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A Ir center (substitutional H or D ion) in an alkali-halide crystal is known to give rise to triply de-
generate localized vibrational modes that are infrared-active. The U-center-induced infrared lattice ab-
sorption spectrum shows a characteristic structure consisting of a central prominent peak flanked on both
sides by broad sidebands. The central peak arises from one-phonon absorption processes due to localized-
mode phonons, and recently it has been studied extensively. The present paper deals with a theory of the
sidebands based on two-phonon absorption processes involving one localized-mode phonon and one band-
mode phonon, taking account of phonon coupling mechanisms due to the cubic anharmonicity of the crystal
and to the crystal second-order electric dipole moment. Formal expressions are derived for the contributions
from these two mechanisms to the sideband absorption coefficient, in terms of the phonon Green's-function
matrix for the harmonic perfect-host crystal, the cubic anharmonic force constants, and the second-order
electric-dipole-moment coeKcients. The phonon spectrum of the perturbed crystal is actually taken into
account. A simplified expression for the absorption coeKcient is obtained for the case where only that part
of the anharmonicity and the electric dipole moment which arises from short-range overlap forces between
the impurity and its nearest neighbors is considered. Numerical calculations are carried out for the higher-
frequency sideband of a KI crystal containing 6X10"U centers (H or D ) per em', at 4.3'K, using Hardy's
deformation-dipole model for the perfect-host crystal. The U center is described by a phenomenological
"effective mass defect" which takes into account approximately the change in force constants at the im-

purity site, using the experimental value of the localized-mode frequency. The calculated spectrum is in
satisfactory agreement with Timusk's experimental data. It is found that the anharmonicity is the dominant
phonon-coupling mechanism. It is about 10 times stronger than the second-order electric-dipole-moment
mechanism near the localized-mode frequency, and about 10 times stronger in the high-frequency limit
of the sideband. Some discrepancies in the position of the phonon frequency gap and the relative intensities
of the main lines are tentatively attributed to the use of inaccurate phonon data, the effective-mass-defect
model for the U center, and the approximate numerical values for the overlap forces.
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E present in this paper a detailed theory of the
sidebands of the U-center-induced localized-

mode infrared lattice absorption spectra in alkali-halide

crystals of which a preliminary account has been pre-
viously reported. '

An isolated hydride or deuteride negative ion substi-

tuting for a halogen ion in an alkali-halide crystal
(U center) generally gives rise to localized vibration
modes whose frequency is much higher than the maxi-

mum vibration frequency of the perfect-host crystal. In
a localized mode, the amplitude of vibration is largest
at the impurity ion and decreases very rapidly when the
distance from the impurity increases. Under an oper-
ation of the point-symmetry group of the crystal at the

impurity site, the localized vibration modes transform

as a polar vector, and therefore are active in the infrared
lattice absorption by the crystal. Although the possi-

bility of occurrence of localized modes due to impurities
in crystals was discussed by Lifshitz' as early as j.943,

*This research was supported by the Advanced Research
Projects Agency, Director for Materials Sciences, and was tech-
nically monitored by the Air Force Once of Scienti6c Research
under Contract AF49(638)-1245.

f This work was carried out while the author was at the Westing-
house Research Laboratories, Pittsburgh, Pm, nsylvania 15235.

f Present address: Department of Aerospace Engineering Sci-
ences, University of Colorado, Boulder, Colorado.

' Nguyen X. Xinh, Solid State Commun. 4, 9 (1966).
2 I. M. Lifshitz, J. Phys. U.S.S.R. 7, 215 (1943); 7, 249 (1943);

8, 89 (1944).

they weI'e 6I'st observed ln 1960 by Schaefer) ln the
infrared absorption spectra of alkali halide crystals
containing U centers. Schaefer's work was followed by
a series of similar experiments carried out with higher-
resolution techniques by various authors. In particular,
infrared absorption spectra of NaCl, NaBr, KCl, RbC1,
KSr, RbBr, and KI containing U centers have been
obtained by Fritz et al.4; Timusk's experiments' were
concerned with KBr and KI crystals containing H and
D impurities, while Elliott et a/. ' have especially
studied CaF2, SrF2, and SaF~ crystals containingH
and D impurities. The U-center-induced infrared ab-
sorption spectra obtained show a characteristic struc-
ture consisting of a central prominent peak flanked on
both sides by broad sidebands.

The central peak has been attributed to one-phonon
absorption processes involving a localized-mode phonon.
Its behavior is at the present time well understood.
Reviews of the theory can be found in references. 78

Fritz has suggested that the sidebands represent sum-

' G. Schaefer, J. Phys. Chem. Solids 12, 233 (1960).
B. Fritz, in Lattice Dynamics, edited by R. F. Wallis (Perga-

mon Press, Inc. , New York, 1965), p. 485; B. Fritz, U, Gross, and
D. Bauerle, Phys. Status Solidi 11, 231 (1965).

5 T. Timusk (private communication to Professor A. A. Mara-
dudin); T. Timusk and M. V. Klein, Phys. Rev. 141, 664 (1966).' R. J. Elliott, W. Hayes, G. D. Jones, H. F. Macdonald, and
C. T. Sennett, Proc. Roy. Soc. (London) A289, 1 (1965).

R. J. Elliott, in Lattice Dynamics, edited by R. F. %allis
(Pergamon Press, Inc. , New York, 1965}.

s A. A. Maradudin, Rept. Progr. Phys. 28, 331 (1965).
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mation and diGerence bands involving a localized. -mode
phonon and a continuum (or band-mode) phonon
coupled by the anharmon1clty of the crystal potential.
Klemens' has suggested. that the second, -order electric-
dipole Inoment can also play a role as a coupling mecha-
nism in these two-phonon processes. A brief discussion
of both these coupling mechanisms has been given by
Sennett" A theory of the sidebands due to H im-

purities in CaF& has been worked out by Klliott e] ul. '
In this theory, the I impurity is considered as vi-
brating in a tetrahedral anharmonic rigid potential well,
the continuum part of the phonon spectrum is taken as
that of the perfect-host crystal, and the anharmonic
coeKcients are taken as adjustable parameters to get
the best 6t between measured and calculated spectra.
The theoretical results turned out to be satisfactory and
showed that the model used. was good, at least for the
case considered. However, the approximation of the
continuum part of the phonon spectrum of the per-
turbed crystal by that of the unperturbed crystal
prevents the resonant modes, if they exist, from showing

up in the sidebands. This is not the case in Timusk and.
Klein's theory of the sidebands of the infrared U center
in KBr.' In the latter theory, the perturbation of the
continuum phonon spectrum of the crystal due to the
presence of the impurity is actually taken into account.
The lattice dynamical model of the U center is char-
acterized by a mass defect associated with a change in
force constant at the lattice site it occupies. This
change in force constant is calculated from the measured
locahzed-mode frequency. The theoretical treatment
considers the H ion vibrating along the x axis as
anharmonically coupled to a con6guration coordinate
X made up of the symmetrical displacements in the x
direction of its two nearest-neighbor positive ions at
(100) and (100). The theory does not contain any
adjustable parameters. The results of Timusk and
Klein's calculation of the high-frequency sideband of the
U center in KBr, using a shell model for the host
crystal, are in very good agreement with their experi-
mental data except for the presence, in their calculated
spectra, of a localized-mode peak, occurring in the gap,
which has not been observed.

