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Sidebands in the Infrared Spectrum of U Centers in Alkali Halides*
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A description of the sidebands in the infrared spectrum of crystals containing U centers is presented,
together with numerical calculations for the case of U centers in KBr. The sidebands are assumed to arise
from the second-order dipole moment and the cubic anharmonicity. Symmetry considerations and the
assumption of short-range second-order dipole moment and third-order anharmonic interactions are utilized,
and the resulting formulas are evaluated numerically for specific examples within the framework of nearest-
neighbor-coupling interactions together with altered harmonic force constants between the defects and their
nearest neighbors. It is found within this framework that either the second-order dipole or the cubic an-
harmonic coupling mechanism can give reasonable agreement with experiment, but that it is always neces-

sary to have a strong decrease in the central force constant between the impurity and its nearest neighbors,
as compared with the nearest-neighbor force constant in a pure crystal. This has as its consequence the
prediction of a localized mode in the gap between the acoustical and optical frequency branches.

I. DtTRODUCTIO5

'HE U center consists of an H ion located at a
negative-ion vacancy in an alkali-halide crystal.

The infrared absorption associated with the high-

frequency localized vibrations of these defects was

discovered in 1959 by Schafer. ' Subsequent theoretical
investigations' ' have shown that these localized

vibrations consist, to a good approximation, of the
defect vibrating in a static lattice and that the forces

binding the defect are weaker than the corresponding

forces in the perfect crystal. More detailed infrared

measurements by Fritz and co-workers, 7' Timusk and

Klein, ' and Mitra and Brada' have revealed well-

deQned sidebands which are symmetrically located

about the main band. At decreasing temperatures the

low-frequency sidebands disappear, while the high-

frequency sidebands do not. Fritz, Gross, and Bauerle's'

measurements of the high-frequency sidebands for U

centers in KBr at T=20'K are shown in Fig. 1. Fritz7

interpreted the sidebands as resulting from the simul-

taneous excitation of one of the threefold degenerate

infrared-active localized modes and absorption or

emission of a perturbed band mode —a mode whose

frequency lies within the allowed frequency interval of

the perfect lattice, but whose associated amplitudes

are generally diQerent owing to the loss of translational

symmetry as well as to the changed masses and force
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constants introduced by the defects. Because the un-

perturbed phonons are well understood in some of the
alkali halides through inelastic neutron scattering
experiments and their subsequent shell-model inter-
pretation by Cowley et al.," the U-center sidebands
oGer an opportunity to study a relatively simple
anharmonic e6ect and the perturbed vibrations
associated with a defect in a crystal whose phonons
are known.

In this paper we present a general theoretical
description of the U-center sidebands. The formalism
splits naturally into three parts which are given in
Secs. II—IV. In Sec. II the basic absorption expression
is derived assuming that the phonon coupling arises
from both the second-order dipole moment and the
cubic anharlnonicity. In Sec. III the absorption formula
is reduced to a physically appealing form by means of
symmetry considerations as well as assumptions
restricting the extent of the coupling interactions, while
in Sec. IV the calculation of those aspects of the per-
turbed band modes necessary to the theory is brieQy
discussed. Finally, in Sec. V we present numerical
calculations for U centers in KBr.

It will be seen that a knowledge of the unperturbed
phonons allows us to calculate the frequency-dependent

frequency (lO sec ')

/CBr, 'H Zo K'
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FIG. 1.Fritz et al. 's experimental results for the high-frequency,
low-temperature sidebands in the infrared spectrum of U centers
in KBr. The plotted quantity is proportional to ln(IO/I"), where
Io and I" are the transmitted intensities for crystals without
and with U centers, and the frequency is measured from the
central peak.

"R.A. Cowley, W. Cochran, B.N. Brockhouse, and A. D. B.
Woods, Phys. Rev. 131, 1030 (1963).
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terms in the absorption, provided that we know the
changed harmonic force constants associated with the
defects. These terms occur with undetermined coupling
parameters that must be either calculated indepen-
dently or guessed. In view of this, we have attempted
to learn as much as possible from the computed fre-
quency dependences of the various terms alone.

Timusk and Klein have also made sideband calcu-
lations for U centers in KBr, and their model is a special
case within the framework given here. Sideband work
for U centers in other crystals has been done by Xinh"
and by Bilz, Strauch, and Fritz, ' and the relationship
of our work to theirs is pointed out at appropriate places
in the paper.

II. FORMAL EXPRESSION FOR THE
SIDEBAND ABSORPTION

In the experimental work of Fritz et ul. ,' with which
we will compare our calculations, the sideband shapes
and peak positions were found to be independent of the
impurity concentration within the range of concen-
trations studied (10 '—10 '). Accordingly, we will

calculate the sideband absorption for the case of a single
U center, multiplying the result by the concentration.
In addition, it will be assumed that the index of refrac-
tion is unaltered by the presence of defects occurring
within the above concentration range, so that it will
be necessary to calculate only the imaginary part of
the electric susceptibility Xr(rs).

