretical in-
vestigation of these problems. In addition, among the
various multiparticle scattering processes occurring in
atomic physics, multiple-ionization phenomena deserve
special attention since they are extremely sensitive
probes of the details of atomic structure.?:¢

In this paper we present a theoretical analysis of
double-ionization phenomena in helium, where calcu-
lations from first principles can be done. Let us first
recall that the problem of single ionization of this atom
by photon impact has been successfully analyzed by

* Alfred P. Sloan Foundation Fellow.

1 On leave for the academic year 1966-1967 at the Université
Libre de Bruxelles, Brussels, Belgium.

1 Thomas A. Carlson, Phys. Rev. 156, 142 (1967).

2 B. L. Schram, A. J. H. Boerboom, and J. Kistemaker, Physica
32, 185 (1966).

8 B. L. Schram, F. J. de Heer, A. J. H. Boerboom, M. J. Van der
Wiel, H. R. Moustafa, J. Schutten, and J. Kistemaker, in Proceed-
ings of the Fourth International Conference on the Physics of Elec-
tronic and Atomic Collisions, Quebec, 1965, edited by L. Kerwin
and W. Fite (Science Bookcrafters, Hastings-on-Hudson, New
York, 1965), p. 434.

4 F. Fiquet-Fayard, F. Muller, and J. P. Ziesel, in Ref. 3, p. 413.

5F. W. Byron, Jr., and C. J. Joachain, Phys. Rev. Letters 16,
1139 (1966).

SF. W. Byron, Jr., and C. J. Joachain, Phys. Letters 24A, 616
(1967). In Eq. (1) of this reference = should be replaced by =% and

164

Migneron and Levinger” on the basis of calculations by
Salpeter and Zaidi® and Stewart and Webb.? The agree-
ment with experiment!®!! is excellent. For double
ionization, however, the situation is more complicated
because this last process depends so delicately® on
correlation effects!?!3 between atomic electrons. Physi-
cally, this sensitivity is very reasonable. Indeed, if we
neglect the interaction between the atomic electrons
completely, then in first Born approximation, where the
interaction with the projectile acts just once, only single
ionization is possible. Thus, the amount by which the
first Born approximation differs from zero depends
precisely on those small deviations which arise from
the interelectronic interactions in the target.

As will be seen later, even the Hartree-Fock ground-
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state wave function is inadequate to describe the effect
of initial-state interactions in double-ionization processes,
whereas in the case of single ionization it gives a
reasonably good account of experimental results. At
this point, it is worth noting that single ionization
means the ejection of one electron, the remaining singly
charged ion being left in any possible bound state. Thus,
single ionization is a combination of basic single
ionization, where the residual ion is left in its ground
state, and double excitation (bound-free) in which the
ion is left in an excited state. This last process is very
similar to double ionization and therefore an accurate
description of it also requires a precise wave function
for the initial state.

In Sec. II we review briefly the theory of double-
ionization processes. We examine the asymptotic
behavior of double photo-ionization cross sections in
the limit of large incident photon energies. We also
show that the cross section for double ionization by
electron impact at high incident electron energies is
related to the corresponding photo-ionization process,
and discuss the use of approximate wave functions to
describe the helium atom in the initial and final states.

Section IIT is devoted to the detailed calculations of
the relevant cross sections. Finally, in Sec. IV we
discuss our results in connection with recent experi-
mental data.'—*

II. GENERAL THEORY

Let us first consider double ionization by photon
absorption. To first order in the interaction between the
atomic electrons and the electromagnetic field, we get
the Born-approximation total cross section

420062
> | de / de
E,

X ’<‘I’f D (ry, YZ)

oyt (Ey)=

1(!'1,

Xﬁ(Ey*Bre—e’), 1)

where we have neglected retardation effects. The wave
function W;(ry,r2) describes the initial ground state of
the helium atom and ¥;®(ry,r,) is the final state of the
helium system containing an a-particle and two un-
bound electrons. The two electrons are labelled in the
final state by their single-particle energies, € and ¢, and
by their orbital angular momentum quantum numbers,
(I+1) and ! which must couple to one since the photon
carries a total angular momentum of #. The quantity
7, 1s the energy of the incident photon and B; is the
binding energy of the helium ground state (B;=2.904
a.u.). All energies are in atomic units (a.u.), a is the
fine structure constant, and @, is the Bohr radius.

