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Helm's model for nuclear transition charge densities, assuming these to extend over a smeared-out shell
at the nuclear radius, has been found useful in describing Coulomb-type electroexcitation of individual
nuclear levels. We have extended the model by obtaining corresponding nuclear transition current densities
(satisfying the continuity equation) and magnetization densities, which permit calculation of transverse
matrix elements, and hence o8er a description of electroexcitation of single levels at large electron scattering
angles. The model yields a good numerical fit to the 15.1-MeV level in ~C and to other examples. In ad-
dition, the relation between the M, T and the 8 notation for electroexcitation matrix elements is estab-
lished, and the Isabelle-Bishop expansion in powers of the momentum transfer is rederived.

r. rm'RODUCrrom

HE principal di8erence between electro- and
photoexcitation of a nuclear level, and the main

advantage of the former method, consists in the fact
that electroexcitation admits a variable momentum
transfer q, while in photoexcitation, one is restricted to
q= co, ar being the excitation energy of the level. Electron
scattering, therefore, permits an exploration of the
relevant nuclear form factors as a function of q, posing
a stringent test for nuclear models which must be able
to describe this functional dependence. The shell model
usually provides' ' an acceptable q dependence, but
often gives an absolute magnitude of the cross section
too large by a factor of two or more; moreover, it re-
quires a considerable calculational eGort and provides
little physical insight into the results. It seems desirable,

~ Consultant.
t Supported in part by a grant of the National Science

Foundation.
' F. H. Lewis and J.D. Walecka, Phys. Rev. 133, 8849 (1964 .' J. Goldemberg, W. C. Barber, F.H. Lewis, and J.D. Wale

Phys. Rev. 134, 81022 (1964}.' D. Kurath, Phys. Rev. 134, 81025 (1964).

}
cka, 4 H. Uberall, Phys. Rev. 137, 8502 (1965}.

5 H. Cberall, Nuovo Cimento 418, 25 (1966}.
e H. Oberall, Nuovo Cimeuto (Suppl. ) 4, 781 (1966).

16$ 927
Copyright O 1967 by The American Physical Society.

therefore, to establish a simple approximate model,
whose predictions can easily be app1.ied to a variety of
experimental results which one would like to survey;
whose parameters (including multipolarities) can
readily be adjusted for obtaining a reasonable 6t to the
data; and which, by its broadly chosen assumptions,
provides an over-all view of the physical mechanism.
For the exectroexcitation of giant resonance states, a
model of this kind is given by the generalized Goldhaber-
Teller model. ~' Here, the states are assumed to repre-
sent oscillations of any two of the four nucleon Quids

(including spin) against the two others; one obtains
transition form factors in terms of the ground-state
form fRctols froQl a tI'Rns1tlon dens1ty which 1s a
gradient of the ground-state charge density, i.e., which
has its largest values about the nuclear radius.

The many states that are rapidly being discovered in
nuclei bel.ow the giant resonance, using large-angle elec-
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tron scattering, ' can presumably not be described
throughout by the generalized Goldhaber-Teller model".
For the Coulomb part of the electroexcitation cross sec-
tion, which dominates the scattering at all angles except
close to 0 or 180, there exists a model due to Helm"'
which is more schematic, and hence more generally ap-
plicable to the excitation of individual nuclear levels.
This model assumes that the transition charge density
is concentrated about the nuclear radius also, but is
smeared out by a Gaussian convolution. It has shown
itself exceedingly useful for the interpretation of angular
distributions of inelastically scattered electrons, " '~ in
many cases permitting a unique determination of the
transition multipolarities, with parameters taken over
from the elastic scattering data. Since, however, the
transverse electric and magnetic parts of the electron-
scattering cross section, which become prominent at
large backward-scattering angles, lead to a much greater
variety of excited states than the Coulomb part, most
electro-excitation experiments now concentrate on scat-
tering angles atio, ss or near7 —9,19 180 . In order to provide
an interpretation for transversely excited states seen in
such experiments, we have generalized the Helm model
to permit a calculation of the transverse matrix ele-

ments. The magnetization density we have assumed to
be concentrated near the nuclear surface also. For the
nuclear-charge current density, we obtained an expres-
sion by solving in a unique fashion the continuity equa-
tion containing the Helm charge distribution. The re-
sulting transverse matrix elements contain two level
parameters (besides the universal nuclear radius and
surface thickness) which can be fixed by f'itting to the
low-q limit of the experiments, and then provide a
parametrization of the data to all higher q values.

