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A U center (substitutional H~ or D~ ion) in an alkali-halide crystal is known to give rise to triply de-
generate localized vibrational modes that are infrared-active. The U-center-induced infrared lattice ab-
sorption spectrum shows a characteristic structure consisting of a central prominent peak flanked on both
sides by broad sidebands. The central peak arises from one-phonon absorption processes due to localized-
mode phonons, and recently it has been studied extensively. The present paper deals with a theory of the
sidebands based on two-phonon absorption processes involving one localized-mode phonon and one band-
mode phonon, taking account of phonon coupling mechanisms due to the cubic anharmonicity of the crystal
and to the crystal second-order electric dipole moment. Formal expressions are derived for the contributions
from these two mechanisms to the sideband absorption coefficient, in terms of the phonon Green’s-function
matrix for the harmonic perfect-host crystal, the cubic anharmonic force constants, and the second-order
electric-dipole-moment coefficients. The phonon spectrum of the perturbed crystal is actually taken into
account. A simplified expression for the absorption coefficient is obtained for the case where only that part
of the anharmonicity and the electric dipole moment which arises from short-range overlap forces between
the impurity and its nearest neighbors is considered. Numerical calculations are carried out for the higher-
frequency sideband of a KI crystal containing 6X 1017 U centers (H~ or D) per cm?, at 4.3°K, using Hardy’s
deformation-dipole model for the perfect-host crystal. The U center is described by a phenomenological
“effective mass defect” which takes into account approximately the change in force constants at the im-
purity site, using the experimental value of the localized-mode frequency. The calculated spectrum is in
satisfactory agreement with Timusk’s experimental data. It is found that the anharmonicity is the dominant
phonon-coupling mechanism. It is about 10* times stronger than the second-order electric-dipole-moment
mechanism near the localized-mode frequency, and about 10 times stronger in the high-frequency limit
of the sideband. Some discrepancies in the position of the phonon frequency gap and the relative intensities
of the main lines are tentatively attributed to the use of inaccurate phonon data, the effective-mass-defect
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model for the U center, and the approximate numerical values for the overlap forces.

I. INTRODUCTION

E present in this paper a detailed theory of the

sidebands of the U-center-induced localized-

mode infrared lattice absorption spectra in alkali-halide

crystals of which a preliminary account has been pre-
viously reported.!

An isolated hydride or deuteride negative ion substi-
tuting for a halogen ion in an alkali-halide crystal
(U center) generally gives rise to localized vibration
modes whose frequency is much higher than the maxi-
mum vibration frequency of the perfect-host crystal. In
a localized mode, the amplitude of vibration is largest
at the impurity ion and decreases very rapidly when the
distance from the impurity increases. Under an oper-
ation of the point-symmetry group of the crystal at the
impurity site, the localized vibration modes transform
as a polar vector, and therefore are active in the infrared
lattice absorption by the crystal. Although the possi-
bility of occurrence of localized modes due to impurities
in crystals was discussed by Lifshitz? as early as 1943,
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they were first observed in 1960 by Schaefer,? in the
infrared absorption spectra of alkali halide crystals
containing U centers. Schaefer’s work was followed by
a series of similar experiments carried out with higher-
resolution techniques by various authors. In particular,
infrared absorption spectra of NaCl, NaBr, KCl, RbCl,
KBr, RbBr, and KI containing U centers have been
obtained by Fritz et al.4; Timusk’s experiments® were
concerned with KBr and XTI crystals containing H™ and
D~ impurities, while Elliott e/ al.® have especially
studied CaF,, SrF,, and BaF, crystals containing H™
and D~ impurities. The U-center-induced infrared ab-
sorption spectra obtained show a characteristic struc-
ture consisting of a central prominent peak flanked on
both sides by broad sidebands.

The central peak has been attributed to one-phonon
absorption processes involving a localized-mode phonon.
Its behavior is at the present time well understood.
Reviews of the theory can be found in references.”-
Fritz has suggested that the sidebands represent sum-

3 G. Schaefer, J. Phys. Chem. Solids 12, 233 (1960).

4 B. Fritz, in Lattice Dynamics, edited by R. F. Wallis (Perga-
mon Press, Inc., New York, 1965), p. 485; B. Fritz, U. Gross, and
D. Biuerle, Phys. Status Solidi 11, 231 (1965).

5 T. Timusk (private communication to Professor A. A. Mara-
dudin); T. Timusk and M. V. Klein, Phys. Rev. 141, 664 (1966).

6 R. J. Elliott, W. Hayes, G. D. Jones, H. F. Macdonald, and
C. T. Sennett, Proc. Roy. Soc. (London) A289, 1 (1965).

7R. J. Elliott, in Lattice Dynamics, edited by R. F. Wallis
(Pergamon Press, Inc., New York, 1965).

8 A. A. Maradudin, Rept. Progr. Phys. 28, 331 (1965).
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mation and difference bands involving a localized-mode
phonon and a continuum (or band-mode) phonon
coupled by the anharmonicity of the crystal potential.
Klemens® has suggested that the second-order electric-
dipole moment can also play a role as a coupling mecha-
nism in these two-phonon processes. A brief discussion
of both these coupling mechanisms has been given by
Sennett.’ A theory of the sidebands due to H™ im-
purities in CaF, has been worked out by Elliott et al.®
In this theory, the H— impurity is considered as vi-
brating in a tetrahedral anharmonic rigid potential well,
the continuum part of the phonon spectrum is taken as
that of the perfect-host crystal, and the anharmonic
coefficients are taken as adjustable parameters to get
the best fit between measured and calculated spectra.
The theoretical results turned out to be satisfactory and
showed that the model used was good, at least for the
case considered. However, the approximation of the
continuum part of the phonon spectrum of the per-
turbed crystal by that of the unperturbed crystal
prevents the resonant modes, if they exist, from showing
up in the sidebands. This is not the case in Timusk and
Klein’s theory of the sidebands of the infrared U center
in KBr.® In the latter theory, the perturbation of the
continuum phonon spectrum of the crystal due to the
presence of the impurity is actually taken into account.
The lattice dynamical model of the U center is char-
acterized by a mass defect associated with a change in
force constant at the lattice site it occupies. This
change in force constant is calculated from the measured
localized-mode frequency. The theoretical treatment
considers the H~ ion vibrating along the x axis as
anharmonically coupled to a configuration coordinate
X made up of the symmetrical displacements in the %
direction of its two nearest-neighbor positive ions at
(100) and (100). The theory does not contain any
adjustable parameters. The results of Timusk and
Klein’s calculation of the high-frequency sideband of the
U center in KBr, using a shell model for the host
crystal, are in very good agreement with their experi-
mental data except for the presence, in their calculated
spectra, of a localized-mode peak, occurring in the gap,
which has not been observed.

