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Calculations for the electron-impact excitation cross sections of molecular hydrogen from its ground
(X1Z,%) to its first (6°Z,%) and second (a°2,%) triplet states were performed using the Ochkur (O) and
Ochkur-Rudge (OR) approximations. All nuclear motions were taken into account. It was found that the

first triplet cross section is sensitive to the choice of the

ground-state wave function whereas the second one

is not. The former is also sensitive to the excited-state wave function used. The results using the O approxi-
mation are significantly larger than those of the OR approximation, and the maximum cross section occurs
at a somewhat lower energy. Use of the separated-atom approximation produced results significantly lower
than those arising from inclusion of all the multicenter terms in the scattering amplitude. The sum of the
first and second OR triplet cross sections agrees well with a recent approximate experimental determination
of the cross section for the electron-impact dissociation of H, into 2H. More accurate experiments are now

needed to further test the OR approximation.

1. INTRODUCTION

HE calculation of meaningful cross sections for

the electronic excitation of atoms and molecules

by electron impact has been largely limited to electron-
atom processes because of the mathematical complexi-
ties associated with the noncentral nature of the molec-
ular field. The first detailed calculation of the electronic
exchange excitation of a molecular system was done by
Massey and Mohr,! who considered the first triplet
excitation process (X'2,+— 5°Z,*) in molecular hydro-
gen. By applying the Born-Oppenheimer (BO) ap-
proximation? to describe the scattering process and
estimating the contribution from the multicenter
terms which appear in the scattering amplitude, they
obtained a total cross section which violated conserva-
tion of particle flux. Their predicted maximum cross
section exceeds recent experimental data? for the process
by a factor of about 7. Recently, a modification of the
basic BO approximation was introduced by Ochkur*
(0), who considered the exchange excitation of helium.
The results of his calculation show good agreement with
the available experimental data. Shortly after, Rudge®®
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modified the O treatment to make it consistent with
the variational principles of scattering theory, and
applied his method to describe the exchange excitation
of atomic hydrogen. The modifications by Ochkur
(O) and Rudge (OR) have removed a major failing of
the BO approximation. In the O and OR modifications
the prior core terms (those due to the interaction of the
incident electron with the nuclei) will not contribute
to the exchange-scattering amplitude, as is also the case
in an exact theory.” In the BO approximation the con-
tribution of the core terms does not vanish. It is com-
monly believed that this contribution is large in the H,
case and in part responsible for the anomalously large
values of the calculated triplet excitation cross sections.
In addition, the scattering amplitude for the excitation
process in the OR modification contains in general non-
vanishing real and imaginary parts, which is not the
case for the O theory. This complex nature of the
scattering amplitude is a necessary condition for con-
servation of particles to be satisfied.®8 In the present
paper, the OR approximation is used for the calculation
of the total cross sections for the exchange excit-
ation of the first (#2,7) and second (a3Z,1)
triplets from the ground state (X'Z;*) of molecular
hydrogen. Polarization and higher-order effects are
neglected. The effects of the nuclear motions are in-
cluded and shown to be significant. The results show
good agreement with available experimental data.® The
calculations are done using exponent-optimized mini-
mum basis set two-center wave functions for the
molecule and include all the multicenter terms that
appear in the scattering amplitude. In addition, three
different ground-state wave functions and two dif-
ferent b3, wave functions are tried in the calculations

7 (a) T. B. Day, L. S. Rodberg, G. A. Snow, and J. Sucher,
Phys. Rev. 123, 1051 (1961); (b) I. J. Kang and J. Sucher, Phys.
Letters 20, 22 (1966); (c) T.-Y. Wu and T. Ohmura, Quantum
Theory of Scattering (Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1962), p. 334.

8Y. N. Demkov, Variational Principles in the Theory of
Collisions (Pergamon Press, London, 1963), pp. 97-102.
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in order to determine the effect on the total cross sec-
tions of using different approximate wave functions.
Calculations were also done using the simple Ochkur
(O) theory and compared with the OR results.

After the present work was well under way, Khare
and Moiseiwitsch® (KM) published a calculation of
the total cross section for the exchange excitation to
the first triplet state of molecular hydrogen using the
O and first-order exchange (E1) method coupled with
the separated-atom (SA) approximation. In addition,
Khare (K) has completed a calculation® for the same
excitation processes using one-center molecular wave
functions and the O approximation. We have compared
our complete calculations with the results of the KM
and K calculations and with O and OR calculations
using the SA approximation. The latter comparison
indicates the inaccuracies introduced by the SA
approximation.