We have further, for the sake of future reference,
written down the conversion between the M, T nota-
tion' and the 8 notation" (which are both being used
independently in the literature) for the electroexcitation
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matrix elements, and have rederived their expansion'"
in powers of q, explicitly stating the definition" of the
expansion coeScients, both in general and in terms of
our generalized Helm model. Finally, some illustrative
examples are discussed, among others the' ' "15.1-MeV
Mi state of "C, and a satisfactory description of the
data is found to be provided by our model.

+V(~) 2 (IA-'PII2'(q)ll j.&l'

+ l~.-'(~tl2. -(q)li~.&l')), (1)

where ki(ks) are the initial (final) electron momenta (we
neglect the electron mass), cr = e /4skscr= 1/137, q= kt—ks
the momentum transfer, 6'=g' —M', co=A» —k2 the
nuclear excitation energy, Jodo and JM the initial
and final nuclear spins and their s components,
Jo=(2Js+1)'t', and r7 the electron scattering angle.
The kinematical factors V~, V& are given by

(2a)Vr(+) =—2kiks cos'-,'es,
q4

2kgkm

V,(oi) =- sin'-,'tt[(kt+ks)s —2kiks cos'srt7j, (2b)
g2

with Vt(180')=0. The cross section contains a longi-

tudinal (or Coulomb) matrix element of the operator

3frM(q) = cisr p(r)j z(qr) YzM(p)

determined by the nuclear charge distribution ep(r), as
well as a transverse electric and a transverse magnetic
matrix element, which originate from the nuclear charge
current ej(r) and magnetization density el'(r):

2' e,tn(q) 7 e,mt(q)+ 2' e,m ( e) q(3b)
Tzst's'(q) =

q
' derj V sc jz(qr) Yzz~(r), (3c)

7'z~"'(q) = &'rj j r.(qr) Yzz~(P), (Sd)

2'n~'"(q) = q d"t i z(qr) Yzz"(') (Be)

Tzsr e(q) = cjsry V red z(qr) Yzz~(P) . (3f)

s' D. B. Isabelle and G. R. Bishop, Nucl. Phys. 45, 209 (1963).
'«H. L. Crannell and T. A. GrÃy, Phys. Rev, 136, B1584

(1964)."R.Raphael and H. Uberall, NucL Phys. 85, 327 (1966).

G. GENERAL PRELIMI5'ARIES

In Grst Born approximation, the diRerential inelastic
electron scattering cross section is given by'

do- k2 Sxo.' 00

(Vt(~) 2 I~a-'(~(I~.(q) ll~s& I'
dO I=0
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The reduced matrix elements are deined by the%igner-
Eckart theorem: (J((r +'((Jo&z'&'=R(J(( dorj V xr +'Yzz(t')((Jo&, (10b)

There exists in the literature~ ""an alternative way of
writing the cross section, namely(for the Lth multipole) (J((ra+a((Jo&z —

&J(( dor

idol q'z 4s.(L+1)
B(CL,q) o((e)

kdQ) g, k o LD2L+1)!!]'L+1
X/rz+'j Yrz(P)+y V xr +'Yzz(r)]((Jo), (10d)

I where in Eqs. (10b), (10c), the charge radius 2 of the
nucleus has been introduced as a factor in order to make
all the reduced matrix elements have dimension r~'],
then the expansion is found as follows: For the Coulomb
part, we have

B(CL,q) '" qoRc'

B(CL,O) 2(2L+3)

+$B(EL,q)+B(ML,q)]og(8)), (5)

and one can establish the following connections: For the
kinematical factors, one has

(6)Vg, &(8)=2kiko(1 —cos8)'og, ,(8),

and for the reduced matrix elements, which are dined
by 4g Q4

(11a)B(iL,q)= Z l&JM(~i~, 'I J~o&l'

=& 'l&J(l~ 'l(Jo&l'

8(2L+3)(2L+5)

(y) using "transition radii" defined by

'IIJo&~/&Jll"I(Job &11b)

~c*'= &Jll» 'IIJo&z/&Jll"l(Job

and where the matrix element at zero momentum
transfer Lwhich to a good accuracy is equal to the matrix
element B(CLm) at q= a&] is given by