The theory we present in this paper is based on two-
phonon processes involving one localized-mode phonon
and one continuum-mode phonon. As in Timusk and
Klein’s theory, the phonon spectrum of the perturbed
crystal is taken into account. Also, we use the same
lattice dynamical model for the U center, namely a mass
defect associated with a force-constant change at the
impurity site whose value is to be derived from the
experimental value of the localized-mode frequency.
However, our treatment differs substantially from that
of Timusk and Klein, as well as that of Elliott et al. In
particular, contributions from both the anharmonicity

? P. G. Klemens (private communication).
10 C. T, Sennett, thesis, Oxford University, 1964 (unpublished).
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and the second-order electric-dipole-moment coupling
mechanisms to the absorption coefficient will be calcu-
lated. General formulas will be derived in Sec. II for
these contributions in terms of the third-order coeffi-
cients of the crystal potential (cubic anharmonicity)
and the second-order coefficients of the crystal electric-
dipole moment in the respective expansions of these
operators in Taylor’s series in powers of the atomic
displacements. These formulas will be applied, in Sec.
111, to the calculation of the structure of the infrared
high-frequency sideband due to U centers in KT, using
a deformation dipole model for the host crystal and
only taking account of those parts of the anharmonic-
ity and second-order electric dipole moment which
arise from the distortion of the electronic-charge dis-
tribution due to short-range forces. The calculated
spectrum is in satisfactory agreement with Timusk’s
experimental data. It will be shown that the anhar-
monicity is by far the dominant coupling mechanism in
KI. Some discrepancies in the position of the phonon
frequency gap and the relative intensities of the main
lines will be tentatively attributed to the use of in-
accurate phonon data, the effective-mass-defect model
for the U center and the approximate numerical values
for the overlap forces.

II. THEORY

We assume that the light waves have an essentially
infinite wavelength. For a centrosymmetric cubic or
isotropic crystal, the real part of the crystal conductivity
tensor then has the expression!!

0

[ dt = (M, ()M 0)), (1)

Tw(@)=}%

wh Vn(w)

where 7(w) is the Bose thermal distribution function
n(w)=[exp(fiw/kT)—1T", w is the frequency of the
infrared radiation, V is the volume of the crystal, and
M(?) is the crystal dipole moment operator in the
Heisenberg representation:

M(f) = ¢#H /BN (0)e—itH /% | (2)

H being the vibrational Hamiltonian of the perturbed
(i.e., the impurity-doped) crystal. The angular brackets
in Eq. (1) denote a thermodynamic average over the
canonical ensemble described by the same Hamiltonian
H, whose expression in terms of the atomic displace-
ments {u(lk)} and their time derivatives {u(lk)} can
be written as

H=3% 2 Mta* () +2O+3 30 3 Pag(li, Vs Yra(lk)

lka k'8

lka

XugU'k)+3 2 2 3 Papy(lV'u' 1k Yua(lk)

Ika UVk'B U k" y
gY@+ . (3)

1A, A. Maradudin and R. F. Walis Phys. Rev. 123, 777
(1961).
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Here / and « (= + or —) are the cell and sublattice
indices, respectively, and M, is the mass of the atom
occupying the lattice site (Ik). The first term on the
right-hand side of Eq. (3) denotes the kinetic energy of
the crystal and the following terms represent the expan-
sion of the crystal potential energy in Taylor’s series in
powers of the atomic displacements.

The induction of the dipole moment by the lattice
vibrations can also be described by expanding its com-
ponents in a Taylor series in powers of the atomic dis-
placements as

M,= M“(O).*_ Z Mp..a(l")ua(l")

lka

F32 T My el Yuall)ug(l'e) - - -

lka Ux'B

=M, O4 M, O M4 4)

We will evaluate Eq. (1) on the assumption of an
isolated impurity ion, and will eventually multiply the
result by 74, the number of impurity ions.

A. Cubic Anharmonicity Mechanism

We first calculate, in this section, the contribution
from the cubic anharmonicity mechanism to Eq. (1).
Therefore, the Hamiltonian H is that of the anharmonic
crystal, given by Eq. (3), in which we will retain only
the cubic anharmonic terms. On the other hand, it is
sufficient for our present purpose to take into account
only the first-order terms in the expansion Eq. (4) of
the dipole moment (assuming that the crystal has no
permanent electric dipole moment), i.e.,

M= M, ()ua(k).

lxa

(3)

The harmonic Hamiltonian is diagonalized by a
normal coordinate transformation

W) ( : )m w200 b
Uallk)= 8 )
2M s (w)t?
h>1/zz Ca(")(llc)1 (o)
=[- As, a
<2 e (wg)l/2
with
A.=b,+0bt (6b)
and
Bo®(Ik)
Co® (k)= , (6¢)
MIKIIZ

where b, and b,' denote the usual phonon destruction
and creation operators, respectively, while w, and
B@®(lx) are the frequency and amplitude of the sth
vibrational mode of the perturbed crystal.

For an alkali-halide crystal, the first-order dipole-
moment coefficients {M,,.(lk)} have the following
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form!%:
M,,o(I)=M,,o(0k) = 8,4¢,, (7a)
where
e=—e_ =€*, (7b)

¢* playing the role of an effective charge.
Taking account of Egs. (5)~(7), we can rewrite Eq.
(1) as
Co®@U)Cs(U'K’)

(wswsl)lﬂ

0, ,,(w = Z Bvaa €x€x’ Z
* ) 4V '}'I(w) gx kB . 88’

X f i dt A () A,(0)). (8)

The Fourier transform of the two-time correlation
function appearing in Eq. (8) has previously been
calculated by Maradudin.'® The result is

] dt €944 () A (0))220(w)d,0r Fa(w) . (9)

The function F,(w) has the same value for each of the
triply degenerate localized modes'® whose frequency we
denote by wy. If wz, is the maximum vibration frequency
of the unperturbed crystal, then for the sideband fre-
quency range wo—owr<w<witwy, we obtain, after
substituting Eq. (9) into Eq. (8), carrying out the sum-
mations over a, 8, and §’, and subsequently multiplying
the result by #4,

Ng W
u-!“’(w)=_—°'F0(w) Z Z €€’
2V wq Ik Uk
X2 CO()C, k"), (10a)
with
4w021‘0(w)
[w?— w2 — 2weAo(w) J2440e?Te*(w) ’

Folw)= (10b)

where ¢ runs over the localized modes only.