2. GENERAL THEORY

A. Exchange-Scattering Amplitude in the
Born-Oppenheimer Approximation

Let n, », J, and M be the electronic, vibrational, and
rotational quantum numbers for the initial state of the
hydrogen molecule and #’, v/, J', and M’ the corre-
sponding final-state ones. The molecular wave function
can be written ast

é((lyc2 3 R;x’¢> = ‘I,(rlar2 5 Rﬂx7¢)5(sl782) ’
‘I’(rl;rZ; R;X7¢) = \bn (rlyr2 ; R) Ean(R) YJM(X>¢) .

Here ¥ and S are the total space and electronic spin
wave functions; ¢, £, and ¥V are the electronic-space,
vibrational, and rotational (spherical-harmonic) wave
functions; &= (r1,81) and {o= (rs,82) are the space and
spin coordinate pairs for the bound electrons in a
molecule-fixed coordinate system; R is the internuclear
distance; and X, ¢ are the spherical polar angles of the
molecular axis with respect to a space-fixed system of
reference. In the BO approximation,? the differential
cross section (per unit solid angle) for scattering of an
electron into a given direction after the exchange excita-
tion of the molecule from the initial state <(nvJM) to
the final state f(»n'v'J’M’) can be written in the prior
interaction form as!?

1)

i ) 3 k'
Ii k 76; p)=———
’ (2#)2002 kg

1 1 1 1
(=4 =—=—=—)
731 732 734 73B

X ek 13 (11 te; R X,p)dRdr1drodrs

/B_ik' ‘rl\I/f* (1’3,1'2 5 R,X,¢)

2

, (@

9 S. P. Khare and B. L. Moiseiwitsch, Proc. Phys. Soc. (London)
88, 685 (1966).
105, P. Khare, Phys. Rev. 157, 107 (1967). The authors wish
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where ao=7%2/me* is the Bohr radius; r; and (ry,rs)
denote the positions of the incident and bound elec-
trons in a molecular-fixed coordinate system; 7s;, 730
734, and 73p are the distances of the incident electron
to the molecular electrons (1,2) and nuclei (A,B);
dR and dr; are the internuclear and jth electron volume
elements; ko and k’ are the wave vectors for the incident
and scattered electrons; 6 and ¢ are the spherical polar
angles which define the direction of the scattered elec-
tron in a laboratory-fixed system whose z axis is in the
direction of ko; and the subscripts 7 and f denote the
initial- and final-state wave functions. The contribution
of the core terms —1/734—1/735 to the cross section
vanishes in an exact theory,'? but this is not the case in
the usual BO approximation.’® The factor of 3 in the
right-hand side of Eq. (2) results from the spin de-
generacy of the final triplet state.

It should be noted that £’ is determined by %, and the
excitation energy according to

¥ (koyi, f) = [ké— (2m/ 1) (E,— E) T2, (3)

where E;, and E; are the final and initial energies of
the molecule and # is the mass of the electron. Because
of the energy degeneracy of the rotational levels with
respect to M and M’, k' (for a given electronic transi-
tion) is a function of k¢, #, », J, #/, ¥/, and J’ only.
Substitution of Eq. (1) into Eq. (2) gives

k/
Iif(koﬂ,(p)=3-k— /En'V'J'*(R)YJ'M’*(X>¢)
0

2

X T1ins (R)Y M (X, ) R2ARAQ| ,  (4)

where dQ is the element of solid angle corresponding to
X, ¢. Ty; is the prior electronic scattering amplitude
defined by

Tfi(k070:<p; R;X7¢)EZ /e—ik'-r1¢n,*(r3’r2; R) :

Ao

1 1 1 1
(el Ly
731 732 ¥34 73B
Xeiko"Wn(fl,rZ; R)drldl'zdl's. (5)

Once the initial and final wave functions are known,
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Vol. 37, p. 333; (b) H. S. W. Massey, in Handbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. 36,
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Ref. 1). Unfortunately, no corresponding calculation excluding
core terms has been reported, and therefore a direct comparison
between the two approaches is not yet available.
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Egs. (4) and (5) furnish the differential cross section
5