B(CLO)=~J 'I &Jllr'I(Job(' (11d)

(8c) For monoPoles, L=O, the series exPansion of Eq. (11a)
starts with the q' term only, since from the orthogonality
of initial and 6nal nuclear wave functions,

(i=C,E,M), one has

BRrore e(47») '"——
q (2L+1)!!Mz~,

5K or =e(4m) 'I'q fL/(L+1)]'I'
X (2L+1)!!Tz,~',

~LMor oe(4&) Lloq LP—/(L-+1)—]11

X(2L+1)!!Tyler )

so that Gnally,

B(CL q) =aA 'L(2L+1)!'/qz]'I &Jl(Mr II Jo& I

' (9a)

B(EL q) = &o 'I:L/(L+1)]L(2L+1)!!/q']'
X I &Jl(2'z'(IJo& I' (9b)

B(ML,q) =-~.—LL/(L+1)]L(2L+1)!!/q ]
X l&JI(2'."IIJo&l . (9c)

(Jll do»~(r) IIJo&=—0.

The preceding equations should then be replaced by

q 4B(CO,q)
'I' q'Eo'

= 1— +, (11a')
lim Lq 'B(CO,q)] 6
q~P

with
Many experiments were done at small values of the

momentum transfer, and it becomes useful to perform
an expansion of the matrix elements"' in powers of q'
(by expanding the spherical Bessel function). If we in-
troduce the notation"

~c'=—'o &Jllr'll Jo&o/&Jll "llJo&o, (11b')

lim Lq 4B(CO,q)]=(a/36/oo) ((J((r'((Jo)o(' (11d')

&JM(m, M, I J~o&
=~ '(Juo LMzl JM)&J(l~zl(Jo) (4) &Jllr~'(IJo4'"=& '&Jll do»»&+'p Viz(~) I(Jo& («c)

q'B(«, q)

lim L'q'B(EL, q)]
q~P

(12a)

&J((rz+i((J ) (J(( dor&(r)rz+slr (p)((J ) (10a) For the transverse electric part, we find, using a nota-
tion of transition radii similar to Spamer's, v

qo L+3 q' L+5
Z~'+ +@+4~ ~ ~ ~

2(2L+3) L+1 8(2L+3)(2L+5) L+1

L+3 (J((r +o((Jo&z,"—2(2L+ 3)R'(J((r (( Jo&y. '&

Eg
L+1 (Jll"IIJ.&.'

L+5 (J(fr +'((Jo&g'&'—4(2L+5)R'(J((rz+'((Jo)r, '
4Q

L+1 &Jll"IIJ.&. '

(12b)

(12c)
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and where over its width:

a
q-+0 R' I.+1

=oPB(EL,(o) . (12d)

ao L+1
0(k)dk= (2m)' Q L(2L+1)!!7 '44'i '

L=j

X LB(EL,(u)+B(ML,or)]. (15b)

I'inally, we have for the transverse magnetic part:

B(ML,q)
'" q' L+3

E~'
B(ML,O) 2(2L+3) L+1

III. FORMULATION OF THE MODELwith

Some of the foregoing can be found at diRerent places
in the literature. It was thought to be useful for reference

purposes to have all this material written up in one

place, the exact meanings of the parameters, such as
Rg', E~', etc. , dehned, and the conversions between the

q4 L+3 M, T, and the 8 notation stated.
844*4—,(13a)

8(2L+3)(2L,+5) L+1

I+3 &J[[«+ ][Jp)r.
~M

L,+1 &JJ)«'((J4)1"

L+5 &Jf/«r+4Jf Jo)r,m

——&~*4=
L+1 &Jll"IIJ.)."