The theory we present in this paper is based on two-
phonon processes involving one localized-mode phonon
and one continuum-mode phonon. As in Timusk and
Klein's theory, the phonon spectrum of the perturbed
crystal is taken into account. Also, we use the same
lattice dynamical model for the U center, namely a mass
defect associated with a force-constant change at the
impurity site whose value is to be derived from the
experimental value of the localized-mode frequency.
However, our treatment di6ers substantially from that
of Timusk and Klein, as well as that of Klliott et ul. In
particular, contrib U.tions from both the anharmonicity

' P. G. Klemens (private communication)."C.T, Sennett, thesis, Oxford University, 1964 {unpublished).

and the second-order electric-dipole-moment coupling

mechanisms to the absorption coeScient will be calcu-

lated. General formulas will be derived. in Sec. II for
these contributions in terms of the third-order coeK-

cients of the crystal potential (cubic anharmonicity)

and the second. -order coeKcients of the crystal electric-

dipole moment in the respective expansions of these

operators in Taylor's series in powers of the atomic

displacements. These formulas will be applied, in Sec.
III, to the calculation of the structure of the infrared

high-frequency sideband due to U centers in KI, using

a deformation dipole model for the host crystal and

only taking account of those parts of the anharmonic-

ity and second-order electric dipole moment which

arise from the distortion of the electronic-charge dis-

tribution due to short-range forces. The calculated

spectrum is in satisfactory agreement with Timusk's

experimental data. It will be shown that the anhar-

monicity is by far the dominant coupling mechanism in

KI. Some discrepancies in the position of the phonon

frequency gap and the relative intensities of the main

lines will be tentatively attributed. to the use of in-

accurate phonon data, the effective-mass-defect model
for the U center and the approximate numerical values
for the overlap forces.

Q. THEORY

We assume that the light waves have an essentially
in6nite wavelength. For a centrosymmetric cubic or
isotropic crystal, the real part of the crystal conductivity
tensor then has the expression"

Ck e '"'(M.( )3'„(0)), (1)

where u(co) is the Bose thermal distribution function
ts(re) [exp=(Are/kT) lg'—, re is the frequency of the
infrared radiation, V is the volume of the crystal, and
M(f) is the crystal dipole moment operator in the
Heisenberg representation:

M(f) =e"u~"M(0)e "~~" (2)

H being the vibrational Hamiltonian of the perturbed
(i.e., the impurity-doped) crystal. The angular brackets
in Kq. (1) denote a thermodynamic average over the
canonical ensemble described by the same Hamiltonian
H, whose expression in terms of the atomic displace-
ments (u(lx)) and their time derivatives {n(lx)) can
be written as

H=-,sP 3ft„u s(lx)+4&'&+-', g P C p(lx, lx')u (lx)

)t,'up(l x')+-s' P Q g C p„(lx,l'x', 1"x")u {lx)

Xup(l x')u, (l' x")+ . . {3)
"A. A. Maradudin and R. F. Wal is Phys. Rev. 123, 777

{1961).
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Here t and a (= + or —) are the cell and sublattice
indices, respectively, Rnd M ~„ is the lnass of the atom
occupy111g tlm lattice sltc (ttt). Tile 61'st tcIII1 011 tllc
right-hand side of Eq. (3) denotes the kinetic energy of
the crystal and the following terms represent the expan-
sion of the crystal potential energy in Taylor's series in
powers of thc atomic dlsplaccQ1ents.

The induction of the dipole Inoment by the lattice
vibrations can also be described by expanding its com-
ponents in a Taylor series in powers of the atomic dis-
plRccQlcnts Rs

M„=M„Io&+ Q M„, (ltt)u (ltd)

+-', P P M„„p(k,lV)u, (hatt)up(lY)+

form"'
M. , (ltd) =M, , (Oa) = &, e. ,

Pb)

pj.aying the role of Rn cftcctivc charge.
Taking account of Eqs. (5)—(7), »«an «w»te Eq

(1) as

co C~&s)(lit)C (s')(t tt )
o„„(to)= — ——g Q 8.,8„p.e.eQ

4p tt(to) I&a vc'p sa' (oo„&o+~)

dt e '"'(A (-t)A (0)) (8)

l aa 't'c'P

=M„&o&+M„&"+M„&'&+

We will evaluate Eq. (1) on the assumption of an
isolated impurity ion, and. will eventually multiply the
result by nd, the number of impurity ions. dt e '"'(3,(—t)A;(0))=2n(to)b„.F,(to) . (9)

The I'ourier transform of the two-time correlation

(4) function appearing in Eq. (8) has previously been
calculated by Maradudin. "The result is

The harDlonlc HRInlltonlRIl ls dlagonahzcd by a
normal coordinate transformation

with

i't 't' B.&'&(l~)

(ut )=t'ai g (b,+b,t)
(2MI. ~ (to,)Iso

it)'" C &'&(ltd)

—.-1„
2J ~ (to,)'"

(6R)

(6b)

8 &'&(ltd)

C.&'(ttt) =-

where b, Rnd b,'t denote the usual phonon destruction
RIld crcatlon opclatorsp respectively) while cog Rn{j
B&'&(k) are the frequency and amplitude of the sth
vibrational mode of the perturbed crystal.

For an alkali-halide crystal, the 6rst-ord. er dipole-
moment coeKcients PI, (ttt) t have , the following

A. Cubic Anharmonicity Mechanism

%C 6rst calculate, in this section, the contribution
from the cubic anharmonicity mechanism to Eq. (1).
Therefore, the Hamiltonian II is that of the anhannonic
crystal, given by Eq. (3), in which we will retain only
the cubic anharmonic terms. Qn the other hand. , it is
sufhcient for our present purpose to take into account
only the 6rst-order terms in the expansion Eq. (4) of
flic drpolc IIlorllcllt. (RssuIIllIlg 'tllat 'tllc cl'ys'tal llas 110

permanent electric dipole moment), i.e.,

M„=Q M„, (lit)u, (ltt).

egg OP..(~)= —Fo(~) Z Z e""
l' tt'

&&+ C.'&(k)C„"(t'It'), (10a)

4ooo Vo(G))
Fo(oo) = —— —,(10b)

Ltes —toss —2rooho(&o)]s+4toosl oo(oo)

where 0 runs over the localized modes only.
To the lowest order in the Rnharmonicity, the func-

tion b,o(too) describes the shift of the frequency of the
localized mode from its value in the harmonic approxi-
mation, while I'o(ooo) is the half-width at half-maximum
ok the peak. contributed. by the localized modes to the
one-phonon absorption cross section. " Both Ao(to)

and Fo(&o) are slowly varying functions around oo=&oo

and moreover their values are very small in comparison
to too. We therefore approximate Eq. (10b) by

Fo(~)=4»'/(~' —~o')'1"o(~) (10c)

"R. F. Wallis and A. A. Maradudin, in 2'roeeettettgs of the
International Conference on the Physics of Semiconductors, Exeter,
196Z (The Institute of Physics and the Physical Society, London,
1962), p. 490.