To the lowest order in the anharmonicity, the func-
tion Ag(wo) describes the shift of the frequency of the
localized mode from its value in the harmonic approxi-
mation, while T'y(wo) is the half-width at half-maximum
of the peak contributed by the localized modes to the
one-phonon absorption cross section.’® Both Ay(w)
and To(w) are slowly varying functions around w=wy
and moreover their values are very small in comparison
to wo. We therefore approximate Eq. (10b) by

Fo(w) = 4002/ (0?— we?)?To(w) . (10c)
2R, F. Wallis and A. A. Maradudin, in Proceedings of the
International Conference on the Physics of Semiconductors, Exeter,
1962 (The Institute of Physics and the Physical Society, London,
1962), p. 490.
13 A, A. Maradudin, Ann. Phys. (N. Y.) 30, 371 (1964),
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Equation (10a) then becomes

@)= _° Y
op(w)=——————T(w €4Ex
* |4 (w2—-w02)2 ’ ik Uk’

X2 COU)C, @), (11)

Let us now consider the function T¢(w). To the
lowest order in the anharmonicity, it has the general
expression!3

187
To(w)= Ty 2 V¥osiso){(na+ns+1)

X [5 (“’—“’01_“’82) - 6(‘*"""’81""“’32)]“‘ (”u" ”cz)

X [8(wtws—ws) — (0 —watws) ]}, (122)
with

1732 B (i 1 1K)
V(315253)=" —_—
6 WU ke's afy (ws]_wagwsa)l,z

Bo®0(Ik) B (I'’) B, 0 (I
(MIKMZ’K’MI”K")IM

(12b)

= ww's)w.a(m—wﬁ)=515(-’23)3—1—z >

8o’

X2 Ca@(I)Coy @ (lakr) 2 Co (V') Cp, (W)
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In the present case, the frequency  is positive. On the
other hand, both the indices s; and s, should run over
all the normal modes of the perturbed crystal. How-
ever, we assume that wo>2w; which is true for most
alkali-halide crystals (in particular for potassium
iodide) containing H~ or D~ U centers. In that case,
the only nonvanishing contributions to I'y(w) come from
the terms where one of the indices s; and s, refers to a
localized mode, while the other refers to a continuum
mode. Taking account of the complete symmetry in
s1, S2, and s3 of the coefficient V(sis253) given by Eq.
(12b) and denoting w—wo by Q, we obtain

36w
To(w)= n 2. V¥(od's)

X{(ns+n0+1)8(Q—ws)+ (#:—10)0(2+ws) }

24w
= }; sgn€ [n(we)+n()+1]

XX V¥oo's)ws:d(R—w:2). (13)

ago’s

According to Eq. (12b), we have that

Z Z éaﬁ'y (llc, l/K’,l//K’/) (balﬂl 71 (11K1,l1,K1/, l1”l€1”)

we? lea Vk/B U7k y lixier U/ x1’B1 L' k1’41

B'Y(a) (l”K”)B«yl () (llﬂKl")
S

(14)
8 (Ml”x"Mlx"n")I/Z

(2—w,?).

In this equation, the indices ¢ and ¢’ run over the localized modes while the index s runs over the continuum modes
only. However, in the frequency range 0< |?| <wz in which we are interested, the function 8(Q?—w,?) vanishes
identically for w,=wo. Consequently, the index s can be considered as running over all the normal modes of the
perturbed crystal including the localized modes. The sum over s in Eq. (14) can therefore be written as

B‘Y(B)(l”K”)Byl(’)(ll'llcl") (92 2) 1 ( » ) )
) —Ws)=— ImUWl l/ K, 11/ Kl//; Q2—40 y

- (15)
] (MZIIKIIMIIIIK‘II) /2 ™

where U is the Green’s-function matrix for the harmonic perturbed crystal whose general element is given by®

1 Ba®@ () Bs® (I')

U ok, ; w?)=
’ (Mo My )12

(16)

w?—w,?
Taking account of Egs. (10c) and (13)—(15), Eq. (10a) becomes

ng »  sgnQ
U“y(w)=g;—l;;;mtn(wo>+n(ﬂ)+1]{zz, ZIEK, €xExt X.,: C,.(")(IK)C,.(")(Z ')}

X{X X 2 2 PBapy(lrgdare,lsks) Barpr o ('kd o'k ' ks") 3 ColoV (laky) Cor @0 (U't')
ol

likia 12428 l3x3y L1/ x1’a’ U2/ x2’ 87 13’ x3’y'

XZ C,s (02)(12K2)Cﬂ/ (ﬂ)(lz,Kg,) Iqu,.,r(lgxg, la,Kgl; Qz—'LO)} . (17)
4]
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This equation is general. It applies to any crystal con-
taining isolated substitutional impurities which are
light enough or cause a sufficient stiffening of the force
constants between the impurity site and each of its
nearest neighbors, so that they give rise to localized
vibration modes whose frequency is higher than 2w;.

The evaluation of o,,(w) as given by Eq. (17) is
rather complicated because it requires the explicit
knowledge of the eigenvectors {C((lk)} of the per-
turbed crystal whose determination, in the general case,
is itself a difficult task. Moreover, the various index
pairs (lk) in this equation must in principle run over
all the lattice sites of the crystal. Fortunately, the ampli-
tudes of vibration {C((/)} in a localized mode de-
crease very rapidly when the distance from the site
(Ix) to the impurity site increases, so that in general, a
good approximation is obtained by considering that
C@ (k) is zero at any lattice site which is not in the
near neighborhood of the impurity. For our present
purpose, we therefore seek to simplify the expression
Eq. (17) of the real part of the conductivity tensor by
making the following assumptions:

(a) We first assume that only the nearest neighbors
to the impurity and the impurity itself are affected by

imd w sgnQ

X. XINH 163

its presence. This means that C((Ix) is nonzero only
when it refers to the impurity site or any of its nearest
neighbors.

(b) We also assume that the anharmonic force con-
stants which, in alkali-halide crystals, arise mainly
from short-range overlap forces* have appreciable
values only between the impurity and any of its nearest
neighbors and are negligible between the nearest neigh-
bors themselves.

As a consequence of the first assumption, the index-
pairs (I) and (/') on the one hand and the pairs (I3x3)
and (I5'ks’) on the other hand, now run over the im-
purity and its nearest neighbors only. This together
with the second assumption forces at least one of the
pairs (lik1) and (leks) to refer to the impurity site. Con-
sidering that the amplitudes of vibration C(*(lk) of
any of the nearest-neighbor ions are themselves very
small in comparison to that of the impurity ion, we can
make a further approximation for the total sum inside
the last curly brackets of Eq. (17) which contain pro-
ducts of four C’s by restricting both the index pairs
(1) and (lks) to the impurity site. Of course, the same
argument applies to the pairs (i'x') and (l'xz’). With
these approximations made, Eq. (17) is simplified into

(@) == — ———T[n(w)+n(Q)+ 1]{12 lz e S COU)C, @ (I}

54V wo (wz—woz)z 4

X Z Z Z Z ‘paﬁv(o_, 0—, l3"3)q’a'ﬂ"y'(o_; 0—

l3k3y 13’ xk3’y’ aff a’B’

Wi ) {2 CaP(0—)Cor “P(0~)}
o1

X{Z Cp(0—)Cp ™D(0—)} ImU o (lars, Is'xs/; 2—10) . (18)
o2

This expression of ¢,,(w) involves the localized-mode
vibration amplitudes {C‘’(l)} and the Green’s-func-
tion matrix U for the perturbed crystal. These quantities
depend on the lattice dynamical model for the harmonic
perturbed crystal.