(13b)

(13c)

Helm" has given an expression for the Coulomb
matrix element by assuming the transition charge
density to be concentrated on a shell about the nuclear

radius, in the form of a 6 function smeared out by a
convolution,

and where B(ML,co)— (r) = po(r r)p (r )d—'« . (16)

B(ML O)=~LL/(L+1)]Jo 'I &Jll«'IIJo)~" I' (13d) The charged shell is given by

If one considers the 6rst terms in the expansion only,
and uses the approximate equalities at g=co, one can
show easily that

B(EL,40)—B(CL,(v),

or more accurately,

p, (r) =Zb(r —R), (17a)

(to be averaged. over all directions of R), with R a
position vector of length equal to the charge radius,
over whose direction we will average later; the smearing

is taken as

&Jll«'l(JO) "=[(L+1)/L]"'«(J([«'([Jo)r., (14b) pr(r) = (2 a') '" exp( —«'/2g') (17b)

(an exact relation), which also implies with some surface thickness g. Hy the convolution
theorem, the Fourier transform of p(r) is just the prod-

&JIIT~'(~) IIJO&—=L(L+1)/L]'"&I~~M, (~) ~~
Jo). (14c) uct of the I ourier transforms of po and p1,

Use has been made here of the equation of continuity,

p= 1'. F()—= d' "' ()=f (41)f (q), (18)

The relations (14) are known as Siegert's theorem; they
furnish a connection between the Coulomb and the
transverse electric (charge current part only) matrix
element, which is correct even if j contains meson ex-

change currents, as is the case in an actual nucleus. Note
that the transverse matrix elements at q=co describe
photonuclear processes. ' "

Finally, it may be useful to quote the radiative width~

to the ground state of the level J in terms of the electro-
excitation 8's for q

—+ co.

m L+1 i'
= 87/ p ((2L+ 1) t!)—2($21+'

I J

Mr44(q) =(4x'& ) ' F(Q) l'r44(q)dq (20)

where q = q/q, and inserting from Eq. (18), one has

Mr, 4r(q) =Zf1(q) jI.(qR) I'1,44(X) .

This gives for the reduced matrix element

Jo '&JIIM~(q) II Jo)=&~'"f1(q)j~(qE)

(21)

fo(a) =«*'", f1(q) = em( —A'/2).

The Coulomb matrix element (3a) can easily be shown

to be given by

as well as the yhotoabsorption cross section' integrated

X [B(EL,a&)+B(MLp&)], (15a) with a parameter to be fitted to experiment,

P~"'= Jo 'Z&JII'!l' (&)ll Io)- (23)



av standing for an average over the directions A.
This is the result of Helm.

%C now extend this procedure to the calculation of
TI,~ ', fox' this purpose, wc nccd corrcspoQdlng ex-
pressions for j(r) and y(r). The current can be found by
solving the continuity equation (14d), which we show
can be done, if certain reasonable assumptions are made
/see Eqs. (27) belowj, in a unique way. First, we note
that with p(r) written as in Eq. (16), we also have

j(r) = jo(r—r')pi(r')d'»', (24)

which follows from Eq. (14d) by taking Fourier trans-
forms. At the same time, jo(r) must satisfy

& jo(r)=~po(r),

and using Eq. (17a), we have

For the higher multipoles I.~&1, one makes the ansatz

Jo"'(r)=po(r) Z Fz~*(&)
L~ j,M

being also a multipole expansion in E., as required by
Eq. (26). The only other multipole term in r", Yzz,~(r'),
is then ruled out by parity. The corresponding velocity
is essentially the square bracket in Eq. (32), and if one
requires its curl to vanish, one obtains one equation
for A and 8 (taking f, g to be known for the moment);
two further equations arise from inserting Eq. (32) into
Eq. (26) and comparing coeKcients of po and po'. These
three equations for two unknowns are soluble only if
the rank of the 3)&3 matrix of coefIicients (including the
column of absolute terms) is less than three, and it
turns out that this is not the case unless one of the un-
knowns vanishes. If 8=0, one finds further that

f(r)=Cr ~'

The basic assumption will be that jo is of the form

which gives a singularity at r=0 and is thus not per-
missible. Kith A =0, one 6nds

jo(r) =po(r) v, (2/a) g(r) =Cr~',
with which is the permissible case. The expansion of the

(2'/b) current thus contains

'&z, z i (r)

and with the Row of nuclear matter being irrotational only; this choice has also been made in our previous
paper" on giant multipoles in the generalized. Gold-

) haber-Teller model. The snai solution is then

which is an assumption that is commonly made. ' '4 In (2L+1)i/I «) z i-
Eq. (26), we have to treat the monopole separately j «o&( )=r—ooig—p, (r)
from the higher multipoles, z».~ k I. i Z/

jo(r) = jo"'(r)+jo'"(r),

where jodo& satis6es

Xl'z~*(&)&z, i"(r). (33)

As for the magnetization density, this can simply be
assumed to bc of thc form

V jodo'=icoZB(r E)/4ozr'—
,'icor(d po/dr) . —-

p(r) =go po(r —r') p, (r')d'r', (34)

It was shown in a previous paper" that for the monopole,
conservation of matter requires a modi6cation of the
right-hand side expression, namely

jo"'(r)=-li rp (r) (31)

"H. Steinwedel and J. H. D. Jensen, Z. Naturforsch 5a, 4I3
{I950).