"A. A. Maradudin, Ann. Phys. (N. V.) 30, 371 (1964),

The function F,(&o) has the same value for each of the
triply degenerate localized modes" whose frequency we
denote by ~0. If ~1, is the maximum vibration frequency
of the unperturbed crystal, then for the sideband fre-
q11crlcy 1'RIlgc Coo

—oor,(GD(ohio+ o&1~ wc obtaIn ~
aftcl'

substituting Eq. (9) into Eq. (8), carrying out the sum-

mations over n, P, and s', and subsequently multiplying
the result by n~,
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Equation (10a) then becomes

2sg 07+0
crp„(cp)== Fp(cp) Q Q pgp~&

(Cpp Cp 2)2 IK @gal

XQ C,('&(lK)C„( &(l K'). (11)

Let us now consider the function Fp(cp). To the
lowest order in the anharmonicity, it has the general
expression"

18m
I"p(cp) = g V2(crsls2)((n. ,+n.,+1)

gp apse

XLc)(cp—cp„—cp„)—I&(p)+p)„+cp.,)$+(n„—n„)

Xgb(p&+p&„p&„) —b{p& —p&„+p—&„)j}, (12a)

1 P,) 2(2

V(slspsp) =-
I Z

Ill(it gglgll ~pI (Cp Cd Cp )I/2

B '"'(lK)B '"'(PK')B„(*'&{l"K")
X . (12b)

(MI,MI, MP. ,-)I"

In the present case„ the frequency eo is positive. On the
other hand, both the indices s~ and s~ shouM run over
all the normal modes of the perturbed. crystal. How-
ever, we assume that ~p&2'~ which is true for most
alkali-llallde clystals (lll I&articular fol' I&otasslum
iodide) containing H or D U centers. In that case,
the only nonvanishing contributions to Fp(cp) come from
the terms where one of the indices s~ and s~ refers to a
localized. Inode, vrhile the other refers to a continuum
mode. Taking account of the complete symmetry in
sl, s2, and sp of the coefficient V(slspsp) given by Eq.
(12b) and denoting p)—cpp by Q, we obtain

36m
Fp(cp) = —P V2(ao's)

A

X((n,+np+ 1)8(Q—p),)+(n,—np) c&(Q+cp,))

24m
—sgnQ fn(cpp)+n(Q)+1j

h2

X g V2(oo's)cp, l){Q2—cp,2) . . {13)
ca'r

According to Eq. (12b), we have that

Ig 'I
V (gos)P)gb(Q 'G)g )= Q Q Q Q Q Q O'NPI(lK l K )l K )4(gcPcpc(lIKI&ll Kl )ll Kl )

40'0' 36 2 Gap l«& l «Pl «7 llrl&lll «1Pl ll «l gl

(,){lrs u)B (»{l u

XQ C ( &(lK)C, ('&(lIKI) Q Cp(")(l'K')Cp, ("&(ll'KI')Q I&(Q2—cp,2). (14)
cr cl' I 8 (gyp )If «fogy@ l rsr ss(

f hh lw ($/2

In this equation, the indices ~ and 0' run over the localized Inodes while the index s runs over the continuum nmdes
only. However, in the frequency range 0&

~
Q

~
(cpl, in which we are interested, the function 1I(Q2—p&, 2) vanishes

identically fol N =Mp. Consequently, the index s can be considered as running over a11 the normal modes of the
perturbed crystal including the localized modes. The sum over s in Eq. (14) can therefore be written as

(g) {ill ll)B (s)(1 II II)
c)(Q2—p),2) =—ImU„„(l' K", ll"Kl", Q' 20), —

(M I-."MI,-„,-)I" (15)

where U is the Green's-function matrix for the harmonic perturbed crystal whose general element is given by'

1 B (s)(lK)Bp(s)(l K)
U p(lK, l K'; cpp) =

(MI„N'I „)'" * p)2 —cp,2

Taking account of Eqs. (10c) and (13)—(15), Eq. (10a) becomes

ARg cv sgnQ
0'ggy (cp) (n(cpp)+n(Q)+1](g P p„p, P C,('(lK)C„( &(l K'))

54V cpp (cp2 —cdp2)2 l« l'a' e

X( p Q Q Q p Q C p„(llKl, lpKp, lpK2)C p;(ll'Kl', lp'K2', lp'Kp') Q C ( '&(llKI)C ('»(ll'Kl')
lg«y~ lg«3p l3«sy lI «I, cr' lg'«2'p lg'rfl'g

Xp Cp'»(lIK2)Cp (")(lp'K2') ImU, „(lpKI, lp'Kp', Q' —i0)) . (1'l)
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This equation is general. It applies to any crystal con-
taining isolated substitutional impurities which are
light enough or cause a su%.cient stiffening of the force
constants between thc impullty sltc RDd cRch of its
nearest neighbors, so that they give rise to localized
vibration modes whose frequency is higher than 2~1,.

The evaluation of &r„„(te) as given by Eq. (17) is
rather complicated because it requires the explicit
knowledge of the eigenvectors {C&'(k)} of thc per-
turbed crystal whose determination, in the general case,
ls itself a dificult task. . Moreover, the various index
pairs (lK) in this equation must in principle run over
all the lattice sites of the crystal. Fortunately, the amp&i-

tudes of vibration {C&~&(lK)} in a localized mode de-
CI'cRsc very rapidly when the distance fI'om the sltc
(fK) to tile iillplil'lty sl'tc lllcl"cRscs so tllR't ill gcllcral, R

good approximation is obtained by considering that
C&'(tK) is zero at any lattice site which is not in the
near neighborhood. of the impurity. For our present
purpose, we therefore seek to simplify the expression
Eq. (17) of the real part of the conductivity tensor by
making the following assumptions:

(R) Wc first RssliIilc tllRt ollly tllc nearest neighbors
to the impurity and the impurity itself are RGcctcd by

its presence. This means that C& &(lK) is nonzero only

when it refers to the impurity site or any of its nearest

neighbors.
(b) We also assume that the anharmonic force con-

stants which, in alkal. i-halide crystals, arise mainly

from short-range overlap forces'4 have appreciable

values only between the impurity and Rny of its nearest

neighbors and are negHgible between the nearest neigh-

bors themselves.

As a consequence of the erst assumption, the index-

pairs (k) and (t'K') on the one hand. and the pairs (4K')
Rnd (tl'K1') on the other hand, now run over the im-

purity and. its nearest neighbors only. This together

with the second assumption forces at least one of the
pail's (SKI) and. (4K1) to refer to the Impurity site. Con-

sidering that the amplitudes of vibration C&'I(1K) of

any of the nearest-neighbor ions are themselves very
small in comparison to that of the impurity ion, we can

make R fuI'thcI' Rpproxlmatlon fol thc t,otRl sunl 1Dsldc

thc 1Rst cul'ly brackets Qf Eq. (17}wlllcll colltMI1 pl'0-

ducts of four C's by restricting both the index pairs

(4KI) and (4K') to the impurity site. Of course, the same

argument apphes to the pairs (ll'KI') and (tl'Ke'). With

tllcsc Rpploxllllatlolls made, Eq. (17) ls slmpl16cd lllto

h'Pl g M sgQQ
0'pp M Ls((d)+e(Q)+ 1J{gP e„e„.P C„&'&(rK)Cp!'&(f'K') }

54V G7e (te Mes)1

X Q Q Q Q C p~(0—,0—,/1K,)C,p, (0—0—13'K,'){QC ' (0—)C . (0—)}
lsasy le'ptg'y' a,p cr'pp

X{+Cp'"(0—)Cp &"'(0—)}I V„(l,l' ', 0'—'0). (18)