B. Ochkur and Rudge Modifications

The scattering amplitude of Eq. (5) furnishes the
electronic excitation cross section of the hydrogen
molecule for a fixed position of the two nuclei. This
BO Ty; is known to fail at low incident energy.4
Ochkur? has pointed out that the BO approximation to
the exchange-scattering amplitude is in error and that
to maintain consistency with first-order perturbation
theory, this amplitude should be expanded in powers
of k¢ and only the leading term retained. By perform-
ing an integration by parts on each term of the inter-
action potential (including core terms) and keeping only
the lowest-order terms in k¢!, Ochkur showed that
Tfi should be

Tf"(ko:o) b5 R:X)¢) =

2
/eiq'”'//n'*(rlyfz;R)
aoko?
X¢n(r1,rs; R)dridrs, (6)

g=ko—K ™

where

is the wave-number vector transferred from the incident
to the scattered electron. As part of his derivation he
verified that the contribution of the core terms was of
order kg% and therefore they were dropped. Conse-
quently, Eq. (6) is obtained whether or not core terms
are included in the BO scattering amplitude, from which
the derivation starts.

Rudge®® has proposed an improved version of the
Ochkur modification of the BO approximation by con-
sidering the variational expression'®

Tyi=

/f(rl)sb"' (r3)t2) R)
mt’&bn(rl,rz 5 R)eiko~radndr2dr3 s (8)

21['(10”2

where ¢ in the electronic charge and Vip is the inter-
action potential between the incident electron and the
atom or molecule. f(r;), the wave function for the
scattered electron, was determined by a variational
method! under the constraint that for very large inci-
dent energy, the form of 7'; reduce to the O result
except for allowing a different energy-dependent factor
outside of the integral in Eq. (6). Rudge obtained an
expression for the wave function of the scattered elec-
tron which behaves asymptotically as

87r 0 ik’ r1
f(e) ~ e . S, (9)
v’ Lagk'— (I Q) "

where I, is the ionization potential of state n, ® is
Rydberg’s constant, and %’ and #; are unit vectors in
the k' and r; d1rect10ns, respectively. The scattering

4. R. Bates, A. Fundaminsky, J. W. Leech, and H. S. W.
Massey, Phil. Trans. Roy. Soc. London A243, 93 (1950).
15 Reference 7c, Chap. 1.
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amplitude which results from the Rudge modification is

2(10

(Ln/®R) 2 F

~[dok’—
X / e ¥ (1,25 R)Wa (t1,10; R)dridrs. (10)

Both the O and OR modifications have removed a major
failing of the BO approximation in that there is no
contribution from the core terms. In addition, the final
state for the scattered electron contains, in the Rudge
modification, a scattered spherical wave as well as the
usual plane one, and leads to a complex scattering
amplitude with nonvanishing real and imaginary parts,
a property which is necessary if particle flux is to be
conserved.?

C. Rotationally Averaged Cross Section

Under most experimental conditions, the target
molecules are not all in the same quantum state. For
the case of molecular hydrogen at temperature T
(around room temperature) essentially all of the
molecules are in the ground electronic and vibrational
states, but many rotational states are represented, their
relative populations being determined by the Boltzmann
distribution for this temperature. Furthermore, as a
result of electron impact on a molecule in a given initial
rotational state, several rotational states of the elec-
tronically excited molecule can be produced. In the
present paper, we are interested in the sum of the cross
sections for excitation to all accessible rotational states.
In the derivation which follows, the two nuclei will,
for simplicity, be considered distinguishable, as in HD.
In the actual case for Hs, we should treatitasa 3 to 1
mixture of ortho- and parahydrogen, with only odd-odd
rotational transitions allowed for the ortho hydrogen
and only even-even ones for the parahydrogen. Since
the rotational characteristic temperature 6, of H, is
85.4°K, T is appreciably larger than 6, at room tem-
perature and above. Under these conditions we may,
as is done in the calculation of the thermodynamic
properties of He, assume that the appropriate statistical-
mechanical sums over even values of J equal the corre-
sponding ones over odd J. This leads to the same expres-
sion for the rotationally averaged cross section as for
a heteronuclear diatomic molecule. Let us define the
rotationally averaged cross section

L (kof, 03 T)= L nysua™” (koy0))r,  (11)
where
Jmax’
"’WJM (kO, )‘P)_ Z Z I; f(k(); )‘P) (12)
J=0 M'=—J’