~~ C. Werntz and H. Cberall, Phys. Rev. 149, 762 (4966).

Further, only a radial velocity is possible (which is
curl-free), and the solution is uniquely

with yo some constant vector containing the nucleon
splns and anomalous moments, and

(35a)

pi(r) = (2irg') +' exp( —ro/2P) (35b)

a different nuclear radius 8 and. surface thickness g will
ln gcQcx'Rl bc nccded hex'c, since thc n1RgQctlzRtloQ
density is based on the nucleon distribution rather than
on the proton distribution, and it is well known that
these two differ.

6 R. Raphael, H. Cberall, and C. Kerntz, Phys. Rev. 152, 899
I',)966).
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%ith the current and magnetization density of Kqs.
(24) and (34), one may then calculate the transverse
lllatl'Ix clcIllcIlts (3c)-(3f) 111 R s'tlalghtforward manner
and one can factor out again the functions fI(q) and

AI(q) =em( P—q'/2), (36)

respectively, by using the relation

jL(qr) ALII(I') = (42iL)-I e'&'I'LII(q)dq.

to the Siegert theorem (see below), is the same one ap-
pearing already in the Coulomb matrix element, Kq.
(22), and can be independently obtained there as one
can experimentally separater B(CL,q) from I3(EL,q).
The second term containing yL, O is called "electric spin-
Qip transition" and has no longitudinal counterpart.

The same expansions in powers of q' as in Eqs. (11),
(12), and (13) can also be made for the matrix elements
of the Helm model. One obtains then, e.g., the
connections

mj(q)=0 (38)

The monopole d.oes not contribute to any transverse
matrix elements. gee 6nd

pL o =jp-'R- (Jllr'ljJ»)L,

R '= R'+(2L+3)g'

PL"'=~p 'R '(-LI(L+1))'"(~R) '

(41a)

(41b)

because of the absence of the term YLL~(i) in the cur-
rent. This operator also vanishes in the Qoldhaber-
Teller model. ' For the other reduced matrix elements,
one obtains

L+1 '" »I

~» '(Illa''L'(q) III») = PL"' fI(qUL(q-R)
I.

I.+3
RII2= R'—+(2L+3)g2

I.

x &III "llano)", (42')

tI
— fI(q)j L(qR), (39a)

2m

q I.J.-'(Ill2."(q)llI.)=- A(q)
2m 2L+1

( I+1 I/2

xi ~I(qR)+ I vL "'i L I(qR) -(39b-)
2L+1

with m =nucleon Inass, where we introduced the
parameters

=2' 2Jp(flltpp 'YL,~1(R')ll Jp) „, (40)

(X=O, &1). Since the reduced matrix elements, when
multiplied by i~, are real, 2' and since diferent multi-
poles do not interfere, all our (dimensionless) param-
ctcl's pL Rnd 'rLI Illay bc ta!Lcn rcaL

Equations (39) represent our generalization of the
original Helm model of Eq. (22). Both transverse
matrix elements depend on two parameters which can
be obtained by 6tting to the "photon point" at q=a)
(this determines pL or yL, respectively), and to the
experimental slope of the data versus q' (this will 6x
yL» or y~, respectively), whereas RR, g,, and g can
be taken from the known ground. -state charge and
matter distribution; anyway, the latter four parameters
should not vary from level to level, whereas pL and. yL1
are characteristic for a given level. The expressions (39)
then predict the q d.ependence of the form factors for
higher values of g. In the transverse electric case, how-
ever, one can do better since the fIrst parameter pL, duc

~' R. H. Pratt, J.D. %'@lccka, agd I'. P, Ggj&y, Ngcl. Phys. 64,
6'l J (1965).

yL ~»~= —2'» IR L2mR((L+1)(2L+1)) "'
x(Ill"llJ.) ", (43 )

I.+3 2L+3 2 L
E~~=- 8' i—--

L+1 2I+1 2L+3 +1 7L ~'~

+(2L+1)g' (43b)