This expression of 0„„(te) involves the locahzed-mode

vibration amplitudes {C&'&(jK)} and the Green's-func-

tion matrix U for the perturbed crysta1 These quantities

depend on the lattice dynamical model for the harmonic

perturbed crystal.
Let us denote by M ' the mass of the impurity (H or

D ) ion and by M that of the halogen ion which has

been replaced by the impurity. The mass defect at, the
impurity site can be characterized by e= 1—(M 'jM ).
%c will Rlso make usc, in our present calculRtloD, of R

model for the U center very similar to that used. by
Fieschi, Nardelh and Terzi" and by Timusk and K.lein. '
In this model, the force-constant changes are assumed

to bc DoDzcl'0 only Rt, thc lInpullty sit,c. It can thcD bc
shown (see Appendix A) that such a model behaves

formaBy in a locahzed mode of frequency ~o as a mass

"I, P. Ipatova, A. A. Maradudin, and R. F, &allis, Fiz.
Tverd. Tela 8, 1064 (1966) t English transl. : Soviet Phys. —Solid
State 8, 85O (1966)j."R. Fieschi, G. F. Nardelli, and¹.,Terzi, Phys. Letters 12,
290 (1964).

defect whose CGcctive value is given by

where AC is the scalar force-constant change at, the
lInpUI'lty sltc fol' R dlsplRccIDcnt, directed towald Rny

of the nearest neighbors. In what follows, for the sake of
de6nitcness, wc will carry out the calculation for a U'

center described by a simple mass defect e. The result

for a mass defect associated with a force-constant

change will be eventually obtained by subsequently

replacing the true mass defect ~ by the CGcctivc mass

defect ~'.
The sums in curly brackets in Eq. (18) are calculated.

in Appendix 3 and have the expressions Eqs. (817) and

(Ii7), respectively. Taking account of these, we can
rewrite Eq. (18), after summing over 0.1, 01, n', and p', as

k p,k p"-+
P(Q)]2 Ps L~ 1 ~P(0) jR
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Asg co sgnQ
g (~)—5'sos~ sees /II(to)+N(Q)+1)

54 V coo (sos—ohio')
s

XQ Q Q 4„, (0—,0—,f»)4„„p(0—,0—,I'»')
&pea l'a'P p»

XImU p(kc, P»'; Q' —s0), (20b)

with

0 Ip» CO 0"p,» CO 0 p» 40 ) (21a)

I k„k,
n""'(~)= — ~(~)

Leis' —Io '(0)]' k'

wllcrc S ls a COIlstallt, glvcll by Eq. (BS), k 0 ls 'tlIC

photon wave vector, and ~~ and +& are the frequencies
of the zero wave-vector longitudinal and (doubly
degenerate) transverse optical modes of the perfect-
host crystal, respectively.

The real part of the conductivity tensor o„„(co) as
given by Eq. (20a) can be separated into two parts
representing the responses of the crystal to longitudinal
and transverse electromagnetic waves, respectively, as

1 ) kg.).,&o( )=
i ~,.—,I&( )

Lcoos—e)P(Q)]s 0 k' ~

k„k.
n&'&(oo),

k'

where o "'(oo) is a scalar Light being a transverse wave,
the response of the crystal to the incident light is given

by the transverse real part of the conductivity o &"(el).
This is related to the scalar infrared lattice absorption
coefficient K(ol) by"

4e.o &'&(oo)

E(oo)=

where c is the speed. of ligh«nd Ii(Io) thc Ind« of «-
fraction of the crystal.

From now on, we will let the ceH index l take on the
conventional values 0 for the impurity, and 1, 2, 3 and

4, 5, 6 for the six nearest neighbors (positive alkali ions)
assumed to be located on the positive and negative
branches of the coordinate axes, respectively. %henever
no confusion is possible, we will omit the sublattice
index ~.

Substltll'tlIlg IIlto Eq. (22) tile cxprcss1011 Eq. (21c)
of et'&(&o) and taking account of Eq. (20b), we obtain

26 2/8
GOO CO

E&"'(ol)=- sgnQ Le(olo)+e(Q)+1j
V~( ) ( "- (o))'( '—")'

X P P P 4„„.(0,0,t)4„„p(0,0,l') ImU. p(lt'; Q' i0), —(23)

p, l,n P =x,y,s; f,/'=0, 1,2,3,4,5,6.

We have put the superscript (A) in E&"& to indicate
that it refers to the anharmonicity contribution to the
sideb ands.

Assuming that the anharmonicity arises from a
central potential, it can be shown'6 that there exists
only two independent coefficients, 4 pI(0,0,l), repre-
sented by

n=4„,(0,0,1) and. P=C,„„(0,0,1).
It remains to express the Green's-function matrix U

for the perturbed crystal in terms of the Green's-func-
tion matrix G for the perfect-host crystal, whose general
element is dered by'

Io;(k) and W(»~ kj) are the frequency and eigenvector
of the normal mode (kj), respectively.

%e 6nally obtain the following expression for the
contribution of the cubic anharmonic mechanism to the
sidebands to the localized-mode peak in the infrared
lattice absorption spectra of alkali-halide crystals
containing U centers:

4m'h~*'e'5'ng COROEI"&(Q) = sgnQ
cV3II+torsti(oo) )oooo —Ioc'(&) js(Ios—clos) s

XLn(cdo)+Is(Q)+1j

X {nsA (x)+nPC(x)+P'B(x) }, (25a)

G p(l», l'»'; tos) =
IV.(»( kj)ape(" ~ kq)

A (3l„ilf„)'" e~ sos—ops(k)

where x=Q/col„sj'o=ooo/Iol„and where the functions
A, 8, C are given by

Xexp{2Irsk fx(l») x(1'»')j}—, (24)

where x(l») is the lattice-site position vector and

's Nguyen X. Xinh (to be published).

A(x) =f„(11;x) f„(41;x), —
B(x)= 8f,„(42;x), —
C(~) =2Pf..(»; ~)—f..(41; ~)

—2f„„(41;x) 6f,-„(42;x)—).
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The function f p(ll'; x) is de6ned from the Green's (where we have already introduced the number of
function G p(ll'; 0 ) by the relation impurities) the second-order terms in the expansion

Eq. (4) of the crystal dipo1e moment operator:

G,p(/», l'»', f/' —i0) =
(ur, '(M„M„)'t'

x fh p(/», /'»'; x)+i7rf p(/», /'»'; x)j.
B. Second-Order Electric-Dipole-Moment Mechanism

We now proceed to calculate the contribution from
the second-order electric-dipole-moment mechanism to
Eq. (1).The analysis in the present case is simph6ed by
the fact that the zero-wave-vector phonons do not play
any special role as they did in the calculation of the
one-phonon contribution to the absorption spectrum
described in the preceding section. The infinite-wave-
length photon can couple with any pair of phonons
whose wave vectors add up to zero.

The contribution of the second. -order electric dipole
moment to the conductivity o„„(su) is obtained by
substituting into the expression

0„,(~) = —,'&o(np/A Vn((a)]

M (t)=N "'(t)=-' Q Q M„,~p(/», /'»')
l pea l'tt'P

Xu. (/»; t)up(/'»'; t) . (27)

It is sufhcient for our present purpose to calculate
0„„(&v) in the harmonic approximation for the crystal
potential energy.