In principle, ¥; and ¥, are, respectively, the exact
wave functions of the helium system in the initial and
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final state, thus taking into account completely the
effect of initial- and final-state interactions between the
two atomic electrons. While for ¥; very accurate wave
functions are available, the situation is much more
complicated for ¥, since we are dealing in this case
with two electrons in the continuum. We will come back
to this problem in Sec. III, but at this point we show
that in the limit of large incident photon energies, Eq. (1)
simplifies considerably. Indeed, as £, — o, at least one
of the ejected electrons must have very large energy and
can be represented by a plane wave,!* so that ¢, can be
written as

Wy (r1,re)=2"12 ks / (2m) %12
X [eik"'r1¢n(r2)+¢n(r1)eikf-r2] )

i.e., a symmetrized product of a plane wave normalized
to unit energy times a single-particle Coulomb wave
function. Under these circumstances, it is easy to show
using the method of Kabir and Salpeter!® that the
“asymptotic” cross section ¢.,(E, — «) for any ioniza-
tion process in which at least one electron is ejected is
given by
0y(Ey— »)=

‘I'(Or)¢n(r)dr )
x|/

3V2E, T

where the energy E, is expressed in atomic units and
the sum (integral) on final states is to be determined by
the process of interest. For example, the ‘“asymptotic”
cross section for all ionization processes (both single and
double) is given by

256m%aa ¢
g > )=t

L, 7/2/] V,(0,r) |%dr, (4)

where we have made use of the closure relation since
the ¢, form a complete orthonormal set. Similarly, the
asymptotic cross section for single ionization is just

256m%aay?
Z ’/\I/,(O,r)cp,,(r)dr

2
3VIE, 2 7 ,» )

oyt(ly— ©)=

where the sum runs over all dound states of the Het ion.
Clearly,

oyt H(Ey— ©)=0, T HE,— ©)— o, (E,— ). (6)

The utility of Eq. (6) Jies in the fact that it allows an
evaluation of o,**+(£,— ) even for very accurate
initial-state wave functions ¥; of the Hylleraas type.!¢
Indeed, in computing the integrals appearing on the
right-hand side of Egs. (4) and (5), the function ¥;
enters only through a simple s-wave function of one

14 Note that the use of a plane wave for the asymptotic form of
the wave function is justified if one calculates the dipole matrix
element in the manner of Salpeter and Zaidi (Ref. 8), i.e., if one
uses the operator d/dz rather than z.

15 P, K. Kabir and E. E. Salpeter, Phys. Rev. 108, 1256 (1957).

16 . A. Hylleraas, Z. Physik 54, 347 (1929); 65, 309 (1930).
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variable. It is clear from Eq. (1) that for nonasymptotic
values of E, we must use initial-state wave functions
¥, which are simpler in form and less accurate. Thus
Eq. (6) gives a way of estimating the accuracy of our
initial-state wave function by comparison, in the
asymptotic region, with an accurate calculation
of g, 7*+(E,— =) using a very precise Hylleraas-type
ground-state wave function.