L+1 2»
I",=Smo. 2L+IR»L (pLZ»J)2

LL(2L+1)!!j2 P
(44a)

I' =82ra— -- co2~182LL(2L+1)
LD2L+1)!!$2

1 )2 Jp'
x — —

l (vL "')' (44b)
2mB) J

IV. APPLICATION TG TRA5'SITIO5'8 IN "C

As lllustratlve exaIDples~ we consldel two tx'ansltlons

in "C—the M1 transition from the ground state to the
15.1 MeV 1+ level and the E2 transition to the 46.1 MeV
2+ level. The former, of course, is of special interest,
since the original Helm model does not apply to mag-
g.et&c tl ass&tlops,

The right-hand sides of Eqs. (41a), (42a) are identical
fl'OIYI thc Slegcrt tl1col'clll, Eq. (14b). Tllls cxplallls wily
the same parameter pL appears in the longitudinal and

transverse electric form factors of the generalized Helm
model.

The following radiative widths are predicted by the
Helm nmdel:
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A.. 15.1 MeV Ml Transition in C

From Eq. (1), we see that for an Mi transition from
a zero spin initial state, we can write the cross section

der k2 8m''
v (~)q'=q-'I(1 IIT -IIo ) I'

dQ kg h4

IQ

I&i II Ti IIQ &I .
(IO 3F2)

q2

I5. I MeV Mi LEVEL OF C

This form is a specially convenient one for analyzing the
data. From Eq. (39b), we see that for q(R ',

q-s l(1+ll2";IIO+& Ir

Yl- Yl - ~ Yr+Yr—5P+ Iqs+0(q') . (45b)
6ms 6ms 45' ~s J

Hence if we plot

do. k2 8mo.'
V (~)q'

dQ kg A4

versus q', the data points, for low q', should lie along a
straight line whose intercept with q =0 gives the magni-
tude of y~-, and whose slope yields the magnitude of
y~+ and its sign relative to y~-."

Vsing data taken from Dudelzak and Taylor, "
Goldemberg et u/. ," Barber et ut. ,

" and Schmid and
Scholz, "we have plotted in Fig. 1 the q' dependence of
the transverse Mi form factor for the 15.1-MeV level
i.n "C. The values of g and 8 used in obtaining the
theoretical curve are taken from optical-model Gts to
elastic proton-nucleus scattering. " It is encouraging
that one can fit the experimental points, even at larger
values of q', so well.

B. 16.1 MeV E2 Transition in "C

For E2 transitions from a zero-spin ground state, it
is convenient to consider

do k2 8+&'— — V, (a)qs
k, ~4

=q 'l(2+ll~sllO+&I'+I:V~(~)/Vt(~)7q '

x(l(2+IIT;+r; llo+&I }. (46a)

0
0 .4 .6 .8 I.O l.2

Fn. 1. Momentum transfer dependence of the transverse M1
form factor for the 15.1 MeV 1+ level in "C, fitted by the gener-
alized Helm model with parameters g'=1.04F', 8=1.25A'"Il,
~Y&

—[=0.995, ~Y&+I=1.37; Y& and Yx+ are relatively positive.

To a good approximation, "
8rras ks rr' cos'-'g)—Vt(t7)=4s I=4s.o~,

A4 kt 4krs sin'-'stion
(46b)

where OM is the proton Mott cross section. Thus the
left-hand side of Eq. (46a) may be written

da' k2 8xcP do'
Vt(ot)q'= —/4s. osrqs. (46c)

dQ ky dQ

As is easily seen from Eqs. (22) and (39a), for low mo-
mentum transfer, the right-hand side of Eq. (46a), as
a function of q', is a straight line whose slope and
intercept at q'=0 determine the magnitudes and rela-
tive sign of Ps and Yes.

U, as is the case for the data of Dudelzak and Taylor, "
there are no experimental points at these low values of
q', the data may be treated somewhat diEerently. %e
write

~ In the spirit of the model, for a given nucleus, we take g and 8
to be given 6xed parameters which may be determined, e.g., from
elastic scattering data. The form factor is a sensitive function of
these parameters —decreasing g and It' by 10j0 would raise the
theoretical curve in Fig. 1 far above the data points. Since g and g
are not to be tampered with, y~~ have well-de6ned values. The
fact that a good 6t to the data is obtained with reasonable values
of g and 8 is an indication of the validity of the model."8.Dudelzak and R. E.Taylor, J. Phys. Radium 22, 544 (1961).