The averaging indicated by the angular brackets of
Eq. (11) refers to a statistical-mechanical average over
initial rotational states J and M, the weighting factors
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being the Boltzmann populations of those states at
temperature 7. The double sum over J’ and M’ in
Eq. (12) extends over the accessible final rotational
states for given initial and final electronic and vibra-
tional quantum numbers #, », ', and »" and a given
initial wave number ko. Jmax' is the maximum J’ for
which £, as given by Eq. (3), remains real. Therefore,
it depends on ko, n, v, J, #’, and v’

Next, let us show how I,,”*" can be determined. If
G;(u) is any complete orthonormal set of functions of
a variable # (which may be multidimensional) and
F(u) is any well-behaved function of #, the following
expression is valid:

2

=

7

/ G;* (w)F (u)G;(u)du| = / | F()G;(w) |*du.  (13)

This property is easily proven by expanding FG; in the
right side of Eq. (13) in terms of the G;. Applying
Eq. (13) to the particular case in which G;is Y ;¥ (X,¢)
furnishes

® g 2
22

JI=0 M/=—J"

/ VM *(X,@)F (X,0) Y M (X,8)dQ

- [Irsaprirapre.

Substitution of Eq. (4) into Eq. (12), replacement of
T;: by the quantity 7',,”* defined below, and use of
Eq. (14) with F=/"£,/,*T 0" £,,R2dR furnishes

Livsae™” (ko 8, ¢)

3k
= / En’v’*(R) Tnvn’”'(kl))o)ﬁo; R7X}¢)
k() Q R 9

X&w(R)RAR| |V M(X,6)[%dQ.  (15)

Here, &' (kon,v,Jm',v') represents some mean value of
k' (kom,v, J ' v, J') over the accessible J'. The scatter-
ing amplitude 7; depends on J’ through %’. Because of
their small mass, electrons are not effective in producing
rotational excitation. Therefore, the change in the
wave number of the incident electron due to rotational
excitation is negligible compared to that due to elec-
tronic and vibrational excitation. As a result, £’ should
deviate very little from

' =[kd— (2m/ 1) (Enry— Eny) ]2,

where the energies E,, and E,,» do not include rota-
tional contributions. Since Ty; is not a very rapidly
varying function of %, we can substitute T;(k") by
T.,""=T(k") to a very good approximation. This
quantity is not a function of J or J’ and depends on
v and »’ only through £”. To get Eq. (15), the sum over
J' in Eq. (12) was assumed to extend to infinity. The
justification for this assumption is that for the reasons

(16)
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just stated, I,7 is expected to be negligible for J' very
different from J. Therefore, the additional terms intro-
duced in going from Jmax' to  should be negligible.
On the same basis, since only relatively small values of
J and J’ are being considered, the radial wave functions
£y (R) and £,,7(R) were assumed to be independent
of J' and J, respectively.

Substituting Eq. (15) into Eq. (11) and using the sum
rule for spherical harmonics gives the result

3 )r
Lo (ko0 T) = f / [REwy (R)T*
ko Jol/r
2d
X T (ko8,05 RX,$)[REn»(r) JAR P (17
where
o s IA ) B KT (ko v, T 1 v")
(k')r= . (18)

¥ 2T+ 1)e BT

To a first very good approximation, (£')r can be re-
placed by the quantity 2" defined by Eq. (16), for the
same reasons used to justify the replacement of &
by &’’. This substitution is even more reasonable if the
incident electron beam is not monoenergetic enough to
resolve rotational transitions, which is the usual case in
the experiments performed to date. The resulting
expression for the differential, rotationally averaged,
excitation cross section is

Im'"’y’ (k();o) <P)

3k”]
kO Q

As a result of the replacement of (k')r by %", the tem-
perature T has been dropped as a variable in I,,"'”’. As
pointed out above, this same Eq. (19) is obtained for
H. when T>>0,. For temperatures around 6, or less,
this expression would be wrong. It is, however, relatively
simple to modify it appropriately by treating the ortho
and para components in a manner analogous to that
indicated above, but without recourse, in this case, to
the simplifications introduced by Eq. (14).