According to Eqs. (27) and (6a), we can write

(M„(t)M„(0))= ~~ g g N„(ss')M„(s~s~')
88 8$81

X(A,(t)A, .(t)A„(0)A„.(0)), (28a)
with

N„(ss')= Q Q M„, p(/», l'»')
2(~~ i)~t2 La+ t's'p

B &'&(/»)Bp&" &(/'»')

&& . (28b)
(Mt„Nt „)'t'

Using a generalization of the Wick's theorem due to
Bloch and De Dominicis" to evaluate the thermal
average in Eq. (28a), and noticing that M~(s's) =M„(ss')
we obtain

(M„(t)N„(0))=2 Q M„(ss')N, (ss'){n,n; e'& +""&'+n (n, +1) e'&" ""&'+n (n,+1) e*'& *' " &'

SS'

+(n,+1)(n, +1) e *' ~*+")-(29)
The Fourier transform of this equation is given by

X~„(t0)= dt e ' '(M, (i)M„(0))= P P Q Q Q M„„p(/», /'»')Np ~,p, (/yKy, /y»y)
88' Q)SQ)8i lpta l tt p llÃlal ll ttl pl

B (l»)Bp (1 K )B (/g»y)Bp (/g Kl )
X {n,n;b((a, +~; o)+n, (n;—+1)b(u, (o, ~)—

(Nt„Mt, Mt„,Mt. ..)'"
+n;(n, +1)6((a, co, (a)+—(n,+—1)(n;+1)/'(co,+(o, +or) ) . (30)

We are only interested, in the present calculation, in the range of frequencies a,round the localized-mode frequency
that we have assumed to be larger than twice the maximum frequency ~I, of the unperturbed crystal. In that case,
the only nonvanishing contributions to the sums over the mode indices s and s' in Eq. (30) come from the terms

where either cg, or z, is equal to coo.

Now, the coeKcients {M„,,p(/», /'»')) satisfy the symmetry relation"

M„p, (/'»', /») =M„, p(l», l'»') .
Equation (30) therefore reduces to

~A21so 1
tpp(N) = Q Q Q Q Q Mp, ap(/K)/ » )Mv, aye'(/1»1)/1»1 )

2M' 8& ~tt+ ~ t/ P ~1&1&1 ~1 &1 p1G)8

B~ (/»)B~g (/1»g)Bp (l K )Bpy (/1 Kl )
{ .~( .+ o

—)+( .+1)h( —.—)& (32)
(M4Mv x'MtgsgMty'rz')

"C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958).
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The expression in curly brackets in this equation can also be written as

rc(co,)h(Q —co,)+LN(co,)+1]5(Q+co,)= 2co, sgnQ n (Q)5(Q'—o&,') .

Taking account of Eqs. (32) and (33), Eq. (26) becomes

rrhnp co N(cop)n(Q)
cr»y(co) = sg11Q Q Q Q Q Q M», ap(lKpP&c )My, arpr(llK1)/1 ccl )

2V cop rc(co) er 4a l'a'p llslal c1'cl'pl

(33)

B &'&(lcc)B c'&(lr&cr)BpC'&(l'x')Bp, "(4'&cr') force co rc(ooo)n(Q)

(Mc„Mc „Mc...Mc;.;)"' 2V coo n(co)

XQ Q Q Q M», »p(lK)Mp arpr(lr Kl ) Q Cp (L'K')Cp, ' (lr'xr') ImU«r(lK, lr&cr, Q —c0). (34)
lfra l'a'p /lala1 ll'xl'pl

(35)

from which it follows from Eq. (22) that the absorption coefficient E(co) is given by

2mkRg sgnQ co

&(~)= —I: (~o)+~( )+Ill Z Z Z M». -p(lx, f'x')M». ,p, (&rxr, l,'x, ')
cV&f (co) cop isa l'x p lgcj,ag lg cg pg

According to Eq. (26), the quantity o„,(co) transforms, under a symmetry operation S which takes the crystal
into itself leaving the impurity site fixed as the pv Cartesian component of a second-rank tensor. In the present, case
of a rock-salt lattice, S belongs to the group Oa. Therefore, o „„(co) is diagonal and isotropic, i.e.,

o„,(co) = i&„.cr(co),

XQ Cp '(lY)Cp, ' '(lr'ccr') ImU«, (k) I,», ; Qs —j0), (36a)

where p, is either x, y, or s.
This equation is general and gives the expression for the contribution from the second-order electric-dipo

moment mechanism to the sidebands to the localized-mode peak in the infrared lattice absorption spectra pf
alkali-halide crystals containing U centers. In this equation, the index-pairs (lcc), . . . run over all the lattice sites
of the crystal.

As we have done in the preceding section, and for the same reasons, we now make the approximation that only
the impurity ion and its six nearest neighbors are affected. by the presence of the impurity. In that case, the various

dex pairs in Eq. (36a) will be restricted. to the sites of these seven ions only. We also make the same further ap-
proximation as in the preceding section that C (l&c) is nonzero only for the impurity ion. With these approxi-
mations made, Eq. (36a) becomes

2mhng sgnQ ~
E(co)= I s( )+coo(Qr)c+Ij 2 2 P M», ap(fxy 0 )M», ggrpr(lrx]& 0 )

cV&f(co) cop lpga lgaj.ag ppj,

XQ Cp "(0—)Cp, "(0—) ImU«, (k, lr&cr, Q' —c0), (36b)

where p, runs over the coordinates x, y, and s and the
lattice-site indices l and l' run over the impurity and
its six nearest neighbors. The superscript (E) in & c p&(co)

indicates that it refers to the contribution from the
second-order electric dipole moment.

The symmetry and invariance properties of the coe%-
cients (M». p(0, l)) have been discussed in."Assuming
that the second-order electric dipole moment has a
central character (for instance, when it arises from the
distortion of the electronic charge distribution due to
overlap forces"), it is shown" that these coefficients

where (lcc) and (lrccr) run over the impurity and its
nearest neighbors.

If the sum over 0. is carried out using the result ex-

pressed. by Eq. (87) and use is made of the property"
that the coefficient M„, p(l&c, l'cc') is symmetric with

respect to the index-triples (l&ccx) and (l'&c'P), we can
finally rewrite Eq. (36b) as (using the same single-index

convention to label the lattice sites as in the preceding
section)

2mhSeg ~
~c»(co) = —sgnQ Lrc(~o)+rc(Q)+ Ig

«~(~) ~o

Xxgg P M
pg ll' aP7

» r (O,l)M», rp(0, l )
'8 M. Born and K. Kuang, Dylemical Theory of Cryo&a/ IaNices

XImU p(g'; Qs—j0), (37) (Clarendon Press, Oxford, England, 1956), p. 113.
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have only two independent elements Iepresented by

a= M,„,(0,1) and O=M, ,»(0,1)

We 6nally obtain

4x'beg co

E&x'(Q) =— —sgnQ LN(zos)+n(Q)+1]
cVM+oozsri(o)) zoo

)& (a'A (x)+abC(x)+OsB(x) }, (38)

where the functions A, B,and C are given by Eqs. (25b).
E&s& (Q), whose expression is given by Eq. (38), repre-

sents the contribution of the second-order electric-
dipole-moment mechanism to the sidebands to the
locahzed-mode peak in the infrared lattice absorption
spectra of alkali-halide crystals containing H—or D-
U centers.

We have applied the results obtained in Sec. H to
the case of a KI crystal containing U centers.

The lattice dynamical model for the harmonic perfect-
host crystal used in the present calculations is the de-
formatlon dlpolc model of Hardy. The normal-mode
cigenfrequencies (zo;(k)} and eigenvectors (%(kj)}at
4.3'K have been numerically computed by Jaswalss in

the same way as for a KC1 crystal described in Ref. 21.
It been founds' that &oz=2.546&&101s rad/sec and xg

=0.2197. The functions {f p(ls, lY; x)} have been

computed as in Ref. 21.
If thc ln1pullty ls consldelcd Rs R slnlplc Inass defect~

the equation for the localized-mode frequency xo is"

1=sxs gs(xo), (39a)

where gs(g} is the Gl'cell s fullctloI1

arise predominantly from the overlap potentia1. '4 We
RssuIDc thRt this ls Rlso tI'uc fol thc anharIDoIBC coupling
between anH or 0 impurity and its nearest neighbors.
We describe the overlap potential by a function of the
form XexpL —rjp], where X and p are two constants and
r is the interionic distance. Similarly, we assume" that
the second-order electric dipole moment is induced by
the distortion of the ionic charge distributions due to
lattice vibrations and that the corresponding electric
dipole moment has the form srsexpL —rjp]. We make a
rough approximation by using the values of X and p for
the perfect-host crystal LRef. 23, (a)]: X=4.60)&10 s

erg and p=0.349)&10-' cm. The corresponding cubic
anharmonic force constants n and p and the second-
order electric-dipole-moment cocS.cicnts u and b have
the following values":

&= —44 46+10"dyn/cm' p =4.836)z,'10" dyn/cm'

The CGectivc charge ~* is related to the Szigeti
charge ea and the high-frequency dielectric constant

byl4
os = -', (s„+2)es.