'o J. Goldemberg, W. C. Barber, F. H. Lewis, Jr., and J. D.
Walecka, Phys. Rev. 134, B1022 (1964).' W. C. Barber, F. Berthold, G. Fricke, and F. E. Gudden,
Phys. Rev. 120, 2081 {1960)."H. Schmid and W. Scholz, Z. Physik 175, 430 (1963).» A. E. Glassgold, Rev. Mod, Phys. 30, 419 (1958).

do' ( 3 toe Vg)
=4~o~fr'j s'—(q~)

I
1+-——lps'

dQ E 2q' Vg)

fr js(qit'&
+—g6— rop2720

+I —. I v s'q'
&fr js(p))

II' The approximation consists of neglecting au' relative to
n'=4k, ks sin'(8/2).

(46d)
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The upper and lower broken curves are
I (2+IIM, I(0+) I

s

(I ~/I t)l(2+II&s'~+2s'"(Ip+)I', respectively. The
dashed curve is that obtained when we assume no
magnetic contribution (7M ——0). One sees that the
longitudinal contribution is the dominant one at the
scattering angle 8=135' used in Ref. 29. The small
value of the transverse contribution at low q' is due to
destructive interference between T2'& and T2'I'. At larger
q', T2'I' predominates over T2'&'.

Because of the dominance of the longitudinal con-
tribution, the fit obtained in I'ig. 2 presents of course a
considerably weaker argument for the validity of our
generalization of the Helm model than does Fig. 1.

It might be remarked that it has been customary
when using the Helm model for a determination of the
parameter P, to assume that the transverse contribution
is zero. This is obviously inconsistent with Siegert's
theorem, Eq. (14c). The values of P thus obtained. will
always be somewhat too high. I

Reference 29 Ands in
this way a radiative transition width I'=1.6 eV, or
from Eq. (44a) a value Ps

——0.475, against the result
Ps= 0.375 from our fit.j

FrG. 2. Cross section versus q' normalized by the proton Mott
cross section 0~ for the 16.1 Me& 2+ level in ~'C at 8=135',
htted by the generalized Helm model with parameters g = 1.04F,
@=1.25A'~3F. g'=0.81F', R=1.10 A'"F, P22=0.14, y20

——0.952
(solid and broken curves), y20=0 (dashed curve). The upper
broken curve is the longitudinal contribution, the lower one the
transverse contribution. The dashed curve is the cross section
obtained when no magnetic contribution is included (?'s'I' =0).

Since the ratio ftj s(qB)/ftjs(qR) is a slowly varying
function of q and co'/qs is small, if we plot (do/dQ)/
4rrosrft'(q)js'(qR) versus q', the experimental points
can be 6tted with relative ease, and the magnitudes and
relative sign of Ps and iso determined.

In Fig. 2, we plot (do./dQ)/4~osr as a function of q'.
One sees that the ht is quite good except for one point
at q'=1.87f '. This point, however, cannot be given
very much weight —the cross section at such a high
value of q' is very di6icult to determine and the experi-
mental errors involved are very large. "The solid curve
is the 6t obtained with the generalized Helm model.

"Indeed when Dudelzak and Taylor attempted to interpret
their results in the framework of the theory of R. H. Dalitz and
D. R. Yennie I Phys. Rev. 105, 1598 (1957)j they did not include
this point on their curve. It would be interesting to have better
data at these higher values of ft' in order to check whether the
cross section decreases as predicted by the model.

V. SUMMARY

%e have generalized the schematic model of Helm
to provide us with expressions for the transverse form
factors of inelastic electron scattering. They depend on
the nuclear radius E., 8 and surface thickness g, g for
charge and matter distribution, respectively, which
should be similar for all levels, and the parameters
Pr„&I.s,~ characteristic for each level. It is hoped that
the model will prove useful for describing, in a semi-
quantitative fashion, the q dependence of the transverse
excitation strength of nuclear levels determined in
inelastic electron scattering at large backward angles,
pending a more careful analysis based on some detailed
nuclear model. The inherent simplicity of our results
should make them handy for a rapid analysis of ex-
perimental data.
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