In Eq. (19), v/, the quantum number for the vibra-
tional level of the excited state, is implicitly assumed to
be discrete. However, if some of the symbols are re-
defined, this equation still holds when »' is continuous,
i.e., when E,., —E. is larger than the dissociation
energy of electronic state #’ or when that state is a
repulsive one. In such cases, I, is to be interpreted
as a cross section per unit range of ¥/, such that I,,,»*'dv’
represents the differential, rotationally averaged, excita-
tion cross section from state %, » into any state in the
range #’, v to #’, v'4+dv', In addition, the radial wave

/ [Rgn'v' (R)]*Tm.n’t" (k070,¢; R,X,¢)
R
2

X[Réw(R)JAR 4—9-

1

(19)
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function R£,/,(R), which now represents a state in the
continuum, is assumed to be normalized according to!®

1 0
lim l:— f
0 Ly /o

It should be noted that Eq. (19) states that the
differential scattering cross section I, for excitation
from state (n») to state (#'»’) can be obtained by assum-
ing the molecular axis fixed at some orientation (X,¢),
averaging the electronic transition amplitude 7',
over the vibrational wave functions &,, and &,.,,, and
then performing an angular average on the square of
this quantity over all possible orientations.

It is customary to introduce an additional approxi-
mation!” into Eq. (19) by assuming that T, (R)
is a very slowly varying function of R and replacing it
by its value at the equilibrium internuclear distance
R, of the (nv) initial state. As will be seen in Sec.
5 B2, this approximation is not always justified. How-
ever, it significantly simplifies Eq. (19) to

L0y (ko0 0) = (3K / ko) gns™"'
X T (R™) %),

v+
/ R (R)IY

’

2dR]= 1. (20)

3y

where

aQ
(Twm (R)%)= / lTm”'”'(ko,ﬁ,so;R,x,aS)lzZ (22)
7

is the average of |7,,”” |? over all orientations of the
internuclear axis and

2

(23)

Iyt
gml" V=

/ [Rw (R)T[Rew (R) IR

is the Franck-Condon factor for the (nv)— (n'')
electronic-vibrational transition. The quantity {| 7,
X (Re)]?) is a function of the transition (nv)—
(n'v"), the incident electron wave number ko, and the
scattering direction only.

The total cross section for the (ny) — (#'v") transition
can be obtained by integrating Eq. (19) [or its approxi-
mate equivalent Eq. (21)] over all scattering angles:

U'n;.’””” (k()) =/ Irwn,yl (kq,e, §0) Sin0d0d¢ ) (24)
0,0

The total electronic excitation cross section from the
initial (nv) state to all accessible vibrational states of
the excited electronic state (#’) is given by

o0 (ko)=S, 0" (ko) , (25)

where S, is used to represent a sum over the discrete
values of »' plus an integral over its continuum value

8 E. C. Kemble, The Fundamental Principles of Quantum
Mechq]nics (Dover Publications, Inc., New York, 1958), pp.
162-170.

17 E. N. Lassettere and M. E. Krasnow, J. Chem. Phys. 40,
1248 (1964).
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which are energywise accessible in the sense that
k"?20.

3. MOLECULAR WAVE FUNCTIONS

We will consider the excitation of Hj from its ground
electronic vibrational state (X'Z,*;»=0) to its first
and second triplet states (b*Z,* and a*Z,*, respectively).
For the ground state, three different approximate wave
functions'® were used : the two-parameter wave function
of Weinbaum??;

Yo(r,rs)=No[ (1547(1)1s52(2)+154%(2)1s8°(1))

+CUsar()1sa7(2)+1s5*(1)155(2)) ], (26)
the valence bond wave function of Wang?:
Yo (1‘1,1'2) = No[lSAz (1) 1sp*? (2)+ 1s4% (2) 1332(1)] , (27)

and the simple molecular-orbital wave function of
Coulson? :

Yo(ry,r2)=No[ (1s42(1)+1557(1))
X (Ls42(2)+1s87(2))].  (28)

For the first triplet state (6°Z,t) the two-parameter
wave function of Phillipson-Mulliken”? was used:

1
rl/s(rl,rz)=%{ eoe(Den(2)— a2 eu(1)},  (29)

where

0s=N,y(1s271+155") (30)

(1)

and the less accurate Hurley® two-parameter wave
function

Ya(rire) = N[ 1sa(D)1s57(2)
—Lsa()1sp(1)].

and
pu=Nu(ls42—1587);

(32)

In the latter, the centers A’, B’ are permitted to be dis-
placed from the nuclei 4, B, the displacement being
the second variational parameter which, however, turns
out to be practically zero for this state. Finally, for
the second triplet state (a*Z,*) we calculated a two-
parameter Hartree-Fock function using computer pro-
grams furnished to us by W. A. Goddard of the Cali-
fornia Institute of Technology. The form of this function
was

1
%(rl,fz) =—{ <Pla(1)¢2g (2)_ €01a(2) <P2y(1)} ) (33)
V2

18 The optimized values of the screening constants for the ex-
perimental equilibrium distance of the ground states were made
available to us by Dr. G. O. Hultgren, now at Battelle Institute,
Columbus, Ohio.