Let us turn now to the process of double ionization
by electron impact. We assume that the incident elec-
tron, although nonrelativistic, has sufficiently high
energy so that exchange effects between the incident
and (initially) bound electrons may be neglected.
Applying the first Born approximation, we get for the
double-ionization cross section by electron impact
kitky 1

o H(E)= —’I (¥, (r1,1p) [ i2m1

+e1fA.r2[ \I/i(rl,rg» [ 2dA , (7)

where E, is the incident electron energy (in a.u.), k;
and k; are the initial and final propagation vectors of
the projectile electron, ¥; is the ground-state helium
wave function, and ¥, is any possible final state in
which the two atomic electrons are unbound. Because
of the factor A=% the most important values of A in the
integration are small ones. Thus the important contri-
bution to ¢,F* comes from electrons which are ejected
with low velocities (such that k;—k; is small). If one
wants the dominant term in o,t+ at high energies, one
can further concentrate on a particular term in the
expansion of exp(tA-r;) or exp(i{A-r,) in Legendre
polynomials. Indeed, if we write

¢ =3 (2041)it,(Ar) Pilcosty) , (8)
=0

where we have taken A in the z direction, then the term
in 71(Ar;) makes maximum use of the limit k,~~k/,
since 71(Ar1)~Ar; for small values of A. Thus the A
integration will give a term in In(k;— &,) from the region
of small A. Since the action of the bound-state wave
function guarantees that only values of r~~a, will be
important in the inner product of Eq. (7), we can
isolate the logarithmic contribution. We find

a0 5 1
Z [d h](k;"“k})_l_i_b_*—()(?)] ) (9)

te [

ot H(E,) =

where

a= (¥ ;|71 cosfi+rs coshs| V)| 2 (10)

and b is energy-independent and involves contributions
from all terms of the multipole Legendre expansion (8),
including a contribution from the partial wave /=1 in
addition to the logarithmic term written above. Thus,
the calculation of & is much more difficult than the
corresponding one for @ Now, since

%(kﬁ* kf2) = B,+ EJ[- é/ )
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where ¢ and ¢ are the energies (in a.u.) of the two
ejected electrons, we find for large incident energies
(Ee=3k?)

(Bitete)

=ki—— —t

(2E.)}

and thus
ki—ky=C(E,)"1/2,

where ¢ is a function of € and ¢’. Thus

271'(102 1
- I:a ln1€c+b+0<——>:| , (11)
E, E,
where

a=Y |{(¥|r1 cosbi+rs cost| ¥;)|2
7
=3 [(¥s]artz|¥5)]?
7

o HH(E)=

(12)

and b is a constant directly related to & and Z. In the
sum over final states appearing in Eq. (12), only states
with total orbital angular momentum L=1 contribute,
so that we can write ¢ in the form

(Z:zl /dé/déll<‘I//([)IZ1+ZQI‘I/7;>IZ, (13)

where ¥, is precisely the quantity defined in Eq. (1)
in connection with the double-ionization process by
photon impact.

While we are still working in terms of exact wave
functions, we note that since

1é] 1¢]
<‘I/f(l) —+— ‘I’,‘>=—'(Bi+6+€/)
dz1 02
XUy Dzt V), (14)
we can also write a as
0 i) 2
ool
azl 622
a=Y. [ de| dé , (15)
1 (Bitet¢€)?
and thus
a—[ dE Z/de/de —
2
’<\I',(” —+ > (Ey—Bi—e—¢€). (16)
(92,'1 622
But, according to Eq. (1),
10 J 2
> | de| de <‘I"f(l) — ‘I’i>
1 dz1 029
EyotH(E,)
X8(Ey—Bi—e—¢)=——0—— " (17)
47!'2(1002
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and therefore the quantity @ is related to the cross
section for double photo-ionization by

°° ‘7~/++(E1)d

a= (4raa®) !
o T

E.,. (18)

It should bee mphasized that Egs. (13) and (18) are
completely equivalent only if both ¥; and ¥, are exact
solutions of the Schrodinger equation, not if approxi-
mate solutions are used. This problem is not too serious
for the initial state ¥; Indeed, by the use of the
Rayleigh-Ritz variational method it is possible to obtain
extremely accurate expressions for ¥;. The most accu-
rate functions are those which make use of the
Hylleraas'® variables s=r14-rs, t=71—79, and #=r1, in
the trial functions. Since one of these variables is the
interelectronic distance 71, such functions are practi-
cally impossible to handle in evaluating expressions like
Eq. (1). For this reason we have expanded ¥, in relative
partial waves