Let us denote by M_’ the mass of the impurity (H™ or
D) ion and by M_ that of the halogen ion which has
been replaced by the impurity. The mass defect at the
impurity site can be characterized by e=1—(M_"/M_).
We will also make use, in our present calculation, of a
model for the U center very similar to that used by
Fieschi, Nardelli and Terzi'® and by Timusk and Klein.
In this model, the force-constant changes are assumed
to be nonzero only at the impurity site. It can then be
shown (see Appendix A) that such a model behaves
formally in a localized mode of frequency wo as a mass

1471, P. Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz.
Tverd. Tela 8, 1064 (1966) [English transl.: Soviet Phys.—Solid
State 8, 850 (1966)]. ‘

18 R, Fieschi, G. F. Nardelli, and N. Terzi, Phys. Letters 12,
290 (1964).

defect whose effective value is given by
€=t (A®/w?M_), 19)

where A® is the scalar force-constant change at the
impurity site for a displacement directed toward any
of the nearest neighbors. In what follows, for the sake of
definiteness, we will carry out the calculation for a U
center described by a simple mass defect e. The result
for a mass defect associated with a force-constant
change will be eventually obtained by subsequently
replacing the true mass defect e by the effective mass
defect €.

The sums in curly brackets in Eq. (18) are calculated
in Appendix B and have the expressions Egs. (B17) and
(B7), respectively. Taking account of these, we can
rewrite Eq. (18), after summing over o1, 02, &/, and §/, as

1 kb 1
[od—wO)F & [wit—wd(0)]

4 W(‘*’) =

wE

X(B,w—-%)}/l(w) , (20a)

k2
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with

hng sgnQ
A (w)=S3e%yte*> —
54V wo (wz-— (4.)02)2

XZ Z Z q’nva(o“: 0—, lK)‘I’W,s(O—-, 0—, l/"l)

lka Ux'B pr

[n(w)+n(@)+1]

XImU o5(lx, Vr'; 22—140), (20b)
where S is a constant given by Eq. (B8), k=0 is the
photon wave vector, and w; and w, are the frequencies
of the zero wave-vector longitudinal and (doubly
degenerate) transverse optical modes of the perfect-
host crystal, respectively.

The real part of the conductivity tensor ¢, (w) as
given by Eq. (20a) can be separated into two parts
representing the responses of the crystal to longitudinal
and transverse electromagnetic waves, respectively, as

cr,‘,,(w) = a'uv(l) (w) +0'uv(t) (OJ) ’ (21&)
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T (t) (w) =

1 _ kuky
._.__.___<a“,—-——)A (w)
[woz—wt2(0):|2 k?

kuk,
= (6,,.,— )o'(‘)(w) ,
23

where ¢ (w) is a scalar. Light being a transverse wave,
the response of the crystal to the incident light is given
by the transverse real part of the conductivity o (w).
This is related to the scalar infrared lattice absorption
coefficient K (w) by

(21¢)

4o (w)
w)=——,
en(w)

where ¢ is the speed of light and 5(w) the index of re-
fraction of the crystal.

From now on, we will let the cell index / take on the
conventional values 0 for the impurity, and 1, 2, 3 and
4,5, 6 for the six nearest neighbors (positive alkali ions)
assumed to be located on the positive and negative
branches of the coordinate axes, respectively. Whenever

(22)

with no confusion is possible, we will omit the sublattice
Bk index .
0 ® () = ———————— ey (), (21b) Substituting int.o Eq. (22) the expression Eq. (21?)
[wo2—w;2(0)]2 &2 of ¢®(w) and taking account of Eq. (20b), we obtain
2nq The2e*2S3 wolw
K@ (p)=—o- sgnQ [#(we)+n(2)+1]

3 cVi(w) (wil—wi(0))2(w2—we?)?

P OIDIDY @“,a(O,O,l)QWp(O,O,lI) ImUaﬁ(ll/; Q—40), (23)

W w af

By, 3= %5Y,%3 l;l/= 0,1)2’3:4:5)6 .

We have put the superscript (4) in K™ to indicate
that it refers to the anharmonicity contribution to the
sidebands.

Assuming that the anharmonicity arises from a
central potential, it can be shown!® that there exists
only two independent coefficients, ®ag,(0,0,)), repre-
sented by

a= q)z:w(o)oyl) and B= (I)zw(oﬁo)l) .

It remains to express the Green’s-function matrix U
for the perturbed crystal in terms of the Green’s-func-
tion matrix G for the perfect-host crystal, whose general
element is defined by?®

Wa(k| k)W g* (' | k)
NUMNEG  wr—op(k)
Xexp{2mik-[x(k)—x@'c)]}, (24)

where x(lk) is the lattice-site position vector and

Gap(li,V'k’ 5 0?) =

16 Nguyen X. Xinh (to be published).

w;(k) and W(k|k7) are the frequency and eigenvector
of the normal mode (kj), respectively.

We finally obtain the following expression for the
contribution of the cubic anharmonic mechanism to the
sidebands to the localized-mode peak in the infrared
lattice absorption spectra of alkali-halide crystals
containing U centers:

4Ar2he*2e2S3n, wwod
K@®(Q)= sgnQ

VM wr(w) [wol—we(0) X (w?—we?)?

X [n(wo)+n(@)+1]

X{a?4(x)+oBC(x)+62B(x)}, (25a)

where x=Q/wr, %=wo/wr, and where the functions
4, B, C are given by

Ax)= fao(11; %) — fae(41; %),
B(x)= —8f.y(42; %),
C(2)=2[3fra(11; 2)— faur(41; %)
—2f,(41; %)—6f2,(42; %)].

(25b)
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The function fus(l;%) is defined from the Green’s
function G.s(ll'; @?) by the relation

Gl V5 Q2 §0) = ———
ﬁ( K, L K (4 ) sz(MKM‘,)llz

K [ap(le,Vi’ 5 x)+im fag(I, V' ; )]

B. Second-Order Electric-Dipole-Moment Mechanism

We now proceed to calculate the contribution from
the second-order electric-dipole-moment mechanism to
Eq. (1). The analysis in the present case is simplified by
the fact that the zero-wave-vector phonons do not play
any special role as they did in the calculation of the
one-phonon contribution to the absorption spectrum
described in the preceding section. The infinite-wave-
length photon can couple with any pair of phonons
whose wave vectors add up to zero.

The contribution of the second-order electric dipole
moment to the conductivity ¢, (w) is obtained by
substituting into the expression

ow(w)=30[na/ WV n(w)] dt e XM ()M(0)), (26)

—00
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(where we have already introduced the number of

impurities) the second-order terms in the expansion
Eq. (4) of the crystal dipole moment operator:

MO=M,P)=%> 2 M, ua(kl'x)

lxa UVk'B

Xuo(le; Dug(Uc’5 1), (27)

It is sufficient for our present purpose to calculate
o(w) in the harmonic approximation for the crystal
potential energy.