Within the Born-Oppenheimer approximation, the
interaction between the system and an external electric
6eld which consists of monochromatic plane waves and
is switched on adia, batically is

—M Ee-'"'e" s —+ 0+

where M is the dipole moment operator of the system
and depends upon the system's instantaneous configura-
tion. Assumptions will be made later which will result
in conning the interactions responsible for the sideband
absorption to a region about the defect that is small
compared with the wavelength of the radiation (which
is about 20 ts for U centers in KBr), thus justifying the
neglect of the spatial varia, tion of the electric field
in (1). The formalism of Kubo" gives, for a cubically
symmetric system subject to the interaction (1), the
following expression for the electric susceptibility:

iC
X(r0) =— (I Mr(t), Mj)e'"'e "dt

3h p

an applied Geld; and Mr(t), the interaction representa-
tion of M, is given by exp(iHt/h)M exp( —iHt/It)
Henceforth, Mr(t) will be written simply as Mr. In the
commutator, the scalar product is to be taken. It is
convenient to introduce retarded and advanced double-
time Green's functions dered by the equations

((Mr. M))„=—i8(t)(t Mr Mj)
((Mr. M)).= i8(—t)(LMr M])

where 8(t) is the unit step function. Subtracting these
and substituting the result into Eq. (2) gives

co

X(r0) ((Mr. M)) e' ~e "dt
o

Here the symbol (())„,, stands for the difference
(())„—(()),. Expressing ((Mr; M))„,, in terms of its
Fourier transform((Mr; M))..." and making use of the
fact that this latter quantity is purely imaginary, we
arrive at the following formal expression for the
imaginary part of X(ss):

i'
Xr(re) = ((M' M))

3h

If M is expanded to second order in the normal
coordinates df, in terms of which H is given by

H —s Q (pr +'Mf df )+Hg p

f

where H~ represents the anha, rmonic potential energy
and pr is equal to dr, Eq. (5) becomes

i'
xr(~)= — (ZMr Mr((dr dr)),

3h ff'

X(((dr' dr dr")) .."+((dr'dr" dr )), ")

+4 2 Mrf™f"f"'((drdf' df"dr" )).;") (7)
ffrflrfrrl

Use has been made of the fact that the second-order
dipole-moment coupling coeflicients Mrr are symmetric
in f and f'. We thus have four (( ))„"functions to
compute.

In Zubarev's" paper it is shown that for any pair of
operators, the function ((Ar;8))„, "is equal to

In this equation, C is the concentration; ( ) denotes a
thermal average over the canonical ensemble appro-
priate to H, the system's Hamiltonian in the absence of

'2
¹ X. Xinh, Solid State Commun. 4, 9 (2966)."H. Bilz, D. Strauch, and B.Fritz, J. Phys. Radium Suppl. 27,

C2, 3 (2966)."R.Kubo, J. Phys. Soc. Japan 12, 570 (2957).

where ((Ar; 8))"is the Fourier transform of the solution
to the equations of motion for either ((Ar;8)), or
((Ar;8)), these satisfying the same set of coupled

"D.N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :
Soviet Phys. —Usp. 3, 320 (2960)j.
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equations. Differentiating the de6ning equation for
((A;B)), twice with respect to t and taking the
Fourier transform yields the equations of motion in a
form well suited to phonon problems:

ip'&(A B))"=(2~k) '([P H5 B5)
+ i't '(([[A,H5, B5z; B))". (8)

In computing each of the four terms in Eq. (7), we will

truncate the set (8) by stopping at the low est sideband-

producing order in Hg, for which we will take the
following part of the third-order anharmonic potential
energy:

+A p 2 @iLaLizdidLadLp ~

hyatt

Here the d~ 's, with n standing for x, y, or s, belong to
the threefold degenerate localized mode, i stands for a
band mode, and the third-order anharmonic coupling
coeKcients are the usual third derivatives of the poten-
tial energy. %hen calculated in the above manner, the
last term on the right-hand side of (7) gives rise to
sidebands in the harmonic approximation, while a
sideband contribution is obtainable from the first term

only in second order in H&. These two terms thus

represent the limiting cases corresponding to a dominant
nonlinear dipole moment or third-order anharmonic

(in the sense of our IIg) coupling mechanism. (Of course

the nonlinear dipole moment and anharmonic coupling
coefhcients are not independent, a fact which has been

discussed for perfect crystals by Keating and

Rupprecht. "Nevertheless, the connection between the
two kinds of coeKcients is complicated and we will

therefore carry them through the calculations as

parameters. ) The second and third. terms, representing

the intermediate case, turn out to yield sideband

contributions to 6rst order in Bg, and the calculation

of these "cross terms" will now be brieQy sketched.
We first remark that ((drz, dr dr .))" will turn out to

be an even function of ~ and that under this condition

the cross terms are equal. To see this, note first that a
spectral expansion of the function ((Bz(t);A))„, shows

it to be equal to —((Az( —t); B)),, Using this we have

versa. Using [dr, pr 5=ih5rr. to work out the commu-
tators in Eq. (8) for ((dz„z, dyed;))", we obtain

((dna') dzpd;))a= hlap&d;)[2s (ip' —ipz')5
—'

+[~'—~~'5 ' Zrv ~~z-»((dr'd»', lsd'))" (11)

where pp+ and pp are ipz+~p; and ipz, —ip;, respectively.

( )p denotes the thermal average using the harmonic
Hamiltonian. Evaluating (( ))"+'~—(( ))" '~ in order to
recover (())„,," and retaining just those terms which
contribute to the sideband absorption at positive co's

we have

((dz-'; dzsd')) .."
ihC;z z, p (dz, ')p (d )p+ b(~ —~+)

8col,Glz — GO; COg

(d ') (d') l+ — ib(ip —zp ), (13)
ipz, )

where we have assumed that PPz))s&;. Now (drs)p is given

by (It/2a&r) coth(Phipr/2) so that as T-+0 the low-

frequency sideband disappears. %hen the low-

temperature limit of (13) is substituted into (10), we

see that the cross-term sideband contribution to the
imaginary part of the electric susceptibility at T=0 is
given by

12col,

(Za, p Mza™iLp@iLaLs)
&(~—~+)

The 6rst term on the right-hand side of this equation
gives rise to absorption only at co~ and will thus be
dropped. If we now work out the equations of motion
for ((drzdz~z, dzsd;))" in the harrztortic aPProximation,
we get a system of two equations, the other unknown
being ((p; pz„, pzsp, ))". Solving these equations,
substituting the result into Eq. (11), and simplifying,
we get

((dz-" d~sd'))"
= M zp[2z. (ppP —cpz, ')((p' —ip+')((p' —(p ')5 '

&&[(d ')o( '—"+ ')+(d")o( *'— '+ ')5, (»)

from which it follows that ((Bz; A))„,," is equal to

(&Az;B)), ," whenever ((Az;B))" is even in co. The
contribution to (7) from the cross terms is thus given by

Proceeding in a similar manner to compute the side-
band contributions at T=0 from the 6rst and last terms
of Eq. (7) for Xz(cp), we obtain the formula

i'
— Z M, Mr r ((dr', dr dr-», .:.