On the other hand, the Szigeti charge is related to the
distortion factor s by es ——se, where (—e} is the elec-
tronic charge. For KI LRef. 23, (b) and (c)]:s=0.69
and e„=2.69. Therefore,

s*=—;s(s„+2)s= 1.078e.

If all the frequencies are expressed in units of +l„we
can rewrite Eqs. (38) and (25a}, respectively, as

x+xs
EIII&(x)=E sgnx Ln(x)+rs(xs)+1]

~.(- lkj)lf.(- lkj)
gs(x) =—Q x'—x'(k)

(39b)

with g,.(k)=zo, (k)/zoz, , and where s denotes the true
mass defect. For an H—impurity, ~ has the value 0.99206
and we have found that F0=4.6, which is much higher
than the experimental value @0=2.84.' This ls not sur-

prising, Rs lt ls no%' well known that thc slIDplc-IDRss-

defect model for U centers in alkali-halide crystals
yields values of the localized. -mode frequencies which
are about 50/& higher than the corresponding experi-
mental values. This discrepancy can be reduced by
taking into account the force-constant changes.

For most perfect alkali-halide crystals, the anhar-
monicity of the potential energy has been shown to

»J. R,. Hardy, Phil. Mag. 7, 3&5 (I2)."S.S. Jaswal (private communication).
21Nguyen X. Xinh, A. A. Maradudin, and R. A. Coldvrell-

Horsfall, J. Phys. (Paris), 26, 717 (1965).
~~ A. A. Maradudin, E. W. Montroll, and G. H. gneiss, Theory

of LaNke Dyeumics'ie the B'aresonic, gpprogjm&ioe (Academic
Press Inc., Nevr York, 1963), p. 150.

X fosA (x)+cbC(x)+OsB(x) }, (40a)

Z(»(x) = Z(»(x),
x'(x+2xs)'

(40b)

"{a)Re&erence I8, p. 26; (b) i~, p. Iy2 (c).i~
"cursor«oN zsszszN&o of Physsos Ho&goozr (MoGraw H;ii po k

Company, Inc.,
'
Neve York, 19&3), 2nd ed, pp ~g3

wllel'c x=Q/(oy„gs=ros/&oz, gl ——&g&/roz, g is given by
Eqs (&8) and (&5), and & and lt' have the expressions

4xs&&~.
~ ) s"Sxos

x'=1
«M+oozsrz kpmzoz, s(xss —xP)

In the expression for E, we have neglected the frc-
qucIlcy dcpcndcncc of tllc 1Ildcx of I'cf1actloI1 ri(ro) II1
the infrared region and have considered it as a simple
constant whose value" is I.61.

The functions E&~&(x) and K&"I(x) have been calcu-
lated for the frequency range 0&@&1and at 4.3 K in
the following cases.
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(a) The I U center is erst considered as a simple
mass defect whose value is &=0.99206. The localized-
mode frequency x&& calculated from Eq. (39a) therefore
has the value of 4.6. The impurity concentration (rsvp/ V)
is taken to be 1. The frequency dependence of the con-
tributions to the higher-frequency sideband from the
cubic anharmonicity and the second-order electric-
dipole moment are plotted separately in Fig. j.. Some
values of their ratio K&"&(x)/K&s&(x) are listed in
Table I. The frequency dependence of the total absorp-
tion coefficient K(x) =K&"&(x)+K&~&(x) due to both
mechanisms is shown in I'"ig. 2. The calculated absorp-
tion spectrum reproduces reasonably well the experi-
mental one' represented by the smooth line of Fig. 4.
However, the agreement is rather poor as far as the
relative magnitudes of the main peaks are concerned.

(b) One would expect a better result if the force-
constant changes at the impurity site (BC t&(0,0)} are

~8
C

7—
C

0g6-
J3
o5—

4—

2—

2—4J

Sideband H ln KI
~ = 0.99206
Xp = 4.6

I l I

II

TACTILE I. The calculated frequency dependence of the ratio
E&"&(x)/E&x&(x) for the high-frequency sideband due to H in
KI. The quantity E(")(x) is the contribution to the total absorp-
tion coefFicient from the anharmonicity phonon-coupling mecha-
nism and E' s(&x) is that from the second-order electric-dipole-
moment mechanism. (a) The U center is treated as a pure mass
defect; (b) the U center is treated as a mass defect associated with
a change in force constant.

Frequency
x

Z&» (x)/It &»(x)

{a) Mass-defect (b)EGective-mass-
model defect model

0.05
0.15
o.25
0.35
0.45
o.55
0.65
0.75
0.85
0.95

327
35.5
12.5
6.2
3.7

1.7
1.2
0.96
o.75

9385
1007
350
173
101

45
33
25
19

taken into account. Actually, we need not calculate
explicitly the force-constant changes (h4 &&(0,0)}.We
simply use the experimental value' of the localized-mode
frequency and calculate the corresponding effective
mass defect e' with the help of Eq. (39a). It has been
found that e' has the value 0.97902 for H—U centers
in a potassium-iodide crystal. The frequency dependence
of the total absorption coefl&&cient K(x) is shown in Fig.
3. The discrepancy between the calculated and experi-
mental data concerning the relative magnitudes of the
various peaks has been substantially reduced while the
frequencies of these maxima remain unchanged, in
comparison with the case of a simple mass-defect model
for the impurity (Fig. 2). The values of the ratio
K&~&(x)/K&x&(x) as given in Table I show the predomi-
nance of the contribution from the anharmonicity
mechanism in the whole frequency range of the higher-
frequency sideband.

(c) In principle, the expressions Eqs. (40a) and (40b)

of K&"&(x) and K&~'(x) give the absolute values of
these absorption coefficients if the values of the cubic
anharmonic force constants and the second-order
electric dipole moment for the perturbed crystal are
correctly known. In the present calculation, we have

I2I
C II3

& IO—
0
f

~ 9—
O e—

7
+

ll
5—

w 4—

I I I I I I I I I

Sideband H in KI. .

& =0.99206
Xp =4.6

0-—
0 O. I 0.2 0.5 0.4 0.5 0.6

QJ- fd p
X QJ

I I I

0.7 0.8 0.9 I.O

FIG. 2; The: calculated frequency dependence of the totaabsorption coeKcient in the high-frequency sideband due to @-
in KI treated as a pure mass defect.