According to Eqs. (27) and (6a), we can write

(MOMN0)=12 2 Mu(ss)M(s151)

88’ 8181’

x<As(t)Ac'(t)Asx(o)An’(O»» (28a)
with
M, (ss")= M, o5(lx, s
,,(.S‘S) 2((.0,(.0,')1/2 EI z%ﬂ s B( K K)
B (lc) Bg“"(I'x’)
(28b)
(Mlle’x')llz

Using a generalization of the Wick’s theorem due to
Bloch and De Dominicis!” to evaluate the thermal
average in Eq. (28a), and noticing that M ,(s's) = M ,(ss")
we obtain

(M (M ,(0))=% D" M (ss")M,(s5"){nsne et@stes ity (ng+1) et@sosVtdp, (n,4-1) giwsot

The Fourier transform of this equation is given by

el

1

wh
X;w("-’) = at e_iwt<Mv(t)Mﬂ(0)) =

2

Ba (1) By (V) Bay (1) Boy " (')
(Mlle'x'Mhanl’ 11’)1/2

2
4 58" wewgr ke VxS lixtar L'w’B1

+(ﬂ,+ 1)(“3"‘]"1) e——i(ws+ws')i} . (29)
Z Z Z Z ‘/Lju,aﬁ(l’(yl’xl)MVyalﬁl<l1K1;lllK1/)
\nans'é(ws_!'ws’_w)+n8(n8'+1)6((‘0“——(‘)"_w)
+n8,(n,+ 1)5((.0,' '_w,g_w)+ (ﬂa‘i‘ 1)(na'+ 1)5(wa+ws'+w) } . (30)

We are only interested, in the present calculation, in the range of frequencies around the localized-mode frequency
that we have assumed to be larger than twice the maximum frequency wr, of the unperturbed crystal. In that case,
the only nonvanishing contributions to the sums over the mode indices s and s’ in Eq. (30) come from the terms
where either w, or wy 1s equal to wo.

Now, the coefficients {M ,,«s(lk,/'x’)} satisfy the symmetry relation'®

M, (UK J) =My, as(lx,Vx") . (31)

Equation (30) therefore reduces to

thno

1
PIEED D IEDM > Mu.aﬁ(l":l,"/)Mv,alﬂx(ll"l;lll"ll)

Wy 87 ¢y, lka k'8 lLikiay U1/x1’B1

XW(“’) =

Ba® (k) Bay @ (l1) B (V") B, (I 1”)

(Mo My o My M1y )2 {n6(wstwo—w)+ (st 1)8(wo—we—w)} . (32)
VL 1 g I 1y ey VL 137 ky?

17 C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958).
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The expression in curly brackets in this equation can also be written as
() 8(Q—we)+[1(ws)+118(2+w,) = 20, sgn@ #(Q)3(2*—w.?). (33)

Taking account of Egs. (32) and (33), Eq. (26) becomes

whng o n(wo)n(Q)
ouw(w)=sgnQ T

XX X X Myl )My 0 (bl vd)

wo n(w) 80 lxa Uk’'B lixio1 U17x1/B1

B (Ik) B oy @ (li1) Be @ (I'c’) B, @ (I'x1’) (@) 0 hng w n(we)n(Q)
(- w,?)=sgn@ — — ————~
n(w)

(Jlll:cﬂ{l'x’]l[luq-Mlx'n’)II2 2V wo
XX X X X MM, ep(h'c’) 22 Co@ Wk )Co, @ (W'ky') IMU oy (Ik, likr; Q2—140).  (34)

Ik UVx'B likier Ui/ x1'B1 4

According to Eq. (26), the quantity ¢,,(c) transforms, under a symmetry operation S which takes the crystal
into itself leaving the impurity site fixed as the uv Cartesian component of a second-rank tensor. In the present case
of a rock-salt lattice, S belongs to the group Oy. Therefore, 0,,(w) is diagonal and isotropic, i.e.,

"'W(‘*’) =08,,0 (w) )

(35)
from which it follows from Eq. (22) that the absorption coefficient K (w) is given by

2whng sgnfl w
—T/—(T—[”(wo)‘f‘n(ﬂ)'l'l] 22X X X MV )My s (s li/'xt")
Valw

wo Ixa V&’B likial l1/x1’/B1

K(w)=

X Co@Uk)Cay @ (Iky") T gy (i, hr; 22—40) ,  (363)

where u is either z, ¥, or z.

This equation is general and gives the expression for the contribution from the second-order electric-dipole-
moment mechanism to the sidebands to the localized-mode peak in the infrared lattice absorption spectra of
alkali-halide crystals containing U centers. In this equation, the index-pairs (i), . . . run over all the lattice sites
of the crystal.

As we have done in the preceding section, and for the same reasons, we now make the approximation that only
the impurity ion and its six nearest neighbors are affected by the presence of the impurity. In that case, the various
index pairs in Eq. (36a) will be restricted to the sites of these seven ions only. We also make the same further ap-
proximation as in the preceding section that C¢(lk) is nonzero only for the impurity ion. With these approxi-
mations made, Eq. (36a) becomes

27 hma sgnQ w

——[n(wo)-l-n(ﬂ)‘l-l] IO DD Mn,aﬂ(l": 0")Mn.a161(ll"1; 0-)

K =
(w) cVn(w) wo Ixe lik1a1 BB1
XZ Cﬁ(”)(o_)cﬂl(”)(o—) ImUaal(lKa llKl; 92_10) ) (36b)

where (i) and (hx;) run over the impurity and its where u runs over the coordinates #, y, and z and the

nearest neighbors.

If the sum over o is carried out using the result ex-
pressed by Eq. (B7) and use is made of the property®
that the coefficient M, qp(l, V") is symmetric with
respect to the index-triples (ika) and (/«’8), we can
finally rewrite Eq. (36b) as (using the same single-index
convention to label the lattice sites as in the preceding
section)
hSnd w

K ®(w)= il sgn@ [7(wo)+n(R)+1]

cVap(w) wo

X3Z Zl‘. Zﬂ My ra(O,D M 45(0,F)
u W oafy
XImU (' ; 22—10) ,

(37

lattice-site indices ! and /' run over the impurity and
its six nearest neighbors. The superscript (E) in K ® ()
indicates that it refers to the contribution from the
second-order electric dipole moment.

The symmetry and invariance properties of the coeffi-
cients {M,,.s(0,))} have been discussed in.!6 Assuming
that the second-order electric dipole moment has a
central character (for instance, when it arises from the
distortion of the electronic charge distribution due to
overlap forces!®), it is shown!® that these coefficients

18 M. Born and K. Kuang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1956), p. 113.
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have only two independent elements represented by
=M, .(0,1) and b=M,,(0,1).
We finally obtain

S @ en [ +n(@-H1]
o) on sgnQ [n(we)+n

X {a?4 (x)+abC(x)+b2B(x)},

where the functions 4, B, and C are given by Egs. (25b).

K ® (Q), whose expression is given by Eq. (38), repre-
sents the contribution of the second-order electric-
dipole-moment mechanism to the sidebands to the
localized-mode peak in the infrared lattice absorption
spectra of alkali-halide crystals containing H~ or D~
U centers.

K®(Q)=

(38)

III. APPLICATION TO A KI CRYSTAL

We have applied the results obtained in Sec. II to
the case of a KI crystal containing U centers.

The lattice dynamical model for the harmonic perfect-
host crystal used in the present calculations is the de-
formation dipole model of Hardy.!* The normal-mode
eigenfrequencies {w;(k)} and eigenvectors {W(ky)} at
4.3°K have been numerically computed by Jaswal? in
the same way as for a KCl crystal described in Ref. 21.
It been found? that wz=2.546%10" rad/sec and %,
=0.7197. The functions {f.s(k,/k’;%)} have been
computed as in Ref. 21.