19 C, Weinbaum, J. Chem. Phys. 1, 593 (1933).

20 S, C. Wang, Phys. Rev. 31, 579 (1929).

21 C. A. Coulson, Trans. Faraday Soc. 33, 1479 (1937).

2P, E. Phillipson and R. S. Mulliken, J. Chem. Phys. 28,
1248 (1958).

2 A, C. Hurley, Proc. Roy. Soc. (London) A226, 187 (1954),
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TaBLE 1. Parameters of molecular wave functions.

Wave function Parameters Energy (rydbergs)
Ground state* (X'z,1) R (ao) N2 (ao®) b4 C
1.20 0.0802 1.2493 0.2606
Weinbaum? 1.40 0.0668 1.2005 0.2647 —2.2956
1.60 0.0571 1.1592 0.2589
1.20 0.1099 1.2226 0
Wang® 1.40 0.0881 1.1695 0 —2.2780
1.60 0.0731 1.1257 0
1.20 0.0310 1.2412 1.0
Coulsond 1.40 0.0255 1.1895 1.0 —2.2564
1.60 0.0214 1.1449 1.0
Accuratee R.=1.40a, —2.3490
First triplet (b%2,%) R (ao) N 2N .2 (aq%) 2 22
Phillipson-Mulliken? 1.20 0.0908 1.3868 0.5055
1.40 0.0720 1.3250 0.5754 —1.5638
1.60 0.0588 1.2715 0.6412
1.20 0.1466 1.0
Hurleyz 1.40 0.1170 1.0 —1.0574
1.60 0.0977 1.0
Accuratet —1.5910
Second triplet (a3Z,%) R(ao) N12Ns2(ac™®) 21 2
1.20 0.00020 1.4463 0.4733
Hartree-Fock 1.40 0.00027 1.3497 0.5120 —1.3830
) 1.60 0.00033 1.2399 0.5477
Accuratet R,=1.864a, —1.4258

a Reference 18.
b Reference 19.
¢ Reference 20.
d Reference 21.
e W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).

where
<p1g=N1g(13Azl+183“) , (34)

and
29=Nsy(2s 472+ 25p7)— N1,/ (15474 1s571).  (35)

In Egs. (26) through (34), the symbol 1sx?(j)=¢*rix/%
stands for a 1s atomic orbital for electron j(=1,2)
centered on nucleus X (=4,B) with screening param-
eter z; and 2sx*(j)= (r;x/a¢)e?"ix/% is a similar 2s
Slater atomic orbital.

To perform cross-section calculations, it is necessary
to know the molecular electronic wave functions of the
ground and excited states as well as the vertical excita-
tion energies from the ground to the appropriate excited
state as parametric functions of the internuclear dis-
tance R. In all cases considered in this paper, these
parametric functions varied quite slowly over the perti-
nent range of R determined by the classical turning
points of the ground electronic vibrational state
(1.20a0< R<1.67ay), and it was possible to use, with
a high degree of accuracy (error<39%,), polynomial
representations of this R variation obtained from least-
squares fitting to values calculated for a few R values.
The R variation of the screening parameters for the
first triplet states were found in the literature?%
while for the ground states the R dependence was ob-
tained from unpublished work.!®* The R variation of
the parameters for the second triplet state was de-
termined in our calculation of the wave function, The

t Reference 22.

& Reference 23.

h A, S. Coolidge and H. M. James, J. Chem. Phys. 6, 730 (1938).
i Reference 24d.

values used in determining the R variation of the excita-
tion energies were taken from theoretical calculations
of the potential energy as a function of the internuclear
distance for the ground and the two excited triplet
states.? Figure 1 illustrates the potential-energy curves
for these and some additional states. The classical
range of R variation and the Franck-Condon region are
indicated by the shading.

In Table I are summarized some of the important
parameters for the wave functions used. The last column
gives the variationally determined energy at R,=1.40a,.
Included in this table is a listing of the R variation of
the screening parameters and normalization constants
for the wave functions used.