3k ff'f"
(10)

Cmh
Xz ((p) =

1207L, &P M&

Furthermore, it turns out that the only terms in this

expression which contribute to the sidebands are the

ones with f being a localized mode and f' and f" con-

sisting of a band mode and a localized mode or vice

I'P. N. Keating and G. Rupprecht, Phys. Rev. 138, A866
(1965).

g. Mz C;z.zp
X — +M;„ i ~( —,), (14)

2021.07 '

where we have anticipated the result that, Mz„Mzs is
proportional to 8 p. It should be emphasized that the
above expression is a perturbation-theoretic result, no
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other approximations having been made vrithin our
choice of H~ except for the assumption that col,&&~;.
Using di6erent methods, Bilz et al. have recently derived
an expression that is quite similar to Eq. (14), the main
difference being the presence of an anharmonieally
shifted col, vrhich vras obtained in their calculation by
considering higher-order contributions to the absorp-
tion. Also, Szigeti" has given an analogous relation
valid for perfect lattices. The formal result given by
Eq. (14) will be the basis for the remainder of this paper.

Symmetry considerations together with assumptions
regarding the localization of the interactions responsible
for the sidebands will now be used to bring Eq. (14) to
a tractable and more physically meaningful form. First,
it is necessary to express the coupling eoe@cients in
terms of the corresponding quantities that occur vrhen

the dipole moment and anharmonic potential energy
are expanded in powers of particle displacements rather
than normal coordinates. Denoting by u=gq g(f)dy
the transformation from the normal coordinates to the
con6guration-space vector u representing all of the
particle displacements from their equilibrium positions,
we see that the coupling codFicients of interest are
given by

N;,„-= Q M„«(l,~)x,(llew)x, (all.„),
(15)

c'-s.(1 ~,~)x-(EI i)xs(~ I J-.)x.(~ I L.)

Here l, m, etc. refer to particles; a, P, etc. label Cartesian
components; and (Ms,~(l,m)} and fc p„(l,yg, e)} are
the coeKeients appearing in the expansions in terms of
the particle displacements. The harmonic part of the
Hamiltonian is given in terms of u by ~(uTMu+uT+u),
where uT represents the transpose of u, and M and e
are the mass and harmonic force-constant matrices in
conaguration space. The x(f)'s are eigenvectors for the
equation

appropriate to the defect site, and vre will use the
notation of Bouekaert et aL" to label the ten irreducible
representations. By projecting symmetry coordinates
onto the defect site, it is simple to shovr that the only
modes involving motion of the defect are of I'l5 sym-
metry, so that the infrared-active localized mode is of
this type and is thus threefold degenerate. In order to
determine the band modes for which M;~„and C;1,„~,
vanish, it is suQicient to learn which irreducible repre-
sentations are not included in the direct product
representation I'"XI'", this following from the I'"
symmetry of the localized mode and the fact that the
dipole moment and potential energy transform as a
vector and a scalar under symmetry operations. Using
the characters of OA, , one learns that I"l5&I'" contains
just the even-parity irreducible representations I', I'",
I'"' and I'"', so that I'must be one of these. Further-
more, by using the full irreducible representation
matrices plus the fact that C s„(l,m, e) is invariant
under permutations of the index pairs (n, l) etc., it can
be shovrn that 4;1,„1,„is zero when I"is I'~' or I'25' while

fOr +~„ iS ZerO When I s iS I l I l2 Or Ils
above conclusions are solely a result of symmetry and
are thus independent of whatever model assumptions
might be made regarding the various quantities
appearing in (15).

The observed high frequencies of the localized mode
compared vrith the highest unperturbed lattice fre-
quencies (446 cm ' as opposed to 165 cm—' for U centers
in KBr, for instance) indicate that these vibrations are
highly localized. Bearing this out are Jaswal's5 calcu-
lations of the ratio of the maximum nearest-neighbor
amplitude to that of the impurity for the localized
vibrations of U centers in NaCl and KQ, these ratios
turning out to be 0.019 and 0.011, respectively. Accord-
ingly, all of the components in g(J „)not referring to the
impurity vrill be neglected. Labeling the defect site zero
and using the fact that the I' ' symmetry of I„results
in x (Oll„) being proportional to 8 „and. independent
of a, we see that the equations in (15) become

~'~. =x.(0I4) Z ~~. (10)xs(llew)
Pl

vrhich satisfy the completeness and orthonormality
conditions

Z Mx(f)x'(f)= &,
f

x'(f)Mx(f') =~a" (17)

It is, of course, with the solutions of the harmonic
problem (16) for the imperfect lattice that we will
ultimately be concerned, but at present the g(f)'s and
ay's vrill be supposed known.

The X(f)'s may be assumed to be basis functions for
irreducible representations of Oq, the point group

S.Szlgeu, Pl'oc. Rag. Sac. (LQI1don) A2SSi 3 1/ (1960).