1
‘I’,‘(n,l'z) =;‘1— Z F;(r;,rg)P;(coslhg) ’ (19)
T 1
where
Filriyre)= Y AmnOridrd(rymre4-r1mre™)
m>n
- Xe Btz (20)

In Eq. (20), the sum on # and % runs from 0 to 5 with
m~+n<6, thus giving 15 terms in each partial wave.
We find that with just the first three relative partial
waves, a binding energy of B,=2.9020 a.u. was ob-
tained, which is very close to the “experimental” value
B;=2.9037 a.u. We used the value 3=3.7. The coeffi-
cients 4, P are displayed in Table I.

Since, as already mentioned, it is desirable to have a
very precise initial-state wave function, we checked the

TasLE I. The coefficients Am,® of the ground-state
wave function ¥; [see Egs. (19) and (20)].

(m,n) Amn(o) Amn(l) Amn(z)
0,0) 8.69519 —14.2888 —14.1186
0,1) 2.84923 37.52711 36.4897
0,2) 8.24437 —14.0944 —16.0409
0,3) —4.74978 0.264419 2.93842
0,4) 1.36195 0.593035 —0.211587
0,5) —0.111747 —0.0647055 0.00361276
(1,1) —17.73456 —35.2189 —23.3933
1,2) 5.82892 35.2792 19.3197
1,3) 2.35973 —5.25726 —3.17959
1,4) —1.27994 —0.0307959 0.197619
(1,5) 0.116503 0.0317287 —0.00270782
2,2) —5.00189 —9.50410 —3.45314
(2,3) 1.99741 3.00342 0.880129
2,4) 0.00885715 —0.110612 —0.0342703
(3,3) —0.222887 —0.159411 —0.0314348
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Tasie II. The asymptotic ratio p, (£, — ) calculated by using
Eqgs. (4), (5), and (6§’ with various Ilelium ground-state wave
functions ;. BJ 45 refers to the 45-parameter wave function used
in this paper [see Egs. (19) and (20) and Table I]. CH 18 corre-
sponds to the 18-parameter, Hylleraas-type wave function of
Chandrasekhar and Herzberg (Ref. 18), while K 39 refers to the
39-parameter Kinoshita wave function (Ref. 17).

¥; p‘Y(E‘Y — )
Screened hydrogenic (Z2*=27/16) 0.0072
Hartree-Fock 0.0051
BJ 45 0.0181
CH 18 0.0171
K 39 0.0166

function given in Table I by calculating with it the ratio
pr(Ey)= °'7++(E7)/‘77+(E7) 1)

in the asymptotic region E,— o, ie., by using
Eqgs. (4), (5), and (6). The same quantity py(Ey— ®)
was also calculated using the extremely accurate
ground-state wave function of Kinoshita,'” which gives
B;=2.903722 a.u. The results are shown in Table II,
along with the values of p,(E,— «) obtained from
several other approximations to ¥;. Our wave function
[Eqgs. (19) and (20)] gives a value of p,(E,— «) only
89, greater than the very precise result obtained with
the Kinoshita wave function. The 18-parameter,
Hylleraas-type wave function of Chandrasekhar and
Herzberg'8 gives a result approximately 3%, larger than
the result calculated with the Kinoshita wave function.
The Hartree-Fock ground-state wave function,’® on
the other hand, gives a value of p,(£,— %) which is
smaller than the best value by more than a factor of
three. The screened hydrogenic (Z*=27/16) wave func-
tion also does very poorly. Thus the calculation of
p4(E,) in the asymptotic region E,— o is a striking
illustration of the fact that noncorrelated initial-state
wave functions are not expected to give a correct de-
scription of double-ionization phenomena.