If the impurity is considered as a simple mass defect,
the equation for the localized-mode frequency %, is*?

1= exo’go(0o) , (392)

where go(x) is the Green’s function

1 _ W~ |kj)Wa(—|kj)

golx)=— ’

(30b)
N xi 22— x;%(k)

with #;(k)=w;(k)/wr, and where e denotes the true
mass defect. For an H- impurity, € has the value 0.99206
and we have found that xo=4.6, which is much higher
than the experimental value xo=2.84.% This is not sur-
prising, as it is now well known that the simple-mass-
defect model for U centers in alkali-halide crystals
yields values of the localized-mode frequencies which
are about 509, higher than the corresponding experi-
mental values. This discrepancy can be reduced by
taking into account the force-constant changes.

For most perfect alkali-halide crystals, the anhar-
monicity of the potential energy has been shown to

19 T, R. Hardy, Phil. Mag. 7, 315 (1962).

208, S. Jaswal (private communication).

2 Nguyen X. Xinh, A. A. Maradudin, and R. A. Coldwell-
Horsfall, J. Phys. (Paris), 26, 717 (1965).

22 A, A, Maradudin, E. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the Harmonic Approximation (Academic
Press Inc., New York, 1963), p. 150.
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arise predominantly from the overlap potential.1 We
assume that this is also true for the anharmonic coupling
between an H~ or D~ impurity and its nearest neighbors.
We describe the overlap potential by a function of the
form Aexp[—7/p], where X and p are two constants and
7 is the interionic distance. Similarly, we assume!® that
the second-order electric dipole moment is induced by
the distortion of the ionic charge distributions due to
lattice vibrations and that the corresponding electric
dipole moment has the form mexp[—7/p]. We make a
rough approximation by using the values of A and p for
the perfect-host crystal [Ref. 23, (a)]: A=4.60X10-?
erg and p=0.349X10~% cm. The corresponding cubic
anharmonic force constants & and 8 and the second-
order electric-dipole-moment coefficients @ and & have
the following values!®:

a=—4446X10" dyn/cm?;, B=4.836)X10" dyn/cm?;
a=—0.0266 statC/cm; b=10.00289 statC/cm.

The effective charge ¢* is related to the Szigeti
charge es and the high-frequency dielectric constant
€ by

*=1(eot2)es.

On the other hand, the Szigeti charge is related to the
distortion factor s by es=se, where (—e) is the elec-
tronic charge. For KI [Ref. 23, (b) and (c)]: s=0.69
and e,=2.69. Therefore,

e*=1s(er12)e=1.078e.

If all the frequencies are expressed in units of wz, we
can rewrite Egs. (38) and (25a), respectively, as

x—l—xo
K®)(x)=K sgno—o{n(x)+n(x))+1]
Yo
X{a?4(x)+abC(x)+52B(x)}, (40a)
KW (g)= ®(,
Oz o

where x=Q/wr, %o=wo/wr, Tr=w/wy, S is given by
Egs. (B8) and (BS), and K and K’ have the expressions

4r2hSna Aee*Sx? 2
= ———— K — ‘-———————) .
VMywr®n (ﬂmwz,z(xoz- x2)

In the expression for K, we have neglected the fre-
quency dependence of the index of refraction 5(w) in
the infrared region and have considered it as a simple
constant whose value?* is 1.61.

The functions K ®(x) and K “)(x) have been calcu-
lated for the frequency range 0<x<1 and at 4.3°K in
the following cases:

% (a) Reference 18, p. 26; (b) ibid, p. 112; (c) ibid., p. 85.
 American Institute of Physics Handbook (McGraw-Hill Book
Company, Inc., New York, 1963), 2nd ed., pp. 6-33.
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(a) The H- U center is first considered as a simple
mass defect whose value is €=0.99206. The localized-
mode frequency #, calculated from Eq. (39a) therefore
has the value of 4.6. The impurity concentration (n4/V)
is taken to be 1. The frequency dependence of the con-
tributions to the higher-frequency sideband from the
cubic anharmonicity and the second-order electric-
dipole moment are plotted separately in Fig. 1. Some
values of their ratio K™®(x)/K®(x) are listed in
Table 1. The frequency dependence of the total absorp-
tion coefficient K(x)=K @ (x)+K®(x) due to both
mechanisms is shown in Fig. 2. The calculated absorp-
tion spectrum reproduces reasonably well the experi-
mental one® represented by the smooth line of Fig. 4.
However, the agreement is rather poor as far as the
relative magnitudes of the main peaks are concerned.

(b) One would expect a better result if the force-
constant changes at the impurity site {A®,s(0,0)} are

TasrE 1. The calculated frequency dependence of the ratio
K@ (x)/K® (x) for the high-frequency sideband due to H~ in
KI. The quantity K™ (x) is the contribution to the total absorp-
tion coefficient from the anharmonicity phonon-coupling mecha-
nism and K‘®)(x) is that from the second-order electric-dipole-
moment mechanism. (a) The U center is treated as a pure mass
defect; (b) the U center is treated as a mass defect associated with
a change in force constant.

K@ (x) /K5 (x)

Frequency (a) Mass-defect (b)Effective-mass-
x model defect model

0.05 327 9385
0.15 35.5 1007
0.25 12.5 350
0.35 6.2 173
0.45 3.7 101
0.55

0.65 1.7 45
0.75 1.2 33
0.85 0.96 25
0.95 0.75 19

taken into account. Actually, we need not calculate
explicitly the force-constant changes {A®.5(0,0)}. We
simply use the experimental value?® of the localized-mode
frequency and calculate the corresponding effective
mass defect ¢ with the help of Eq. (39a). It has been
found that ¢ has the value 0.97902 for H- U centers
in a potassium-iodide crystal. The frequency dependence
of the total absorption coefficient K () is shown in Fig.
3. The discrepancy between the calculated and experi-
mental data concerning the relative magnitudes of the
various peaks has been substantially reduced while the
frequencies of these maxima remain unchanged, in
comparison with the case of a simple mass-defect model
for the impurity (Fig. 2). The values of the ratio
KM (x)/K ®)(x) as given in Table I show the predomi-
nance of the contribution from the anharmonicity
mechanism in the whole frequency range of the higher-
frequency sideband.

(c) In principle, the expressions Eqgs. (40a) and (40b)
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. F16. 1. The calculated frequency dependence of the contribu-
tions to the absorption coefficient in the high-frequency sideband
due to H~ in KI treated as a pure mass defect: (a) from the cubic
anharmonicity phonon-coupling mechanism; (b) from the second-
order electric-dipole-moment mechanism.

of K™ (x) and K® (x) give the absolute values of
these absorption coefficients if the values of the cubic
anharmonic force constants and the second-order
electric dipole moment for the perturbed crystal are
correctly known. In the present calculation, we have
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F16. 3. The calculated frequency dependence of the total-
absorption coefficient in the high-frequency sideband due to H™
and D~ U centers in KI treated as mass defects associated with
force-constant changes (effective-mass-defect model).

used the values of these coefficients relevant to the
perfect-host crystal. This is, of course, a very drastic
approximation and it is not reasonable to expect that
the absolute values of the absorption coefficient K (x)
could be obtained in this way. In order to make a
close comparison with the experimental spectrum ob-
tained by Timusk® (Fig. 4), we have to multiply the
theoretical values of K(x) calculated for an impurity
concentration nq4/V=6X10" cm~ by a factor of 10.
As K (x) is proportional to the square of the constant \
which characterizes the overlap potential, this is equiva-
lent to attributing to A a value (1/10) times that corre-
sponding to the perfect-host crystal.

