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Internal Strain and Raman-Active Vibrations in Solids
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In lattices in which not all ions possess inversion symmetry, internal-strain effects give rise to piezo-
electricity and contribute to the elastic response. It is possible to describe these internal strains as static
optical-phonon-mode displacements and to analyze the internal-strain contributions to the elastic and
piezoelectric constants accordingly. Certain symmetry properties become evident as a result, the most
general of which is that only Raman-active modes contribute to internal strain, and only modes simul-
taneously Raman- and infrared-active produce piezoelectricity. This formalism also provides a basis for a
discussion of piezoelectric and elastic anomalies which may accompany incipient instabilities in optical-
phonon modes. Finally, it is shown that the anomalous elastic behavior of p quartz near the e-p transition
temperature can be understood by postulating a low-frequency temperature-dependent Raman-active mode
of A 1 symmetry.

' I NTERNAI, -strain effects in a solid lead to contribu-
tions to the elastic and piezoelectr'ic constants, '

which have been studied from the viewpoint of lattice
dynamics by several authors, including Born and Huang
and Cochran. ' In particular, Cochran has discussed how

a soft optical mode leads to elastic and piezoelectric
anomalies via internal-strain effects. In this paper we

further develop the discussion of these properties by
the introduction of a second-rank tensor' which plays
a fundamental role in the internal-strain contribution
to the elastic and piezoelectric constants, in the relation
of elastic and optical properties, and in the derivation
of symmetry relations. The general symmetry relations
can be summarized as follows: Only Ra,man-active
modes contribute to the internal-strain pa,rt of the
elastic constants and only modes which are both Raman
and infrared active contribute to the piezoelectric
coefficients. The elastic anomalies near the a-P phase
transition of quartz are discussed as an application of
the general results, and it is shown that the hypothesis
of R soft Raman-active Inode of Al syIDmetry lea,ds to
good agreement with the observed elastic behavior of

P quartz.
I et us consider the properties of a long-wavelength

acoustic lattice vibration, using the rigid-ion model.

The ionic displacements for an acoustic vibration of

wave vector y and branch j are

.(&,k)= .-'"«..(j.,p) e pL1 x(') —i U. l)G

where ml, denotes the reduced displacement of sublattice
k. (The notation will generally follow that of Born and

Huang, ' except where other symbols are explicitly
defined. ) The perturbation method of solution of the

equations of motion for the ionic displacements due to
Born and Huang' is a power-series expansion of all

quantities in terms of the Inagnitude c of the wave

vector y along a, Axed direction of propagation denoted

by the unit vector p. Thus the power series for the

' M. Born and K. Huang, Dyriurnicet Theory of Crysfat t.uNices

(Clarendon Press, Oxford, England, 1962), Chap. V.
'%. Cochran, Advan. Phys. 10, 401 (1961).
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reduced displacement is

«.1,(j.,~p) =«.~ "(j.,p)+i~«. 1
' (j.,p)

+ ', ~'«.1,"'(j-.,P)+. , (2)

and similar expansions apply to the frequency ~(J~&~p)
and dynamical matrix C(ep; kk ). The substitution of
the expansions into the equation of motion yieMs a
separate equation for each order of e.

The solut. ion of the zero-order equation in e is
« „I'(j,p)=re, 'I'w (j„p) and &v&'1=0, where v(j„p)
is an arbitrary vector. To express the solutions of the
first- and second-order equations in terms of a second-
rank tensor we introduce the eigenvectors es~(j) and

eigenvalues co,'(j) of the dynamical matrix at P=0 by

C P "(kk')eP1. (j)=(o,'(j)e 1(i) (3)

and the notation C p,.„.„~„&")will indicate the deriva-

tive of order e of the dynamical matrix with respect to

p» p, „; we adopt the convention of summing over

repeated indices. Then if we expand the internal strain
«&'& in terms of the complete set of eigenvectors e(j)
as

«-."'(j.,p) =Z q1(j.,p)~.1(j)

we Gnd from the 6rst-order equation that the coeK-
cients are given by

~sv(j) . „~ 1(i)
q, (j.,P) = — VP(j.,P)P,+Z1m1 '" E., (5)-

~'(j) ~'(i)
where E is the macroscopic electric 6eld, Zl, is an e6ec-
tive charge, and the second-rank tensor of optical mode

J ls de6ned Rs

~us(j) =L~-);."'(kk')~""je-1(j)

The expansion coeQicient q; for an acoustic mode j
may be chosen to vanish. By using the expansion of the
internal strain in optical-mode eigenvectors LEqs.
(4)—(5)j the solubility condition for the second-order

eqllatloll leads to all 1llternal-strain conti lbutloll (Gp p6)
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to the elastic constant c~,„q given by

(~V,I ~)= —Z . ~ rU)~.s(i)
~ ~'(j)

and to a piezoelectric coeKcient e„,~ given by
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where P(j) is the polarization of mode j,I'„(j)
=ps Zsfiss i ass (J).Thc advantages of 1111Todllclllg tile
second-rank tensor E p become apparent in the subse-
quent discussion of symmetry properties and elastic
anomalies.