I I I

0 O.I 0.2 0.3 O.e 0.9 l.o0,4 0.5 0.6 0.7
(d- QJp

X=

FIG. 1. The calculated frequency dependence of the contribu-
tions to the absorption coeKcient in the high-frequency sideband
due to H in KI treated as a pure mass defect: (a) from the cubic
anharmonicity phonon-coupling mechanism; (b) from the second-
order electric-dipole-moment mechanism.
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Sideband H in KI

&' = 0.97902
Xo = 2.84I6

out for D U centers in KI. Using the experimental
value for thc localized. -mode frequency ~0= 278.6 cm ',"
it has been found that the effective mass defect e' has
the value e'=0.95914.The calculated spectrum K(x) is
shown ln Flg. 3. It hRs exactly the same structure Rs
that arising from H U centers, in agreement with
expel lmcnts.

IV. MSCUSSIOH

Sideband D in KT.
&' = 0.959I4

0 0.l 0,2 0,5 0.4 0.5 0.6 0.7 0.8 0.9 I.0

»G. 3. The calculated frequency dependence of the total-
absorption coe%cient in the high-frequency sideband due to H
and D U centers in KI treated as mass defects associated with
force-constant changes (efkctive-mass-defect model).

Sideband H in Kg

~' = o.e79OZ
Xo = 2.8416

E
E .24—

.IS—

0 0.I 0.2 0.5 0.4 0.5 0.6
fd-QPO

07 0.8 0.9 l.0

used the values of these coeScients relevant to the
perfect-host crystal. This is, of course, a very drastic
approximation and it is not reasonable to expect that
the absolute values of the absorption coefficient K(x)
could bc obtained 1Q this way. In order to IQakc R

close comparison with the experimental spectrum ob-
tained by Timusk' (Fig. 4), we have to multiply the
theoretical values of K($) calculated for an impurity
concentration eq/V=6X10" cm ' by a factor of 10.
As K(a) is proportional to the square of the constant X

which characterizes the overlap potential, this is equiva-
lent to attributing to ), a value (+10) times that corre-
sponding to the perfect-host crystal.

(d) The same calculation as in (c) has been carried

Vfc have presented in this paper R theory of the side-
bands to the fundamental locaHzcd-mode peak in the
infrared lattice absorption spectra of alkali-halide
crystals containing isolated U centers. The results of
the application of the theory to the case of a potassium-
iodide crystal show clearly the nature of the sidebands
as arising from two-phonon processes, the net result of
which is the creation of one locaHzed-mode phonon and
the creation or destruction of a continuum-mode
phonon. It has been shown in the present calculation
that both the coupling mechanisms due to the anhar-
monicity of the crystal potential energy and the
second-order electric dipole moment can contribute to
these two-phonon absorption processes. As shown in
Table I) thc rclRtlvc 1mpol tancc o'f thc two mechanisms
at a given frequency depends appreciably on the forcc-
constant changes. Keeping in mind that the Rnharmonic
force constants and the second. -order dipole codFicients
have been only roughly estimated one can nevertheless
infer from the numerical results that in KI the an-
harmonic coupling would be more CQicient than the
coupling due to the second-order electric dipole moment.

The numerical results of the application of this theory
to" the„'. case of a KI crystal present some discrepancies
with~the experimental data, particularly in the side-
band region contributed by the optical phonons of the
perfect-host crystal (Fig. 4). These discrepancies are
likely due to the use of inaccurate phonon data and the
CGcctlvc-mass-defect RpproxBQatlon for thc U center.
As a matter of fact, according to a recent neutron
scattering experiment by DOBing et el., the deformation-
dipole model for a KI crystal" "which has been used
in the present calculation yields values for the position
of the gap between acoustical and optical vlbratlons
that are about 10jo lower than those given by the best
model (whose data were not available to the author
at the time the present calculation was carried out).
This is reQccted in the calculated sideband and is
clearly visible on Fig. 4. According to the frequency
spectrum of KI computed by Dolling et a1.," the gap
Hes between the frequencies 2.09X10" cps and 2.87
&10"cps. The experimental sideband peak at x= 0.686
(=2.78)&10"' cps) in Fig. 4 would therefore lie inside
thc gap and would Rrlsc from R gRp mode. However)

Fro. 4. The calculated spectrum of Fig. 3(a) is compared to the
experimental one (smooth line) observed by Timusk (see Ref. 5)
at 4.3 K for a concentration of 6XIO'~ H U centers per unit
volume in KI.

"~.C P~«and G R. ~i»»on, &. S. A my r~h ical
Report, &960 (unpublished)."G»ll g &- A. Cowley, C- Schittenhelm, and I. M.
Thorson, Phys. Rev. 147, 577 (1966).



I N F I' A P» E D 8 I D E 8 A N D S 0 I U- C E N T E P»

while gap modes have been observed" "in KI crystals
containing Cl, Tl+, or NQ~ impurities, none has as yet
been directly observed in the one-phonon absorption by
KI crystals containing U centers. On the other hand,
as hRs bccn polntcd out by Bllz 8f Qj|.7 ln R 1'cccnt pRpcI'
in which a pertinent critical discussion is made of the
theories of the sidebands, the use of the c6ective-mass-
defect approximation in the present calculation would
lead to a force-constant change at the impurity site
larger than it should be, because of the neglect of the
polarizability of the H (or D ) ion. They suggested
that from such a strong force-constant change, one
would expect the appearance of a gap mod-- —which has
not as yet been observed —probably with the use of a
better lattice dynamical model. In the opposite case,
should a gap mode really occur near the low-frequency
edge of the optical band as suggested by the comparison
of Timusk's measured sideband spectrum (Fig. 4) and
Boiling's computed frequency spectrum of KI, an over-
estimation of the force-constant change at the H site
would have the c6ect of shifting that gap mode toward
higher frequencies into the optical band. %hether or not
a gap mode does occur in a KI crystal containing H ions
is therefore still an open question.

As far as the present calcul. ation is concerned, it is
also likely that better results would have been obtained.
if the overlap potential around the impurity could be
better evaluated. On the other hand, one can, of course,
consider the anharmonic force constants as well as the
second-order dipole-moment cocflicicnts as parameters
to be determined by the best 6tting of the calculated
spectra to the experimental ones. However, unless the
contribution to the sidcbands from the second-order
dipole moment is a priori neglected in comparison to
that from the anharmonicity there will be at least three
parameters which make the optimization procedure
awkward and physically rather uninstructive.

Let us also notice that the formal Eqs. (17) and (36a)
are general, and in particular still valid if the polari-
zability and/or the coupling of the impurity with atoms
located farther than its nearest neighbors are taken into
account.
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APPENDIX A

The general element of the perturbation matrix N
which describes a point-ion model for a negative
impurity located at the lattice site (ls) = (0—) has the
cxpI'cs sion

bl p(ls, 1'a', te') =ere'M b(sbpsb„b„b p

+64 p(tlr, t'~'), (A1)

where e= 1—(M '/M ) is the mass defect and
{54 p(lit, lY)}are the force-constant changes. The latter,
like the force constants {4 p(tlr, lY)},must satisfy the
I'clatlon

Q 64 p(ls, lY)=0,
$f pre

(A2)

'4 See, for example, Ref. 8, p. 338.

which results from the requirement that the energy of
the crystal be invariant under a rigid-body displace-
ment, and which, in the present case, can be written
explicitly as

64 .(0—,0—)+264,„(0—,1+)
+4&4„(0—,1+)=0, (A3)

where (1+) denotes the lattice-site nearest neighbor to
the impurity on the positive x axis.

If all the force-constant changes {BC p(k&, lY)} are
assumed to be zero, the right-hand side of Eq. (A1)
reduces to its 6rst term,

M p(Ac, lY;te')=au'M bisbpsb„b„. b p, (A4)

and the corresponding matrix 8t then describes a simple
mass-defect model for the impurity.