C"zuz =x'(oI Ld & C'~"(i 00)xs(llew).
Pl

Similarly, it follows that Mz„ is given by cV„&(0)
Xx~(0 l

I«) 8~~~ a result which was used 111 wlTtlllg
Eq. (14) of the last section. From (18) we see that
because localized modes are involved in the sid.eband
absorption, the interaction region consists of a volume
about the defect of dimensions limited by the range of
the dipole moment and anharmonic interactions as-
sumed responsible for the coupling. We will restrict
these interactions to the nearest neighbors so that the

ls L. P. BOllCkRCIt R. 8111OhlC110%'SlU& 3QQ E. WlgXMI& Ph~,
Rev. So, 58 (1936).
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FIG. 2. Components of the {fl vectors on the defect's nearest
neighbors for I', I'", r '", Frn modes. The degenerecies are given
in parentheses.

where {r ~ ) is the three-dimensional orthogonal matrix
for a symmetry operation that takes site l to site P. If 1

is restricted to the impurity's nearest neighbors and use
is made of this relation together with the fact that
C pv(1, 0,0) is symmetric in P and p, the following set of
independent coupling parameters is obtained:

C„,(1,0,0)=—A',

C „,„(1,0,0)=—8',
C,„„(1,0,0)=—C',

sums in (18) extend over just the six nearest neighbors
of the defect,

To further reduce M;~„and 4;~„L,„,we can determine
the form of the g(i) vectors in the subspace composed
of the defect and its nearest neighbors. This is readily
done by means of projection operators, and the results
are shown in Fig. 2, which also gives the degeneracy of
the modes and the labeling convention. (By reducing
the representation obtained by writing down the
transformations under symmetry operations of a set
of vectors consisting of three orthogonal vectors on
each particle, one 6nds that F' I'" I'"' and I'"' each
occur in the nearest-neighbor subspace once and only
once. This insures that Fig. 2 is complete. ) When the
degeneracy is greater than 1, only one partner is drawn.
Notice that the basis vectors for each of the four
symmetry types is completely specified with but one
parameter. This will simplify the work later on.

Finally, point-symmetry considerations can be used
to reduce the number of independent elements in

SIpv (l,0) and C p, (l,0,0). Xinh" has shown that each
of the two kinds of coefficients satisfy a relation like

cVpg(f, 0)= Q r ~ rp prr vtVp „'(f',0),

and

Xrsa(rdr. +re) =

X {-,'(.f+2C)'prr(a))lrrs((a)

+(.& —C) 'p rrs(ot) &rrs'(re)

+4&'p rss (re)f rss'(~) ) (19)

Cs hX„'(0
~

I„)LiV„&(0)]'

X{-,'(.&'+2C')' ( )& '( )

+ (&
'—C') 'p rrs(~) &rrs'(~)

+4(If')'pr" (~)frss'-(I)) (2o)

Equation (19) is the result for the second-order dipole-
moment case, and the prr(re) are the densities of states
for the band modes of symmetry I'. No contribution
from the p"' modes is present in (19) because of the
result that the coupling para, meters 8 and D are equal
when the second-order dipole-moment coupling inter-
action is restricted to nearest neighbors. We see from
the above equations tha, t the frequency dependence of
the sideband absorption due to the coupling of band
modes of a particular symmetry is, apart from a factor
of ~ ' or co ~ depending upon the particular coupling
mechanism under consideration, simply proportional to
the product of the appropriate density of states for the
imperfect lattice and the corresponding squared (nor-
malized) amplitude of the defect's nearest neighbors.
Had the interactions been assumed to extend further,
say to the next nearest neighbors, the right-hand sides
of (19) and (20) would have contained additional terms,
quadratic in the a,mplitudes of those neighbors included
within the range of the interaction. The determination
of the pr, (ro)'s and fr;s(co)'s will be brieRy discussed in
the next section.

results for the Hmiting cases corresponding to a domi-
nance of either the second-order dipole moment or the
third-order anharmonic coupling mechanism, since
these will be the cases considered in the numerical work.
Converting the band-mode sum in (14) to integrals over
the syn1metry types that couple with the localized
mode and integrating, we arrive a,t

2Cs.hX„'(0
i
I.„)Xr"(~r.+~)=

Xinh has shown, however, tha. t with the coupling inter-
actions restricted to nearest neighbors, the condition
of invariance to inlnitesimal rotations requires 8 and D
to be equal. This results in a one-to-one correspondence
between the independent coupling parameters for each
mechanism.

The results of this section can now be used to simplify
the basic equation (14) for Xrss(cd). We will present the

&9 N. X.Xinh, Westinghouse Research Laboratories, Pittsburgh,
Pennsylvania, Paper No. 65-9F5-442-P8, 1965 (unpublished).

IV. PERTURBED MODES

The results (19) and (20) of the last section represent
the most general form that the absorption formula (14)
can take for a light impurity at a site of cubic symmetry
under the assumptions of a highly localized mode
coupling to the band modes through nearest-neighbor
coupling intera, ctions. Our aim is to keep the coupling
parameters open, a,ttempting to learn as much as
possible from the frequency dependence of the various
terms.
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In order to calculate the lr,'(co)'s, we may use the
Lifshitz theory of harmonic perturbed lattices, which
is reviewed in articles by Dawber and Klliot20 and
Maradudin. " In the following outline, the notation
will be essentially that of Dawber and Klliot.

Writing the mass and harmonic force-constant
matrices as Ma+AM and 4,+De where Mo and eo
refer to the perfect lattice, one can, for frequencies
differing from those of the perfect lattice, rewrite (16)
as g(f) = G~C~@(f), where G~ is (eo—~~'Mo) ' and
C~ is (a&~'AM —A%). The perturbed frequencies are the
solutions of

~
lrI Grr Crr (21)

The subscripts refer to the impurity space, defined by
those ions for which nonzero elements of Cf exist. A
useful relation, obtained by Sennett, "can be obtained
by substituting G~C~g(f) for g(f) in the ortho
normality condition (17) and simplifying the result by
means of the identity G'f= G Mo G, the prime de-
noting differentiation with respect to s=—~f'. The result
is

LC"'x (f)]'G'" (C 'x (f)]=1 (22)

x(k, i)x'(k, i)
(o '(k) —&vg'

(23)

the sum extending over the six polarization branches
and all of the h vectors in the Brillouin zone.