From the deining equation for E S(j ), one sees that
since Pq C s., „1'1(kk')ills 'ls is a characteristic third-
rank tensor of the crystal, then F s(j ) transforms as the
eigenvector e(j) under the point-group operations.
Since Ii s(j) also transforms as a second-rank tensor,
it follows that only eigenvcctors which transform as
second-rank tensors contribute to F s(j ). The eigen-
vectors which transform as second-rank tensors are
Raman active'; hence we see from Eqs. (7) and (8) that
only Raman-active modes contribute to F and thus to
the internal-strain part of the elastic constants and
only modes which are both Raman and infrared active
contribute to the peizoelectric coefficients. Additional
symmetry requirements are imposed upon the tensor
F s(j) by the condition that the tensor components
ss ~ and (ny, 118) must also form bases for an identity
representation of the crystal space group. We note that
the frequency and polarization of the optical modes at
11=0 which appear in (ny, p8) and e„,~ are directly
measurable in Raman cGect and infrared reQcctivity
experiments.

The preceding discussion has been based on the rigid-
lon model. A more gencI'al study of thc clastic pI'opcrtlcs
of crystals with polarizable atoms has been carried out
by Cowley, ' who bases his discussion on the shell model.
His result for each of the brackets (ny, 113) and e„, r
is a sum of a lattice term (arising from the core dis-
placement) plus an electronic term (from the shell
displacement). By introducing the eigenvectors and
eigenvalues of the dynamical matrix at p=o one may
then express his result for the lattice part in terms of a
second-rank tensor in the same form as given in the
rigid-ion Inodei by Eqs. (7)—(8). Thus in a polarizable
atom model our previous comments will apply to the
lattice part of the brackets (ay, II3) and s„

It is well established that certain ferroelectric in-
stabilities develop as a result of long-wavelength
(y-+0) polar phonons whose frequencies are both
anomalously low and strongly temperature-dependent. '

' See, for example, R. Loudon, Advan. Phys. 13, 423 (1964).
4 R. A. Covley, Proc. Roy. Soc. (London) A268, 121 (1962).~%'. Cochran, Advan. Phys. 9, 38/ (19%); A. S. Barker and

M. Tinkham, Phys. Rev. 125, 1527 (1962); R. A. Cowley, ibid.
134, A981 (1964).
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FIG. 1. The temperature dependence of the elastic constants of
P quartz. Open circles are measured values (Ref. 6). C44 and C66
exhibit a slight hnear temperature dependence. (Ces= It Ci& —C&sg
is not independent but is shown for convenience. ) The remain-
ing elastic constants are 6tted to Eq. (9) vrith T,=553'C and
the follomin values for C0(ij) (in units of 10'0 dyn/cm'):
(11)=137, 12) =35.5, (33)=125, (13)=50. The AC(ij ) (in
units of 10'0 d 'C/cm') are: (11)= (12)=990, (33)=719,
(13)=C(11)(33) 'i' =844.

The additional advantage of the reformulated equations
(7) and (8) is the explicit appearance of the phonon
frequencies te, (j), making it immediately obvious that
an anomalously "soft" polar mode that is also Raman
active (which is possible in RH of the 20 piezoelectric
crystal classes) will necessarily affect not only the dielec-
tric response, but the elastic and piezoelectric properties
as well. Cochran has discussed the hypothetical be-
havior of a ferroelectric zinc-blende lattice extensively
from this point of view. ' It is not, however, necessary
to restrict our attention exclusively to polar modes.
We can imagine a lattice becoming unstable toward a
non-polar-optic mode as well, and Eq. (7) shows that if
the "soft" mode is Raman active, large anomalous
internal-strain contributions to one or more elastic
constants must result. In fact we can establish the
following rather surprising result: It is not possible for
a Raman-active mode frequency to,(j) to go to zero
(as in a second-order transition) without first precipitat-
ing an instability of a di6'erent sort, i.e., with respect to
a homogeneous elastic deformation. LAt least one elastic
constant of the form C;; will become negative before
co (j)~ 0, vlolatlllg R ncccssRly condltlon foI' stablhty
against homogeneous deformations. j

At about 513'C, ordinary low-tcmperature 0. quartz
undergoes a reversible phase transformation into a more
symmetric P-quartz structure. Among the several
anomalies clearly associated with this transition, the
pronounced temperature dependence of the elastic con-
stants in the immediate vicinity of the transition tem-
perature, as shown in Fig. 1, is perhaps the most
striking. '

Itl quartz belongs to the space group Ds'(P6s22)
'E. W. Kammer T. E. Pardue, and H. F. Frissel, j. Appj

Phys. 19, 265 (1948 .