We now turn to the problem of representing the final
state of the helium atom with two unbound electrons.
We have taken a symmetrized product of uncorrelated
Coulomb wave functions for central charge Z=2,

+1
‘I/f(l)(rlyr2) = (2)—4/2 Z (l+1) m, l: —m l 1! 0)
m=—1

X[Reis1(r)Re, 1(72) Vi1, m(Q) Vi, —m( )
+1<2], (22)

where the radial wave function R.,; is “normalized” so
that

/‘” Rei(r)Re 1 (n)r2dr=258(e—¢'). (23)

17T, Kinoshita, Phys. Rev. 105, 1490 (1957).

18§ Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955).

19 C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).
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The reason that we neglect the interelectronic inter-
action in the final state is twofold. First, it seems very
reasonable that the two outgoing electrons should have
a negligible screening effect on each other. Hence we
take the charge seen by each electron to be Z=2.
Second, if one elects to calculate the relevant cross
sections using the momentum matrix elements, the
correlation effects in the final state will be shown in
Sec. III to be unimportant. The choice of momentum
matrix elements instead of position matrix elements is
also discussed in Sec. III. We note that this choice is
consistent with other related atomic calculations.?1

III. CALCULATION OF THE DOUBLE-IONIZATION
CROSS SECTIONS

With ¥; and ¥, chosen in the manner described in
the previous section, the problem of evaluating the cross
section for ionization by photons as given in Eq. (1)

IONIZATION PROCESSES IN He 5

comes down to calculating matrix elements of the form

f(62,2%)= (R.%(r) | rre 2"y, (»=0,1,---) (24a)

8(6,2,2%)= (R 1%(r) | e~ 2"y, (»=0,1,---) (24b)
and

h(6,2,2%)=(R.%(r)|re2*), (=1,2,---). (24c)

Matrix elements involving R.,s, R.,4, etc. are not needed
in this work (although they can be computed with little
difficulty) because it turns out that the contributions
to o,t+ from the relative d wave (and higher waves)
are unimportant. Since that leaves just a relative s wave
and relative p wave in the initial state, and since the
operator which causes the photon absorption is a vector
operator, we see that the highest angular momentum
which could be attained by one of the ejected atomic
electrons is /=2. The reason that %, is not required is
that the lowest power of 7; or 7, occurring in the relative
p-wave part of ¥; is the first power, not the zero power,
as is the case with the relative s wave. This is fortunate
since %o would be rather difficult to evaluate.

Egs. (24a), (24b), and (24c) are now readily reduced to

dv
fV(E;Z’Z*) = (— l)yd—Z—;;fO(e’Z’Z*) ) (V= 07 1; o ') (253')
gl‘(€7Z)Z*) =(— l)vdz*ng(G,Z,Z*) ’ (V“_‘O’ L .- ') (ZSb)
and »
hy(G,Z,Z*)= (_ l)v—l * _l}ll(é,Z,Z*) ) (V= 1’ 2) ot ') . (25(:)

az

Using the integral representation of the Coulomb wave functions,? f,, go, and %; are easily evaluated. One finds,

setting (2¢)12=k,

fo(e,Z,Z*) — —4(Z—Z*)[Z/(1— —21rz/k):|1/2(e(—22/k) tan“ll(k/z*))/(kz_’_z*z)z ,
gg(e,Z,Z*) — —4[Z(k2+22)/(1— —27rZ/k)]l/2(e(—ZZ/k) tan-‘(klz*))/(kz_*_z*z)z ,

and

(e, 2,2%) = — 8[ Z (k24 Z2) (R24-422) / (1— e~272 /%) [1/2(¢(—221k) tan™1(k1Z%) /(2 Z%2)3,

(26a)
(26b)

(26¢)

With these three formulas as starting points, all the f,, g,, and %, can be calculated from Eqgs. (25a), (25b), and (25¢).
The evaluation of the cross section for double ionization by photons can now be carried out. Using f,, g,, and 4,
upon substituting Eqgs. (19), (20), and (22) into Eq. (1), we find