We must now' choose Cf', the perturbing matrix. It is
well known that when the impurity is treated as a mass
defect alone, the calculated localized-mode frequencies
turn out to be too high. Thus, some of the force con-
stants associated with the defect site must have lower
values than in the perturbed crystal. We will describe
the force-constant perturbation by means of changed
longitudinal and transverse springs connecting the
defect with each of its six nearest neighbors. The corre-
sponding spring constant changes will be denoted by 6

and y. Several authors, ' ""both in sideband work and
in work on related problems, have used essentially the
same model. As Bilz et al. have pointed out, such a
choice neglects the polarizability of the H ion, and
this might be important in determining 8 and/or y from
the localized-mode data. Nevertheless, for calculating
the wee-parity modes such a choice for the perturbed
formal force constants is reasonable and is shown in
the Appendix to be consistent with a shell-model

"P. G. Dawber and R. J. Elliot, Proc. Roy. Soc. (London)
A273, 222 (1963)."A. A. Maradudin, in Phonons and Phonon Interactions, edited
by T. A. Bak (W. A. Benjamin, Inc. , New York, 1964), p. 424.

'2 C. T. Sennett, thesis, Oxford University, 1964 (unpublished)."C. T. Sennett, J. Phys. Chem. Solids 26, 1097 (1965).

where a, term which drops out whenever f refers to an
even-parity mode has been omitted. In terms of the
solutions of the dynamical equation (16) for the perfect
lattice, G~ is given by

TABLE I. Quantities appearing in Kqs. (24) and {25).

I" ~r' rs s.;(.)
6g Gggf ( 1 1) Gggf (1 1) 4Ggyf (1p2)
4g' G, f(—1,1)—Gggf(1, 1)+2G~yf(1,2)
4y2 G„„f(—1,1)—G„f(1,1)—2G yf (1,2)

description of the system in which the shell-shell force
constants between the defect and its nearest neighbors
are altered. The fact that within both Timusk and
Klein's and our results for KBr, a good description of
the sidebands is obtained when the nearest-neighbor
force constants are altered by an amount consistent
with the observed localized-mode frequencies as treated
in the present approximation, indicates that perhaps
the contribution to the perturbed force constants from
the polarizability might not be very important in this
crystal. This question needs further investigation.

Equations (21) and (22) for the even-parity modes
which can couple with the localized mode may now be
written down, the work being simplified by using sym-
metry arguments to reduce the form of Gf in the im-
purity space. We 6nd that the frequency and squared-
amplitude equations can in each of the three cases be
written as

and
1= Or,Sr;(s),

1r;2(s) = —LSr,dSr, (s)/ds] ',

(24)

(25)

with Q, r;, Sr;, and Sr;(s) being given in Table I.
Now Eq. (25) must be evaluated at the s's corre-

sponding to the solutions of (24), and this is formally
the same problem as evaluating the squared amplitude
at the defect site for I'" motion with no perturbed force
constants. Dawber and Klliot and Maradudin have
discussed the latter problem and just the results will
be quoted here. Maradudin writes S(s) as (1/3')
X+, 8(p)/(s —X,), where (X,) is the set of distinct
unperturbed cog(k)'s. The equation l%,,=s de6nes both
p(s) and 8+(s)] as continuous functions of s, in terms of
which a function G(s) —=8(s)p'(s)/3E is introduced. The
number of points in the Hrillouin zone is E. It is then
possible to express Eqs. (24) and (25) in terms of 8(s)
and G(s) and to combine these equations to yield

Sr,28r;(s)
/r (s)= (26)

Sr,3$((1—(Rr;Gr;(s)]'+ Ctree Grp(s))

where G(s) is the Hilbert transform of G(s). Equation
(26) now expresses lr;2 in terms of smoothly varying,
readily calculable quantities. Approximate forms of
8(s) and G(s) may be easily computed by averaging
them over hs intervals which are small enough to
include the important frequency dependences of these
quantities but which still contain many P, s. For the
latter condition to hold, we must be sure to know the
unperturbed solutions at a suAiciently large number of
points in the Brillouin zone.
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Flc. 3. Illustrating one partner from each of the three types
of F"modes vvhich can occur in the impurity space.
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FIG. 4. Squared aInplltudes (normalized} of the defect's nearest
neighbors for (a) I'1 modes and (b} I'" modes vrith 8 = —8.87X10'
dyn cm '. A localized mode occurring in the gap at 96 cm ' has
been suppressed in (b), as explained in Sec. V.

~4 R, S. Knox, Solid State Commun. 4, 453 (I966).

Turning to the perturbed densities of states for the
various symmetry types, we will assume that these are
the same as the corresponding densities in the perfect
crystal and that these, in turn, are related to the total
unperturbed density of states through the relation

pr, (ro) =dr spo(oo)/h+O(Ar 'I'),

di; being the dimensionality of I"and h being the order
of the point group. Knox'4 has shown that the (dr~)'/Is
factors give the fraction of the total nuDiber of states of
each symmetry type. For the modes of interest here we
thus have pn=ps/48, prrs=ps/12 and prso =3po/16
Actually, our assumption that the pi s are the same in
the perturbed and unperturbed crystal needs to hold
only within the intervals As that we use in the com-
putation of 0(s) and G(s) . In view of Raylelgh s

theorems, which state that a given perturbed frequency
will not be shifted past its adjacent unperturbed
frequencies, our assumption should be vahd again as
long as there are a sufficient number of X,'s within
each As.