(d) The same calculation as in (c) has been carried

1 1T 1717 17T 1T 1T T _]
Sideband H™ in KI

€' =0.97902 —
Xo=2.8416

42—

36—

24—

Kx)mm-!

o8 09 10

N I
[¢] 0l 02 03 04 05 06 O7

- W-Wwo
X= =

Fic. 4. The calculated spectrum of Fig. 3(a) is compared to the
experimental one (smooth line) observed by Timusk (see Ref. 5)
at 4.3°K for a concentration of 6X107 H™ U centers per unit
volume in KI.
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out for D~ U centers in KI. Using the experimental
value for the localized-mode frequency wy=278.6 cmx—1,28
it has been found that the effective mass defect ¢ has
the value € =0.95914. The calculated spectrum K (x) is
shown in Fig. 3. It has exactly the same structure as
that arising from H~ U centers, in agreement with
experiments.®

IV. DISCUSSION

We have presented in this paper a theory of the side-
bands to the fundamental localized-mode peak in the
infrared lattice absorption spectra of alkali-halide
crystals containing isolated U centers. The results of
the application of the theory to the case of a potassium-
iodide crystal show clearly the nature of the sidebands
as arising from two-phonon processes, the net result of
which is the creation of one localized-mode phonon and
the creation or destruction of a continuum-mode
phonon. It has been shown in the present calculation
that both the coupling mechanisms due to the anhar-
monicity of the crystal potential energy and the
second-order electric dipole moment can contribute to
these two-phonon absorption processes. As shown in
Table 1, the relative importance of the two mechanisms
at a given frequency depends appreciably on the force-
constant changes. Keeping in mind that the anharmonic
force constants and the second-order dipole coefficients
have been only roughly estimated one can nevertheless
infer from the numerical results that in KI the an-
harmonic coupling would be more efficient than the
coupling due to the second-order electric dipole moment.

The numerical results of the application of this theory
to,the,case of a KI crystal present some discrepancies
with jthe experimental data, particularly in the side-
band region contributed by the optical phonons of the
perfect-host crystal (Fig. 4). These discrepancies are
likely due to the use of inaccurate phonon data and the
effective-mass-defect approximation for the U center.
As a matter of fact, according to a recent neutron
scattering experiment by Dolling e/ al., the deformation-
dipole model for a KI crystal'®20 which has been used
in the present calculation yields values for the position
of the gap between acoustical and optical vibrations
that are about 109, lower than those given by the best
model (whose data were not available to the author
at the time the present calculation was carried out).
This is reflected in the calculated sideband and is
clearly visible on Fig. 4. According to the frequency
spectrum of KI computed by Dolling et al.,26 the gap
lies between the frequencies 2.09X10'2 cps and 2.87
X102 cps. The experimental sideband peak at x=0.686
(=2.78X102 cps) in Fig. 4 would therefore lie inside
the gap and would arise from a gap mode. However,

% W. C. Price and G. R. Wilkinson, U. S. Army Technical
Report, 1960 (unpublished).

# G. Dolling, R. A. Cowley, C. Schittenhelm, and I. M.
Thorson, Phys. Rev. 147, 577 (1966).
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while gap modes have been observed?™32 in KI crystals
containing Cl—, TIt, or NO;~ impurities, none has as yet
been directly observed in the one-phonon absorption by
KI crystals containing U centers. On the other hand,
as has been pointed out by Bilz ef al., in a recent paper??
in which a pertinent critical discussion is made of the
theories of the sidebands, the use of the effective-mass-
defect approximation in the present calculation would
lead to a force-constant change at the impurity site
larger than it should be, because of the neglect of the
polarizability of the H~ (or D) ion. They suggested
that from such a strong force-constant change, one
would expect the appearance of a gap mode—which has
not as yet been observed—probably with the use of a
better lattice dynamical model. In the opposite case,
should a gap mode really occur near the low-frequency
edge of the optical band as suggested by the comparison
of Timusk’s measured sideband spectrum (Fig. 4) and
Dolling’s computed frequency spectrum of K1, an over-
estimation of the force-constant change at the H~ site
would have the effect of shifting that gap mode toward
higher frequencies into the optical band. Whether or not
a gap mode does occur in a KI crystal containing H~ ions
is therefore still an open question.

As far as the present calculation is concerned, it is
also likely that better results would have been obtained
if the overlap potential around the impurity could be
better evaluated. On the other hand, one can, of course,
consider the anharmonic force constants as well as the
second-order dipole-moment coefficients as parameters
to be determined by the best fitting of the calculated
spectra to the experimental ones. However, unless the
contribution to the sidebands from the second-order
dipole moment is @ priori neglected in comparison to
that from the anharmonicity there will be at least three
parameters which make the optimization procedure
awkward and physically rather uninstructive.

Let us also notice that the formal Egs. (17) and (36a)
are general, and in particular still valid if the polari-
zability and/or the coupling of the impurity with atoms
located farther than its nearest neighbors are taken into
account.
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APPENDIX A

The general element of the perturbation matrix 8!
which describes a point-ion model for a negative
impurity located at the lattice site (/)= (0—) has the
expression’t

alaﬂ(lK,l/K,; w2) = esz_Sl(,&yo&,‘_é,,_Ba,g
+ MBIk 1K), (A1)

where e=1—(M_'/M_) is the mass defect and
{A%,5(lk,V'k") } are the force-constant changes. The latter,
like the force constants {®.s(l,/x')}, must satisfy the
relation

T Aey(llx)=0, (A2)

which results from the requirement that the energy of
the crystal be invariant under a rigid-body displace-
ment, and which, in the present case, can be written
explicitly as

AP,,(0—, 0—)+249,,(0—, 1+)
+44&,,(0—, 1+)=0 , (A3)

where (1) denotes the lattice-site nearest neighbor to
the impurity on the positive » axis.

If all the force-constant changes {A®as(ik,Vk')} are
assumed to be zero, the right-hand side of Eq. (A1)
reduces to its first term,

Slap(,VK; 0?) = ew?M 0100000, 8,_0ag, (A4)

and the corresponding matrix 8/ then describes a simple
mass-defect model for the impurity.