°'7++(E7) = ‘77.0++(E7)+‘77,1++(E7) s

where

m2n

@7

8m2agg? pErBi B8
oyt H(Ey) = / de[ > Amnw)[[ngn_l(e, 2,6/0).(0 2 6/2)]fm(Ev-Bi—€, 2,6/2)
0

3E,

8
+[mgm—1(€7 27 5/2)_5@”»(5, 2! B/Z)an(E‘Y_Bt_ €, 27 6/2) ;

+3 2 Am® l [(ﬂ+3)fn(Ev—Bs— &2, 3/2)_§fn+1(E7—'Bi_ 62, B/Z)Zlgmﬂ(e, 2,68/2)

n>m

B 2
+[<m+ ) n(BrBim 2,6/ )=~ fmis B Bi=,2,6/2) ]gm(e, 2,6/2) }] (28a)

20 H. A. Bethe and E. E. Salpeter, The Quantum Mechanics of One- and Two-Electron Atoms (Academic Press Inc., New York, 1957).
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and
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16m2aag? fErPi . B
oyt H(E,)=— / (ie[ >4 mn“){[nhn(e, 2, 11/2)--~»2~hn.4 1(e, 2, 5/2)]gm+1(E7""’ Bi—e€ 2,8/2)
0

2IE., .

m>n

2
+[mhm<e, 2 ﬁ/z>~§hm+l<e, 2 B/z>}gn+1<Ey—Bf— 62,6/2) H . (28b)

In these expressions, the integral on e must be done numerically. We can obtain slightly different expressions for
0,0t 1 and o177 F by using Eq. (14), i.e., by evaluating a position dipole matrix element rather than a momentum

matrix element. In that case we find

8mlaag? Ey—B;
oyt ) = I / 0L S Aun®{gua( 2, 8/2) fulEo—Bime,2,8/2)
0

mz n

<

+gm+1(€, 2) ﬁ/z)fn(E’Y_Bz_é; 21 6/2)}

+% Z Am"(l){fn+?(E‘Y_Bim €, 2y B/z)gm+1(e, 2’ 6/2>+fm+2(]€7—B1— €, 2: 6/2)g7t+1(61 2, 3/2)}]2 (293)

m>n

and

i 167%aay? By—Bi
0'7,1++(1’,7) = —-2”—E7/ (l'e[ Z A m,;,(l){hn+2(€, 2, B/Z)gm+1(]':y—Bz— €, 2, 6/2)
/ 0

m>n

It should be emphasized that the equivalence between
the momentum and position dipole matrix elements is
only precise if one uses exact initial- and final-state
wave functions for the helium system. This is not the
case in our calculation where in the final state we make
an important simplification (neglect of correlation).
Therefore we would expect to find a difference between
o+ when calculated with these two different matrix

1~ MOMENTUM

+]Zm+2(€, 2, 6/2)gn+1(E7—Bz— 62, 6/2)}]2 (29b)

elements. That this is indeed the case is seen in Fig. 1,
where we plot o,t*+(E,) as a function of £, for both
cases. We see a particularly striking difference between
the two cases for large values of E,.

The main reason for this fact can be seen as follows.
If we ask for the dependence of the momentum cross
section on E., for large values of E,, it is easy to see
from Eq. (28a) that the dominant term is proportional

Fic. 1. The cross section o™+
for double ionization by photon
impact as a function of E,—B;.
The top curve corresponds to the
cross section calculated by using
position dipole matrix elements.
The bottom curve shows the cross
section obtained from momentum
matrix elements.