Within our choice of C~, we can obtain an expression
relating its elements to the localized-mode frequency.
Symmetry arguments similar to those of Sec. III show
that three I""modes, each being threefold degenerate,
occur within the impurity space. One partner from each
type is shown in Fig. 3, and it will be assumed that the
localized mode is a linear combination of these three.
With this choice for g(L,), the frequency condition (21)
yields a 3+3 determinantal condition in 8 and 7. For
the y=0 case, it is possible to express 6 as a function
of (dL, .'

8= (GyQlr, A'Is 1)—
&& fAmroJ„s! 2Gos —Gg(Go+Go)]

+Gs+Gs+2Gg —4Go) '. (27)

The Green's functions appearing here are Gq= G„(0,0),
Gs=G, r(1,1), Gs ——G„r(—1,1), and G4——G„r(0,1). An
approximate form for (27), obtained by making use of
Fieschi et al. 's argument that only the (0,0) elements
of CJ need be retained when treating localized modes
whose frequencies are weH above the maximum of the
unperturbed lattice frequencies, has been used by
Timusk and Klein and yields for the 7=0 case the result

We will hand this to be an excellent approximation for
U centers in KBr.

When 7 is not zero, a similar approximation leads to
the same relation with 8 replaced by 5+27.

Given the eigenvalues and eigenvectors for the
perfect lattice plus values for 8 and y, we can now

compute the frequency dependence of the various
terms appearing in Eqs. (19) and (20). Calculations
have been performed by us for U centers in KBr, using
model VI of Cowley et aL's shell model since it repro-
duces accurately the measured phonon dispersion curves
in KBr and NaI. Unfortunately, U-center data for NaI
are currently unavailable, so we have con6ned our
attention to KBr. The frequencies and eigenvectors were
evaluated at 1686 points in KeHerman's 1/48 section of
the Brillouin zone, this being equivalent to 64 000 points
after applying symmetry operations. One hundred As

intervals vrere used. so that each interval contained

approxlIYlately 6g $6.86 100 distinct frequencies.
The anharmonic coupHng used in Timur and IGein's

sideband calculation for U centers in KBr can be ob-

tained from the model presented here by setting all of

the second-order dipole-moment coupling parameters
equal to zero, as well as aH of the anharmonic parameters
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TABLE G. Comparison of the experimental' peak positions and
peak-height ratios with those calculated for coupling through
C„,(1,0,0) only.

Peak

Peak positions
Calculated Observed

(cm ') (cm ')
Error
(%)

43.0
82.0

112.0

44,9
82.2

113.0

—4.2—0.54—0.62

Peak-height ratios

Calculated
4.22
8.94
2.12

Observed
1.45
2.73
1.88

Error
(%)

191.0
227.0

12.7

Reference 8.

except C, ,(1,0,0)=A'. Equation (20) then gives, up
to a constant factor,

Xr"(~~+~)"L~r~'(~)+(8/3)lr»'(~)ipo(~)~ '. (29)

Ke wish to compare the results so obtained with those
corresponding to the analogous formula for the second-
order dipole case, namely, the one that results from
neglecting all of the coupling parameters in (19) except
Jf„*(1,0)—=A. The result, again up to a constant factor,
is just (29) with co ' replaced by cv '. To determine 8 for
this comparison we shall use the observed orl, value of
446 cm ' in Eq. (27), which yields the result
8= —8.87)&IO' dyn cm ' with y equaling zero. Timusk
and Klein used the approximation (28) and obtained a
value for 8 of —9.25&10' dyn crn '. Thus in this case,
Fieschi et ul. 's approximation is excellent.

Using our value of b, we can compute lrP(ar) and
/rqg'(a&) as described earlier. The results are shown in
Fig. 4. The peaks near 127 cm ' in lrP(co) are caused by
the vanishing of $1—bGrq(s) j and thus correspond to
pseudolocalized modes. As discussed by Timusk and
IQein, a large change in the nearest-neighbor force
constant such as we have used here (our 5 corresponds
to a value of 0.4j. for Timusk and Klein's parameter g,
which measures the ratio of —8 to the nearest-neighbor
central repulsive force constant of shell model VI) leads
to the prediction of a localized mode of I""symmetry
in the gap between the acoustical and optical modes of
the host lattice, This mode occurs even for small force-
constant changes (g&0.16), and we have suppressed it
for computational reasons in Fig. 4(b) and in subsequent
6gures where it occurs.

Combining the density of states with /rP(a&) and
lr~P(a&) according to (29) and the analogous relation for
the second-order dipole coupling, we calculate the
curves shown in Fig. 5. The curves for 8=0 are included
in order to illustrate the large improvement brought
about by the force-constant change. The small peak
near 10 cm ' in Fig. 5(b) is probably due to the lack of
a 6ne enough mesh of Brillouin-zone points for the
contributions in this frequency region. Figure 5(b)

corresponds to the lower curve in Timusk and Klein's
Fig. 7, and, by comparing it with our Fig. 5(a) we see
that within the models under examination here, the
anharmonic coupling mechanism yields better agree-
ment with experiment than does that due to the second-
order dipole moment. In Table II the measured peak
positions and height ratios from Fig. 1 for the three prin-
cipal peaks are compared with the calculated values from.

Fig. 5(b). Notice that although the theory yields good
peak positions, the calculated height ratios are in poor
agreement with the observed ones.

