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A calculation of energy levels in C!? using projected Nilsson wave functions was performed and the
optimum deformation in each J state was found. The orthogonality between wave functions corresponding

to different deformation was studied.

CALCULATION of energy levels in C* using

projected Nilsson wave functions has been re-
ported by Kurath and Picman'. In this work almost
complete overlap was found between the wave functions
solved exactly in the intermediate coupling shell model
and the projected Nilsson wave functions with a de-
formation. This suggests that a projected Nilsson state
with optimum deformation provides a good approxi-
mation for the wave functions and the expectation
value of a Hamiltonian containing two-body inter-
actions is a good approximation for the energy. This
note reports results of a calculation using projected
Nilsson wave funciions in C®2,

The properties of states resulting from a single
configuration were studied as a function of the deforma-
tion. The optimum value of the deformation was found
and the orthogonality between wave functions cor-
responding to different deformation was studied.

In the calculation the configuration containing four
holes in the No. 4 Nilsson orbit with k=3 is considered.
All quantities are expressed as functions of the de-
formation strength D, which appears in the deformed
potential defined as

Hp=— ($m) 2DV (w5, W

where » is the oscillator frequency. The wave function
Wy (D) corresponding to this configuration is projected
into normalized eigenfunctions of J in the following
way:
Yy (D)=2 N;(D)¥;(D). 2)
7

The projected and unprojected Nilsson energies are then
calculated by the equations

E;(D)=(¥;(D)3¥;(D)) ©)
Ey(D)= ; NA(D)E;(D), )

and

respectively, where 3C is a Hamiltonian containing two-
body interactions.

In the numerical calculation all necessary quantities
are taken from the work of Cohen and Kurath.2 The
energy difference between the s/ hole and the p1,2 hole
states is given as 6.30 MeV. The two-body matrix
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elements denoted in Ref. 2 by (8-16) 2 BME are used.
All energies are measured relative to the single p1/2 hole
level. As is seen in Table I and Table VI of Ref. 2, the
term (8-16) 2 BME expresses the two-body matrix
elements which are determined from the X2 fitting to
energy levels and binding energies of the 1p shell nuclei
between 4 =8 and 16. At the same time the values of
the 1ps» and the 1py, single-particle energies are
determined. These values are consistent with the value,
6.30 MeV, for the energy difference between the 1ps/;
and the 1py,2 hole levels.

The probabilities of three J components in the un-
projected Nilsson wave function are given in Table I.
At the spherical point only J=0 is possible while in a
region of larger deformation the main part of the
unprojected wave function consists of a J=2 com-
ponent. This fact plays an important role in the results.
The energies of the states ¥y and ¥; with J=0, 2 and
4 are shown in Fig. 1. Although negative deformations
are somewhat more interesting, the figure also shows a
region of positive deformations. Three interesting
features appear in this figure. (1) Generally the opti-
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F1c. 1. The projected Nilsson energy Es and the unprojected
Nilsson energy En are plotted as functions of deformation. Dy and
Dy are the optimum values of the deformation strength D.
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TasLE I. The probabilities N, defined in Eq. (2) are listed as functions of deformation. D is the deformation strength in MeV units

D
NA. —20 -16 —12 —8 —4 0 +4 +8 +-12 +16 420
0 0.21 0.21 0.22 0.26 0.46 1.00 0.71 0.53 0.45 0.41 0.39
2 0.57 0.58 0.58 0.58 0.48 0.00 0.28 0.43 0.49 0.52 0.53
4 0.22 0.21 0.20 0.16 0.06 0.00 0.01 0.04 0.06 0.07 0.08

mum values of the deformation strength associated with
each J are different from each other and also different
from the one given by the unprojected energy. (2) All
energy curves are flat around their optimum positions
indicating that a small perturbation can easily change
the shape of the system. (3) The projected Nilsson
energies with their optimum deformations agree with
the exact values of Cohen and Kurath? while the ground
state is about 5.4 MeV lower than the one obtained
from the unprojected Nilsson energy with its optimum
deformation. This clearly shows that in a Hartree-Fock
calculation using Nilsson wave functions, projection
into eigenstates of the total angular momentum? is
necessary before the calculated binding energies can be
compared with experiment.

To check the orthogonality of the wave function with
respect to deformation, the following overlap integrals
are calculated :

(¥;(D),¥s(Dys))=0s(D), ®)
and

(¥n (D), ¥y (Dy))=0x(D)
= ; N;(D)N ;(Dx){¥;(D),¥s(Dxn)), (6)

where Dy and Dy express the optimum values of the
deformation strength given by the projected and
unprojected energies, respectively.

The calculated overlap integrals are shown in Fig. 2.
The figure shows that the unprojected Nilsson wave
function is well localized in a region of negative de-
formation. The projected ones, however, are not, and
especially the one for J=0 increases with increasing
positive deformation. It is worthwhile to remember
that, as is seen in Fig. 1, the projected Nilsson energy
for J=0 decreases with increasing positive deformation.
The lack of orthogonality shown in Fig. 2 could be
explained by the fact that if the nuclear axis is fixed in
a definite direction, which is the case of the unprojected
Nilsson wave function, prolate and oblate shapes give
entirely different density distributions and their overlap
is very small. On the other hand, if the nuclear axis is
rotated, which is the case of the projected wave func-
tions, the two shapes will give similar density distri-

3 M. Bouten, L. Schotsmans, and P. Van Leuven, Phys. Letters
22, 510 (1966).

butions and their overlap can be large. In some cases
there can be two optimum positions in the unprojected
energy of a given Nilsson configuration?; one in the
positive and one in the negative deformation region.
The unprojected wave functions could be almost or-
thogonal. This, however, does not mean that they cor-
respond to two physically different states. The present
result shows that if these two wave functions are pro-
jected into eigenstates of J, the projected wave func-
tions with the same J could have a large overlap.
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F16. 2. The overlap integral Oy and Oy defined in Eq. (5) and
(6) are plotted as functions of deformation. The solid line cor-
responds to a positive value while the dashed line corresponds to
a negative value.

In this work the configuration was assumed to be
constructed from two 1ps» and 1p1) single-particle
states. If the configuration is allowed to include higher
single-particle states such as 2s, 1d, 2p and 1f, the
results could be improved in the following two points.
The energy curve could show a sharp minimum at the
optimum deformation. The orthogonality between wave
functions corresponding to different deformation could
be improved. A confirmation of these improvements
will be an interesting problem.

Discussions with Dr. S. Fallieros are highly ap-
preciated.

¢W. H. Bassichis, A. K. Kerman, and J. P. Svenne (to be
published).