12
Ey-Bj(in a.u)
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107~

3
>

oy’ (in cm?)
~N

F16. 2. The cross section o,**
for double ionization by photon
impact as a function of E,—B;.
Dashed curves: cross sections cal-
culated by using position dipole
matrix elements without (c=0)
and with (¢=0.08) inclusion of
angular correlation in the final
state. Solid curves: cross sections
obtained from momentum matrix
elements with ¢=0 and ¢=0.08.
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e —

- \Cso _~—‘__‘N§‘~‘

|

to E,~7/2. This contribution comes from the terms in go;
if one collects all such terms one finds

. aa02
oyt (Ey) —— 25.8< , (30)
>0

E77/2

where E, is in a.u. This result agrees to within 259, with
what one obtains by using Eqs. (4), (5), and (6) ; namely,

aa02 >

oRLYA
However, when we look at Eq. (29a) for the position
cross section we find that as £, becomes large this cross

section contains terms proportional to £,75/2 coming
from terms in fo. One finds

oyt (Er) — 19.2< (31)
y—>0

aa02
ot (En) 5 1.08( . (32)

E52

We see that the numerical coefficient in (32) is very
small compared to the one appearing in (31). It is in
fact the result of delicate cancelations between terms
which are larger in magnitude, and if the initial-state
wave function were exact this coefficient would be zero,
since the effect of correlation in the final state must
vanish when one of the electrons has sufficiently high
energy. In this calculation, however, the use of an
approximate initial-state wave function means that
o, *t(E,), when calculated using the position dipole
matrix element, will fall off much too slowly for large
values of E,. For example, when E,=10 a.u., the
spurious E,~%2 term is nearly equal to the term propor-
tional to E,~7/2 as may be seen from Egs. (30) and (32).

-+

2 Ey-Bj(nau)

It is because of this sensitivity to the initial-state wave
function, as well as for other reasons to be discussed
below, that we feel that the position cross section is
much less reliable than the momentum cross section.

With o+ calculated in the manner indicated above,
it is a simple matter, using Eq. (18), to evaluate by
numerical integration the leading term in Eq. (11)
for ot +(E,). We find

a=0.00053,
so that

2ra
o'e++(Ee) =

L,

2,
0—[o.oooss lnEe+b+O<E)] , (33)

where b is an undetermined constant. In obtaining the
quantity ¢ we have used the momentum cross section
for double ionization by photon impact. If we use the
position cross section, we find for ¢ the much larger
value

a=0.00130.

This is in good agreement with the value a=0.00140
found in Ref. 5 for the case where both of the ejected
particles were unscreened. In Ref. 5 the calculation was
done by a different method, so it serves as a good check
on the present work.

We now turn to the question of final-state correlation.
Suppose we write a more general final-state wave func-
tion ¥;® in a form similar to the one used for ¥;:

Uy O =¥ D[ Gy(r1,r2)+Gi(r1,r2) P1(cosbrz)+ - - -], (34)

where ;P (ry,12) is given by Eq. (22). For Gy, we write
by analogy with the F; defined in Eq. (20)

Guryra)=ririt 3o Bnn®(e,€)(rimrs"+r1"rem),  (35)

m>p
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Fi16. 3. The ratio py=0,"*/o,*
as a function of E,— B;. The solid
curve represents the theoretical
calculation of this paper, using a
fully correlated initial-state wave
function. The dashed curve corre-
sponds to a Hartree-Fock ground-
state wave function. The points
are the experimental results of
Ref. 1.

¢ and € being the single-particle energies contained in
the definition of ¥;®, To obtain the coefficients Bp,®
would of course be a very difficult task, although
presumably when either e or ¢ becomes very large,
Bna® tends to zero. For the purpose of obtaining an
idea of the effect of final-state correlation, let us con-
sider a simple special case of Eq. (34), namely,

‘i/(” = ‘I’/(l) (1+C1’11’2 cosam) . (36)

Notice that through first order in ¢, ¥,® is properly
normalized. Since ¥, is believed to be a good approxi-
mation to the true final-state wave function, the actual
value of ¢ in Eq. (34) should be small. (In actual fact
the “constant” ¢ should depend on the energies of the
outgoing electrons. For purposes of illustration, how-
ever, we fix the value of ¢.) To obtain an idea of the
effect of this term proportional to ¢, we have recalcu-
lated o,t+ in both the position and momentum cases.
We find that for small values of ¢ the momentum cross
section is very insensitive, while the position cross
section is very sensitive, particularly for small values
of E,. Figure 2 shows the low-energy region in detail for
the case c=0.08. We see that the effect of the correlation
term on the position cross section is large, while the
momentum cross section is scarcely changed at all.