As discussed by Bilz et ul. , theoretical sideband
calculations by them for U centers in KCl using a
density approximation, i.e., neglecting the frequency
dependence of the l((f) vectors, resulted in a dominance
of the anharmonic over the second-order dipole coupling
mechanism. In addition, Xinh, '2 after assuming that
the coupling interactions are central in character and
have a speci6c form came to the same conclusion
regarding the dominant coupling for U centers in KI.
%e will shortly see that when the coupling parameters
are left open, good over-all agreement (in the sense of
peak height ratios as well as peak positions) for U

0 l5.0 MO 45.0 60.0 75.0 90.0 l05.0 120.0 l35.0 150.0 l65.0

Nave number (cm )

I I I

0 150 30.0 45.0 60.0 75,0 90.0 105.0 l20.0 I35.0 l50.0 l65.0

Nave number (cm ')

Fro. 5. Calculated sideband absorption (to within a constant
factor) assuming (a) just second-order dipole coupling through
M,„'(1,0), and (b} just third-or'der anharmonic coupling through
C„,(1,0,0). Curves 1 and 2 in each case represent the results for
8=0 and 0= —8.8/&(10' dyn cm ', respectively, and the arrows
give the frequencies of the three principal sidebands as measured
by Fritz. As in Fig. 4, the localized mode in the gap 'has been
suppressed.
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O I5.0 50,0 ~5.0 6OO 75O eOO IO5.O I2O.O 85,O I5O.O I65.0

0/ave number (cm

Fra 6. Calculated sideband contribution (to within a constant
factor) from the I' modes assuming a dominant second-order
dipole coupling. The plotted quantity is tr~'(co) po(co)/~ and the b

values are: (1) —5&10' dyn cm ' (2) -7&10' dyn cm ' (3)—9&103 dyn cm '.

centers in K.Br can be obtained from the second-order
dipole contributions. This Indicates that care must be
taken to justify any particular model for the coupling
interactions before using sideband calculations to draw
conc}usions regarding the relative importance of each

type of coupling.
A coIQparison of Figs. 4 Rnd 5 shovfs that thc stj:UctUre

of /I ~' in the optical phonon region gives rise to some of
thc nonobscI'vcd fcRtUI'cs of the thcolctical sidcbRD(4
of Fig. 5(b). In view of this and because the present
theory leaves the coupling parameters open, we have
computed the frequency dependence of each of the
three terms in (19) and the three terms in (20) separately
for dl6ercnt valUcs of 8 and p with Bn MIQ towards
determining the relative importance to the sideband
absorption of thc (Mcrcnt syIQmctly types of perturbed
phonons. The results are given in Figs. 6 through j.i,
The hrst thing we note is that the curves for the
"transverse" modes, the I"""s, do not give much
indication of being important. This is not surprising,
since the coupling parameter for these modes should be
less than those for the "longitudinal" I"' and I"2modes.
Secondly) wc scc thRt except for thc prcdictcd peak near

'
~

0 l5.0 500 45.0 60.0 75.0 90.0 I05.0 IP0.O IM.O l50.0 l65.0

'Atove number (cm ')

FIG. 8. Calculated sideballd contribution (to wit)un a constaIlt
factor) from the I'" modes assuming a dominant second-order
dip~le coupHng. The plotted quantity is (res.m(a)p0(~)/~ and
curves 1, 2, and 3 correspond to values for y of —2g 10', —1X10',
and 0 dyn cm

~ respectively.

j.i2 cm I, thc CUrvcs foI' thc I ~ IAodcs bcaI' little
resemblance to the experimental results. Unfortunately,
the 112-cm ' peak is always accompanied by additional
peaks occurring near 127 cm ', which are unobserved
Mld alc dUc to pscudolocallzcd modes. FocUsing now

upon the I'"modes, we see that most of the good agree-
ment of curve 5(b) is due to the contributions of these
modes. Notice the dependency of the 6rst sideband
peak upon 8 and that for either mechanism a strong
change in this quantity is necessary. Of the curves
811owI1, wc scc 'tlla't 'tile second curve II1 Flg. 10 (rt =0.33)
gives the best over-all agreement for the anharmonic
case, but that the peak. -height ratios are still poorly
represented. On the other hand, curve 3 of Fig. 7, giving
thc contrlbutlon to thc absorption fI'oIn thc second-order
dipole coupled I'" modes for 8= —9&10'dyn cIn '
(rt =0.42) removes most of the peak-height discrepancy
while retaining good agreement for the peak positions.
The peak-height ratios and positions for this curve are
given in Table III. The shape of the curve for fre-
quencies below that of the 6rst peak is not as appcaHng
as the shape of the curve of Fig. 5(b) in this region.

I

0 I5.0 50.0 45.0 60.0 75@ Cto,o l05,0 I20,0 IM,O I50,0 I65.0

Wave number (cm ')

l

0 t5.0
~ I I S I I

50.0 450 60.0 75.0 90.0 I05.0 t20.0 I55.0 1504 I65.0

FIG. 7. Same as Pig. 5 hut for the I"contributions, given. by
lpy2 (co)po(co)/co. Gap modes at 100, 98, and N cm for curves 1, 2,
and 3 have been omitted.

PIG. 9. Calculated sideband contribution (to vrithin a constant
factor) from the I'~ modes assuming a dominant third-order
anharmonic coupling, The curves are ~ ' times those of Fig. 6.
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TAPLE III. Calculated peak positions and peak-height ratios
for the second-order dipole coupled I'~ contributions.

S I I I I

0 15.0 300 455) 60.0 75.0 90.0 105.0 t20.0 I55.0 I50.0 t65.0

Wove number (cm )

PrG. 10. Same as Fig. 9 but for the I""contributions.
The curves are au ' times those of Fig, 7.