4. EVALUATION OF MULTICENTER
INTEGRALS

The scattering amplitude T'; was calculated for fixed
g, R, and orientation (X,¢) in the following manner.
When the two-center molecular wave functions are
inserted into Egs. (6) or (10), two- and three-center
one-electron integrals appear. The two-center integrals

# (a) For the ionization energy: V. A. Johnson, Phys. Rev. 60,
373 (1941); (b) for the states X1Z,*, 6324, and ¢, W. Kolos and
L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965); (c) for the BZ,*
state: W. Kolos and L. Wolniewicz, Laboratory for Molecular
Structure and Spectra Technical Report, University of Chicago,
1965 (unpublished); (d) for the a®Z,* state: C. B. Wakefield and
E. R. Davidson, J. Chem. Phys. 43, 834 (1965); (e) for the ¢l
state: J. C. Browne, J. Chem. Phys. 40, 43. (1964).
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F1c. 1. Potential energy as a function of internuclear distance
for low-lying states of H. (see Ref. 24). Quantities R®W and E,
are defined in Sec. 5 B.1. The shaded area represents the Franck-
Condon region for excitation from the ground vibrational state.
The horizontal full line to the right of the *Z,* curve represents
a continuum vibrational energy level »’.

can be performed analytically while the three-center
ones require numerical evaluation. The general form
of these three-center one-electron integrals is

[=NpNt/eiq-rlrlAp—le—zrtht—-le—z’rwdrl, (36)

where p, t=1,2; N, and N, are the normalization con-
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stants for the corresponding atomic orbitals; r; is the
position vector of electron 1 with respect to the center
(0) of the molecule; 7,4 and 715 are the distances of
this electron from the nuclei (see Fig. 2); and z and 2’
are the screening parameters of the atmoic wave func-
tions considered. These integrals are evaluated by ex-
panding the plane wave as

© l
en=4r 3. it (gr) Y (@Y (7)),  (37)
=0 m=—1

where j; is the spherical Bessel function of order /,
Y™ is the spherical harmonic, and § and #; are the
unit vectors in the q and r; directions. The atomic
orbitals are expanded in Legendre polynomials about
the center of the molecule according to the {-function
expansion® which for the wave functions used in these
calculations takes the form

[ (2u+1)
u=0 (rIR/Z)”z
X Pou(cos01)¢p,u(2,71; R/2), (38)

where (r1,0;) are the coordinates of the electron mea-
sured from the diatomic center as indicated in Fig. 2 %;
7:; is the distance of the electron from nucleus j=4,B;
P, is the Legendre polynomial of order #; and ¢, is
the ¢ function.?® Although the integrals I of Eq. (36)
can be reduced to two-center integrals about the nuclei,
an expansion about their midpoint has the advantage
that it enables the averaging over all orientations of the
molecular axis to be performed easily and without any
great increase in the complexity of the numerical work.
When the expansions are inserted into this equation,
one obtains, after choosing the laboratory-fixed z
axis along q and performing the integration over ¢
(the angle of rotation of r; around 4 B),? the following :

71 XP—le—ZTlX =

1=1§0 QIH+1)itPy(cosx) 3 3 NNo(—1)% Qu+1) (u/+1) / 71(gr)epalar; R/2)ew (&1 R/2)

u=0 u’=0

Ty

Equation (39) serves to define the quantity Z, ..?** as
used in these calculations.

A

i [+ )
]

F16. 2. Diagram indicating distances and angles for the
evaluation of multicenter integrals.

2 ©
X (—I€>Pz (cosb1) Py (coshy) Py (cosbr)2mr2dry sinfid6i=Y" (214+1)i'Pi(cosx)Z:,»7*(; ¢.R). (39)
1=0

Our three-center scattering integral program for
Eq. (36) was developed using the methods just de-
scribed. It was generated by modification of a three-
center energy integral program kindly supplied by
R. M. Pitzer of the California Institute of Tech-
nology. In the actual computation the terms for each
! in Eq. (39) decreased rapidly in magnitude with in-

% M. P. Barnett, in Methods in Computational Physics, edited
by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press
Inc., New York, 1963), Vol. 2, pp. 95-120.