In summary, we see that in order to utilize the posi-
tion cross section it would be necessary to improve the
initial-state wave function even beyond its present
rather high degree of accuracy and also to take into
account further details of the final-state wave function
which would be very difficult to obtain. The momentum
cross section does not appear to suffer seriously from
either of these difficulties, and we therefore feel that it
should give the most reliable results in the scattering
problems under discussion.

Ey -Bj (in au)

IV. RESULTS AND DISCUSSION

Having calculated the double-ionization cross section
by photon impact as described in Sec. ITI, we use the
calculations of Salpeter and Zaidi® and Stewart and
Webb?® for the corresponding single-ionization cross
section. In this manner we obtain the ratio

Pw(Ev) = 0'7++(E7)/0'1+(E7) .

The results are shown in Fig. 3 where they are compared
with the experimental values of Carlson.! The agree-
ment between our calculated values and the experi-
mental points is very good. For comparison we also
include in Fig. 3 the result for p,(E,) calculated using a
Hartree-Fock wave function® for the initial state and
Eq. (22) for the final state. The discrepancy between the
two curves is a striking illustration of the importance of
correlation effects in multiple ionization problems. It
seems clear from the case of helium that attempts to
understand multiple-ionization phenomena in heavier
atoms in terms of simple Hartree-Fock—type functions
are doomed to failure.

Given our simplified assumptions concerning final-
state interactions in the double-ionization process and
the fact that our initial-state wave function is still not
perfectly accurate, we feel that the extremely good
agreement between theory and experiment shown in
Fig. 3 should not be taken at face value. On the basis of
the comparison made in Sec. ITI between the calculation
of ¢,**(E,— =) using the actual momentum matrix
elements and the asymptotic method of Kabir and
Salpeter,!® we estimate that uncertainties in our calcu-
lations coming from the initial-state wave function are
about 25%,. In order to reduce such uncertainties and,
at the same time, ascertain further the importance of
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F16. 4. A least-squares fit to the
data of Ref. 2, according to the
formula (37) of the text.
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final-state interactions in double-ionization processes, the form
an extremely accurate ground-state wave function drag c
§houlq b‘_" used. This problem is presently under ot H(E)= (a lnE,+b+——>, (37)
investigation. E, E.

We now discuss our calculations of the double-
ionization cross section ost+(E,) at high incident elec-
tron energies for which the result ¢=0.00053 was ob-
tained in Sec. IIIL. Since the values of o, +(E,) are very
small, a precise experimental determination of @ is
difficult. The work of Schram et al.2:® and of Fiquet-
Fayard et al.* indicates that the term & in Eq. (11) is
considerably larger than aInE, even at rather high
energies (E,~~600 a.u.), so that experimental estimates
of a are very unreliable. For example, a least-squares fit
to the data of Ref. 21, using a representation of o+ of

21 The ratio o, H(E,— ©)/os"(Ee— ©)=1/200 quoted in
Ref. 5 was suggested by experiments which were not asymptotic.
In the light of experiments performed at higher energies, this ratio
is considerably reduced, in accordance with the improved calcu-
lations reported in this paper. The use of an effective charge in
the work of Ref. 5 was a crude attempt to take into account the
effect of final-state correlations which, as shown above, are much
more important when calculating “position” cross sections than
“momentum” cross sections.

is shown in Fig. 4, and yields the values
a=—0.0014, 5=0.018, c=—0.096;

i.e., a negative value is obtained for ¢, which is clearly
inadmissable. However, the magnitude of o determined
in this way may be taken as an estimate of the experi-
mental uncertainties in the determination of the true a.
Since this magnitude is |e|~0.001, we conclude that
our calculations—and hence Carlson’s experimental
data on photo-ionization'—are at least compatible with
the electron-impact experiments.2
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