Ratio
I'Ikg
I'I/I'3
Pm jE3

Peak positions
Calculated

icm-')

49.0
82.0

105.0

Peak-height ratios

Calculated
1.36
2.44
1.79

Error
(/o)

8.6—0.24—6.8

Error
(%)—62—11.9—5.2

From the results shown in Figs. 6 through 11 we thus
conclude that, within the restrictions of nearest-
neighbor coupling intera. ctions and our choice of the
perturbed force constants, the I'" modes are prima, rily
responsible for the ma, in sideband in KBr, that com-
paratively large values of 8 (it=0.3—0.4) give the best
agreement with experiment for either coupling mecha-
nism, and that one cannot unequivocally determine the
dominant coupling mechansim from calculations of just
the frequency dependence of the sidebands without
a priori knowledge of the coupling parameters. (Re-
garding the question of coupling mechanisms, another
type of argument has been given in Ref. j.3, where it has
been pointed out that the observed temperature
independence of the infrared U band's oscillator
strength indicates that the dominant coupling is
anharmonic. ) Furthermore, the values of 8 needed to
obtain good agreement are consistent with the value
(it =0.41) calculated from the observed localized-mode
frequency by neglecting p and the polarizability of the
defect.

Notice that the anharmonic coupling parameters
(A'+2C')' and. (A' —C'}' for the I' and I'" modes are
quite sensitive to changes in the relative magnitudes
of A' and C'. In particular, if C' is 10% of A' and is of
the opposite sign, the ratio of (A'+2C')' to (A' —C')'

has a value of 0.53 instead of 1.0, the value assumed by
Timusk and Klein. A similar result holds, of course, for
the corresponding second-order dipole moment coupling
parameters. Again we see the necessity of ma, king
careful a priori estimates of the coupling parameters.

The necessity of using strongly perturbed longitudinal
force constants (shell-shell —see Appendix) between
the impurity and its nearest neighbors in order to
obtain good agreement with experiment also implies
the existence of a localized mode in the gap, as we have
mentioned. This gap mode is of the same symmetry
(I'12} as the modes which have been seen to be the most
important in the sideband absorption. Though this
mode is not itself infrared active, it should be observable
in the sideband absorption, as discussed by Timusk
and Klein. The possibility of eliminating this dis-
crepancy from the theory by including coupling inter-
actions to the next nearest neighbors has been suggested
by Bilz et ul. , and from the results presented here it is
clear that it cannot be eliminated in a, satisfactory way
from a, model which includes just nearest-neighbor
coupling interactions together with altered harmonic
force constants between the defect and its nearest
neighbors.

Nevertheless, most of the observed features of the
sidebands in KBr can, as we have seen, be quantitatively
accounted for within the framework given here.
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Fxo. 11.Calculated sideband contribution (to within a constant
factor) from the I"" modes assuming a dominant third-order
anharmonic coupling. The curves are co ' times those of Fig. 8.

APPENDIX: SHEI L-MODEI TREATMENT OF
THE PERTURBED PHOÃOÃS

In the shell model, the forma, l force-constant ma, trix
@ is given by@„—@„+„'W„,where+„, +„,andC„
are matrices representing the core-core, core-shell, and
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shell-shell interactions. Now for the Lifshitz theory to
be useful, a perturbing matrix Cr=»'AM —he is
needed which is nonzero only in a relatively small
impurity space. But because of the presence of the

4„W„'+„term, it is not clear that localized changes
in the shell-model parameters lead to only localized.
changes in 4. We can avoid this de.culty by employing
shell as well as core eigenvectors in a Lifshitz-type
formalism. In the shell model, the fundamental equation
for the perturbed vibrations may be written as

(
x.(f))
1t(f)j (G r G, f

where the elements of the Green's function matrix are
given by

and

all quantities referring to the perfect lattice. The
g,(k,j)'s are identical to the g(k, j)'s of Kq. (23), and
the g, (k,j)'s are the corresponding unperturbed shell

eigenvectors, measured from the shell equilibrium
positions. The symmetry reduction of g,(f), g, (f),
G„r, G„, and G„~ is similar to that given in the
formal force-constant picture. For the sidebands, we

are concerned with just the even-parity modes and
can thus neglect the long-range changes in 4„,4„,and,

4„induced by the altered core and shell charges of the
defect, provided that we neglect relaxation effects.
Describing the short-range force-constant changes by
longitudinal and transverse spring-constant changes,

8, and y„between the defect's shell and those of its
nearest neighbors, we have a localized. impurity space

within which to apply Kq. (A1). For the even-parity
modes it is easily shown that within our impurity space,
the perturbed-shell eigenvectors satisfy the normaliza-
tion condition

(A2)

the prime denoting diKerentiation with respect to
S:—GOy .

Working out the freqn. ency and amplitude conditions
for the even-parity mod. es, we arrive at equatio. &s

identical with Kqs. (24) and (25) except that 8 and 7
are replaced by 8, and. y„) is replaced by l„and aH of
the Green's functions are shell-shell Green's functions,
For each symmetry type we also have an equation
relating the shell and core amplitudes on the defect's
nearest neighbors. For example, for I'" modes this
condition is

We can now use the method. s outHned in the main body
of the paper to calculate I,'(~) and hence the absorption
for the di6erent symmetry types and for different
values of 5, and y, . When this is done it turns out that,
except for a factor, the resulting curves are essentially
identical to those previously given. The refinements
included. in the shell-model formalism, therefore, do
not make any non-negligible changes in our earlier
conclusions. Thus, as far as the even-parity modes are
concerned, the changed nearest-neighbor formal force
constants can be identified with the changed shell-shell

force constants between the impurity and its nearest
neighbors.

These results are undoubtedly due to the fact that
in the unperturbed lattice, the isotropic core-shell spring
constants are much greater than the shell-shell force
constants. This results in 40„' being unimportant
in G„~ at the band-mode frequencies and in the
unperturbed core and shell eigenvectors being very
nearly always proportionaL Thus G„~ and G„r are
essentially just multiples of G.. . in which case the
results reduce, but for a factor, to those given by the
formal theory.