Qnc hRS a bcttcl description of a U ccntcr in alkali-
halide crystals by considering that all the force-constant
changes {64 p(ls, lY)} are zero except those associated
with the impurity site only, namely {64 p(0—,0—)}.
%e know that, under R syInmctry opcratioIl which takes
the crystal into itself, leaving the impurity site axed 7

the force constants and therefore the force-constant
changes transform as the componeIlts of second-rank
tcnsors. In an alkali-halide crystal, the impurity is at a
site of Oq symmetry. It can therefore be easily shown
that the tensor 64 p(0—,0—) is diagonal and isotropic
1+CO 7

~4'-p« o )=b-p&4—,
—

(As)
where 64 is a scalar. The expression Eq
matrix M therefore reduces to

N„p(i', lY; (0') = (ae'M +64)brsbp sb„b„b,p
=e'co'M bj,sbpsb„b„. b p, (Ag)
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~here ~e have defIned a frequency-dependent "eGec-
tive-mass defe«ct by

e'= e+(AC/o)'M ). (A7)

In a localized. mode of frequency ~0, ~ has the expression

synlmetry of the crystal at the impurity site (0—), we
obtain

+ M«G«p(f((«0 —
~ (oo')G«~(&&, 0—;o)o') = oping/M, (34)

vrheree'= e+(I)4&/(oo'M ). (Ag) ~(- lkj)~*(- lkj)

Lo)o'—(o '(k) $'
(BS)

3.V».

'ng account of Eq. (34), we derive from Fq. (33)
that

Z LC "(0-)]'=L M (mo&g-1)j- . (36)

3- - th «"(0-)}(.=1, 2, 3) -.th. .. .i;..d
eigenvectors of a 3&3 real, symmetric matrix, it follows
from Eq. (86) that they must also satisfy the closure
relation

P C.( &(0—)C, ( &(0—)=g.pS,

%'ith .

(38)8= LeM (e(oo'g —1)PI.
PPPE+DIX 8

Ke nwv turn to the calculation of the sum

Equation (A6) has the same form as Eq. (A4).
@he "effective-mass-defect" model for the impurity

just described obviously violates the invariance con-
dition Eq. (A3). Its use can be justi6ed crudely on the
basis that in the expression Eq. (A1) of the perturbation
matrix bl, the term in ~' vrhich is nonzero for the im-

purity site only is, for the localized. modes ((o=(oo),
generally much larger than any force-constant change
AC p(l((, lV). Therefore, although the force-constant
changes AC (0—,1+) and &C'»(0—,1+) are not
really very small in comparison to the force-constant
cllaIlgc EC'««(0 —

) 0—) at thc llllplll'lty site, tlley Rlc

indeed small compared to the term in op'.

&= Z e.e. C."(le)C„( )(EY).

C.=Z e,C,"(l(().
Q M(„l C («)(la)$'=1,

C ( )(()—)Cp(«)(0 —) has been calcu-

culated for a gravais crystal in Ref. 35. %e are con-

cerned here vrith a crystal of the rock-salt structure o laE'a'

The vibrational eigenvectors (C(') (le) } of

localized modes labeled by 0' and %hose frequency ls ~0

satisfy the following orthonormality relation: (310)

where (te) runs over all the lattice sites of the crystal.
The amplitude C('(1(() associated with any atom

other than the impurity is related to the amplitude', of

the impurity atom itself (assumed to be located at the

origin of the coordinate axes) by the relation"

C ()(k)=eM (ooo+ G p(la, 0—;(oo')Cp(&(0—), (32)
P

~here the Green's function G p(le, lY; ro') is de6ned by
Eq. (24).

Substituting the expression Eq. (82) for C («)(l(() in

Eq. (81), we have that

1=—~ p l C."(0—)1'+"~o'M-'

According t() Eqs. (32) Rnd (24) Fq (310)
written as

eM (oo e„p'„(elkj)gr (ZZ(~ / )„jgj'~ ~ &l2 (oo'—(ohio(k)

)(eo«ik~ x((«)C («)(0 )

Tile slllIlnlRtlon over 1 and k Rrc stra'
obtain

" w, (.lojW.(—l0j)
C„(«)(() )M I(o;,M„I(o „,I „.I(0)

%riting explicitly the sum over I(. and taking account of
Eq. Pb), we have that

gP P M,G«p(k, 0—
) o)o~)

la exPy

XG.,(l, 0—; ')Cp('(o —)C."(o—) (83)

Green's function according to

Fq (24) then subsequently maklllg llsc of 'the ortllo-

ormality ot the eigenvectors (&(((lkj)}and th.e cubic

A. Maradudin, in I'hotsytn uwd I'bolos Interactions,
edited by Thor A. Bak (W. A. Benjamin, Inc. , New York, 1()64),

p. 424.

eM (oo'e* 8' (—l0j)P C («)(0 )
(ooo—(o (0)

-8",(+ lQj) 5;(- l0j)-
(811)

If j refers to an acoustic branch, the explesslon ln
brackets in, Eq. (811)vanishes. "Therefore the acoustic

00This foHows from Eqs. I'2. j.,32) and (2.j..35b) of Ref. 22,
respectively.
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modes do not contribute to the coeKcient C„.If j refers
to an optical branch, we have that"

-m, (+ Ioj) w.(-loj)-
~ 1/2 ~ 1/2

M'~s 1
+ I&.(—loj)

3II+ M 'is)

Therefore,

&++M
C,=Q s,C, c &(lcc)= —scossss

$r M+

Il -(- I0j)~.(-10j)
)c,'p C.c~&(0—), (812)

cess—ass(0)

where j runs over the optica1 branches only.
The sum Eq. (89) can now be written as

M++31
Z=l eco ' ~ Q P g C c'&(0—)Cpc'&(0 —)

M+ ~ ii' ~cc

For an ionic crystal of the rock-salt structure, it can
be shown" that the eigenvectors of the optical modes
satisfy the following orthogonality and closure relations:

~ lf'-*(- I0j)lf -(- loj') =~~;;, (»4.)

& If' (—I0j)II's*(—Ioj) =fc4s, (314b)

where p, =M~j(M++M ) and j, j' refer to any of the
optical branches. Using successively Eqs. (814a) and
(314b) to carry out the sums over cs and j' in Eq.
(313),we obtain

scosse* ' 5'„(—
I 0j)W„(—I 0j)&=p& Z . (315)

~

~

L~s' —~'(0)3'

Let us denote by coc(0) and coc(0) the frequencies of
the zero-wave-vector longitudinal and (doubly de-
generate) transverse optical modes and label the corre-
sponding branches by j= 1, 2, 3. The eigenvector of the
zero-vrave-vector longitudinal optical mode as de-
termined in Ref. 14 has the following expression:

&«(—I 0i)~ ( I
oj) lf—'s( l0j') ~—'.(—I

oj')
X

GOO
—(d~' Mo —(dp &(—I«)= —(c)"

I&I
(816)

If 'tile su111 ovcl' o' 1s done lls111g Eq. (87) aIld. flic sum
over P subsequently carried out, we obtain

m++u s m.(—loj)w, (—loj)Z=S scosse*

M+ ~r'~ cuss
—cps�(0)

~-(—I
oj')ll'. (—I

oj')
X--, (313)

No —(4P

where j and j' runs over the optical branches only.

Making use of Eqs. (814b) and (316),we can fjnally
write Eq. (315) as

Z =$(scosss*) s

cocs(0)fs

k„k,q
I

. (31~)
f cess—cocs(0)gs ps i

"This follows from Eels. (2.1.27a) arrd (2.1.35b) of Ref. 22.