One has a better description of a U center in alkali-
halide crystals by considering that all the force-constant
changes {A®.5(lk,/k')} are zero except those associated
with the impurity site only, namely {Ad.5(0—, 0—)}.
We know that, under a symmetry operation which takes
the crystal into itself, leaving the impurity site fixed,
the force constants and therefore the force-constant
changes transform as the components of second-rank
tensors. In an alkali-halide crystal, the impurity is at a
site of On symmetry. It can therefore be easily shown
:chat the tensor Adqs(0—, 0—) is diagonal and isotropic
ie.,

APo5(0—, 0—)=0,A0, (A5)

where A® is a scalar. The expression Eq. (A1) of the
matrix 6/ therefore reduces to

8lag(lx,l'x'; w"’) = (6(,on...+ A@)Bzo&'oa,‘_s,y_&ap
= €W M _810108,80_8a5, (AG)

# See, for example, Ref. 8, p. 338.
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where we have defined a frequency-dependent “effec-
tive-mass defect” by

¢=et(AD/w?M_). (A7)
In a localized mode of frequency wo, ¢ has the expression
=t (AD/w?M_). (A8)

Equation (A6) has the same form as Eq. (A4).

The “effective-mass-defect” model for the impurity
just described obviously violates the invariance con-
dition Eq. (A3). Its use can be justified crudely on the
basis that in the expression Eq. (A1) of the perturbation
matrix 8/, the term in w? which is nonzero for the im-
purity site only is, for the localized modes (w=wo),
generally much larger than any force-constant change
A®p(Ik,Vk'). Therefore, although the force-constant
changes A®,,(0—,14) and A®,,(0—,1+) are not
really very small in comparison to the force-constant
change A®,.(0—,0—) at the impurity site, they are
indeed small compared to the term in w?

APPENDIX B

The sum 3., Ca@(0—)Cs@(0—) has been calcu-
culated for a Bravais crystal in Ref. 35. We are con-
cerned here with a crystal of the rock-salt structure.

The vibrational eigenvectors {C“(lk)} of the
localized modes labeled by ¢ and whose frequency is wo
satisfy the following orthonormality relation:

2 Mu[Ca () =1,

lka

(B1)

where (lk) runs over all the lattice sites of the crystal.

The amplitude C(Ik) associated with any atom
other than the impurity is related to the amplitude of
the impurity atom itself (assumed to be If)cated“atkthe
origin of the coordinate axes) by the relation®

Ca’ (k) = eM w® 2 Gag(lk, 0— ;00*) Cp(0—) , (B2)
B8

where the Green’s function Gas(l,/'x’; w?) is defined by
Eq. (24). .

OfSubstituting the expression Eq. (B2) for Co( (k) in
Eq. (B1), we have that

1= — M S [Ca(0—) T+ chunt M2

XL X M Gas(lk, 0—; %)

ik afy

K Gy (I, 0— ; 0?)Cp@(0—)C,@(0—). (B3)

By expanding the Green’s function according to
Eq. (24), then subsequently making use of the orth(?-
normality of the eigenvectors {W(x|kj)} and the cubic

3% A, A. Maradudin, in Phonons and Phonon Interactions,
edited by Thor A. Bak (W. A. Benjamin, Inc., New York, 1964),

p. 424.
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symmetry of the crystal at the impurity site (0—), we

obtain

2 M Gas(ix, 0— 500" Gay(lk, 0— ; wo?) = opvg/M—, (B4)

lxa

where

1 W k)W [kj)
3N i [woz—w,-z(k)jz
Taking account of Eq. (B4), we derive from Eq. (B3)
that
2 [Ca@(0—) P=[eM_(ewo’g—1)T".

a

(BS)

(B6)

Because the {C((0—)}(s=1, 2, 3) are the normalized
eigenvectors of a 3X3 real, symmetric matrix, it follows
from Eq. (B6) that they must also satisfy the closure
relation

2 Cal2(0—)Cs @ (0—) =85S, (B7)
with ’
S=[eM_(ew'g—1) T2 (B8)
We now turn to the calculation of the sum
J= z% ) e GO () C, (V). (B9)
Let us first define a coefficient C, by
C=2 &C, (k). (B10)

Ix

According to Egs. (B2) and (24), Eq. (B10) can be
written as

GM_w02
C=
NM_12 1k xju M,(]/Z

& Wilk|kp)Wa(— k)
woz—wﬂ(k)

Xe21rik’-x(lx)ca(a)(0__) .

The summation over ! and k are straightforward; we
obtain

M o & W,(k|0)Wa(—]07)

= Ca@(0-).
M2 e M2 wf—w(0)

Writing explicitly the sum over « and taking account of
Eq. (7b), we have that

eM_wi’e* Wa(—07)
C=———— ¥ (0= )~
M2 wo’—w;2(0)
Wv + 0 ] Wv - 0 ]
x[ (+105) Wo(—| J)]_ B1D)
M M2

If j refers to an acoustic branch, the expression in
brackets in Eq. (B11) vanishes.® Therefore the acoustic

% This follows from Egs. (2.1.32) and (2.1.35b) of Ref. 22,
respectively.
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modes do not contribute to the coefficient C,. If 7 refers
to an optical branch, we have that3

[W,(+ [07) W.(— lﬂj)]
M+1/2 M 12

M’_l/z

W.(—107).
X, ) (=105

M_12
Therefore,

M +M_
C= &C,k)=— ewd"e*(—-———-——)

174 +

(=10)HW (=105
5 Caf"’(O—)W( [0/)W,(—| ])’
P wo?—w;2(0)

(B12)

where j runs over the optical branches only.
The sum Eq. (B9) can now be written as

S= (ewoze*w> ST T Ca(0—)Cs@(0—)
M, o Ji' aB
Wo(—[0)W,(—07) Wa(—[05)Wu(— (05

wol—w;2(0) wo?—w;*(0)

If the sum over ¢ is done using Eq. (B7) and the sum
over B subsequently carried out, we obtain

MM N2 _ Wa(—=[07)W.(—]07)
E=S<€wO2€* )
M+ ji'a (A)oz—'wjz(o)
Wa(—07)W (=04
% (= 10w u( ]]), (B13)
we?—w;%(0)

where j and ;' runs over the optical branches only.
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For an ionic crystal of the rock-salt structure, it can
be shown?” that the eigenvectors of the optical modes
satisfy the following orthogonality and closure relations:

WK (= 0)Wa(—07)=ndjir,  (Blda)

2 Wa(—07)Ws*(— [0j)=ndas,  (Bl4b)

where p=M,/(M+M_) and j, § refer to any of the
optical branches. Using successively Eqs. (B14a) and
(B14b) to carry out the sums over a and ;' in Eq.
(B13), we obtain

ewoZe*\ 2 W (= |0)W . (— |05
E=uS< ) (= 107)Wu(— | J)_
j=opt  [wo?—w;*(0) ]

Let us denote by w;(0) and w,(0) the frequencies of
the zero-wave-vector longitudinal and (doubly de-
generate) transverse optical modes and label the corre-
sponding branches by j=1, 2, 3. The eigenvector of the
zero-wave-vector longitudinal optical mode as de-
termined in Ref. 14 has the following expression:

(B15)

M

k
W(—101)= — (z) V/2—o
(—101)=— () llk!

Making use of Eqs. (B14b) and (B16), we can finally
write Eq. (B15) as

(B16)

1 kukey
[wot—wi2(0) ]2 %2

(=) i)

37 This follows from Eqs. (2.1.27a) and (2.1.35b) of Ref. 22.

2= S(E&)ozé*)2