C,,=Cg' hC„/(T T.—), — (9)

where C,P is the (approximately) temperature-inde-
pendent contributions from both non-internal-strain
terms and internal-strain terms associated with higher-
frequency modes (which are, therefore, relatively less
temperature-dependent). Simple relations among the
AC,; in addition to those imposed by the over-all sym-

and the number of y=o optical-normal modes trans-
forming according to the various irreducible representa-
tions of the factor group Db are as follows: A~(1),
B&(3), A2(3), B2(2), E~(5), and E2(4). In connection
with internal strain, only the Raman-active modes A&,

E~, and E2 need be considered. The requirement that
F(A~) transform irreducibly restricts the nonvanishing
components to F„(A~)=F»(A~) and F„(A~).Similarly
Er modes contribute components of the form F„(E~)
and F„,(Eq), and E2 modes contribute F„(E~)

F»(E—2) and F,„(E~).A consideration of the over-
all symmetry requirements on the elastic constants
(xs,xs) = (ys, ys) and 2(xy, xy) = (xx,xx)—(xx,yy) im-

poses the further restrictions ~F,(Ez)
~

= )F„,(E&) ~

and [F„(E2)[
=

( F,„(E2)) . Inspection of Eq. (7) shows
that the A~ mode makes internal-strain contributions
to the elastic constants Cj~, C~~, Cja, and C33, but not to
C44 or C«, whereas Ej modes contribute only to C44

and E2 modes contribute to C~~, C~2, and C«. It is clear
with reference to Fig. 1 that a large internal-strain con-
tribution brought about by a low-frequency A& mode
provides an attractive possible explanation for the
behavior of the elastic constants of quartz.

We have investigated this idea more quantitatively
by assuming the A& phonon mode in question has a
renormalized frequency whose temperature dependence'
is of the normal high-temperature form M'(A ~) =~b'+a T.
This in turn leads to the following form for the anom-
alous elastic constants:

metry of the elastic constants nearly always result if
modes of a single symmetry type contribute pre-
dominantly to the internal strain, as is certainly the
case for the type of anomaly under discussion. Such
relations should be valuable in establishing whether or
not an experimentally observed elastic anomaly in-
volves large internal-strain contributions. For P
quartz the form of F (A ~) dictates that AC~~= F„(A~)'/n
=ACgg and [AC)3]'=[F„(Ag)F..(Ag) /a]'=ACuACbb.
That expressions of this form do indeed provide a
reasonable representation of the P-quartz elastic data
is shown in Fig. 1, where the calculated curves satisfy
these relations.

Two points deserve some additional comment. First
of all, the current interpretation of Raman-scattering
results on P quartz' places the single A& mode at

452 cm ' with no exceptional temperature dependence
implied, which seems inconsistent with the present
formulation. (More recent Raman-scattering experi-
ments, ' while o6ering no conhrmation of our conjecture,
seem, however, to leave the published interpretation
somewhat in doubt. ) Also, Kleinman and Spitzera hand

a remarkably strong similarity between the spon-
taneous atomic displacements involved in the a-P
quartz transition and a calculated vibrational eigen-
vector of o. quartz. However, neither this calculated
eigenvector nor the spontaneous displacements bear
any direct relation to the A& eigenvector of P quartz
and in fact they transform very nearly according to the
Bq representation of the P quartz factor group. Thus
while the present proposal does reasonably account for
the elastic anomalies of P quartz, it represents at best
only the beginnings of a comprehensive dynamical
description of the a-P phase transition.

' P. K. Narayanaswamy, Proc. Indian Acad. Sci. 28, 417 {1948).' S. M. Shapiro, D. C. O' Shea, and H. Z. Cummins, Phys. Rev.
I.etters 19, 361. {1967).' D. A. Kleinman and K. G. Spitzer, Phys. Rev. 125, 16 {1962).
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Lattice Absorption in Finite Crystals, M&RvrN HAss xND HERnERT B. RosHNsTocx. [Phys. Rev. 153, 962
1967)gr. Equation (2.8a) should be

u„(2j 1) = eh[sin (2j——1)k„a (1 M&cv—„'/P) sin (2t ——2)k„a].

Equation (2.8b) should be

u„(2j)= cb[—sin(2j —1)k„a+ (1—Mg(a„' /P) sin2jk„af.