% The angles 61,1 bear no relationship to the polar angles
6, which define the direction of the wave-number vector k’ of
the scattered electron in a laboratory-fixed system of reference,
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creasing / so the series was truncated after /=2. The
error due to this truncation is less than 5%,. For fixed
¢, R, and X, each Z, ,-'* function can be evaluated with
5 or 6 decimal place accuracy in about 7 sec on an IBM
7094. This includes an integration over 6, using the
recursion relations of the P, functions and a numerical
integration over 7; by a Gauss-Legendre integration.?

5. METHOD OF CALCULATING
CROSS SECTIONS

Total cross sections for the exchange excitation of the
hydrogen molecule from the ground state (X'Z,%) to
the first (6°Z,%) and second (a®Z,*) triplet states have
been calculated. The OR and O approximations to the
scattering amplitude T;; [Eqs. (10) and (6), respec-
tively ] have been used, the necessary integrals, includ-
ing the three-center ones, having been evaluated as
indicated in the previous section. Even though the OR
approximation is superior to the O one, calculations
with the latter were also performed for comparison
with the OR results, since this O approximation appears
frequently in the literature. The difference in com-
putational efforts between these two approximations
is very small, since they differ only in the energy-
dependent factors which appear outside of the integral
in the expressions for the corresponding scattering
amplitudes.

In addition, the calculations were repeated using the
ER and O approximations with the separated-atom
(SA) approximation to the scattering amplitude. This
latter approximation, introduced by Xhare and
Moiseiwitsch,? consists in neglecting the two- and three-
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center integrals in the expression for T,,*"*" as if the
two atoms wese infinitely separated. Except for this,
the molecule is treated as if the nuclei were at a finite
distance R. Although this SA approximation greatly
simplifies the calculations by eliminating the need to
evaluate the difficult three-center integrals, there seems
to be little physical justification for it, as shown in
Sec. 6 B. However, since such an approximation has
appeared in the literature, the cross sections were calcu-
lated using it for comparison with the complete
calculations.

A. Electronic Scattering Amplitude

Using the wave functions described in Sec. 3, the
OR and O scattering amplitudes for the transition from
the ground vibrational-electronic state (X'Z,*) to the
first (6°2,%) and second (a*Z,*) states are given, re-
spectively, by

T, W= 221aoNoN N, (14+C)BF (ko,k')i

X[H; sin(3qR cosX)—6M; cosX], (40)
T, O=221aoNoN1,N oy (14C) eF (ko)
X [Hs cos(3¢R cosX)+2K,—10LyPa(cosX)]. (41)

In the expressions above the laboratory-fixed system of
coordinates was chosen so that its z axis is parallel to
q. With this choice the values of T, ® and T, ® are
independent of ¢, which is now the angle of rotation of
R around q. The new quantities in Eq. (40) are defined
by Eqgs. (42) through (46) and those in Eq. (41) by
Eqs. (47) through (52):

16(z+22) 16(2421)
Hi(q,R)= Wy , (42)
[tz (a00)’  [(z42)"+ (aog)™
Wi(R)=y(1—-C)/B(1+C), (43)
7(R)Ea&/lsf(ru)lsfﬂ(1'2,1)dr2—a&/1sA’(r2A)1sB"(r2B)dr2, (44)
ﬂ(R)E003/lsAz(rzA)lsA“(rgA)dl'2+do3/1542(1’2.4)15821(723)(1‘2, (45)
M1 R)= T 1,521’2 3 4 1 il l,zl’zl 3 4, )
(¢,R) 222)3/22 (1; ¢ R+W (zzl)mz (1;¢,R) (46)
1 1 2 2 2
Hy(gRy= ) Jobera- eyl @)
[ (z+20)*+ (a0g)* T L(z+22)*+ (a0g)*
We(R)=a/e, (48)
a(R)E003/18A'(72A)184Z1(724)dr2+003/ 154‘(1’24)153"("‘23)dl‘2, (49)

27 S. P. Khare and B. L. Moiseiwitsch, Proc. Phys. Soc. (London) 85, 821 (1965).
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e(R)an”f lsAz(rzA)ZsA”(rzA)dm—i—ao‘*/ 154%(724)255%*(r9p)dr12, (50)
T 2\1/2
KZ(q:-R)E Zl-zl'zl(o; ‘I;R)—W2< ) szzzl,z(o; q,R) ) (51)
22,)372 23255
T 37['2 1/2
Ly(g; R)=—-Z1,15(2; q,R>—W2<_> Zs.*(2;0,R). (52)
(22,)3"2 2355

The quantity F(ko,k%") is defined by

(OR): F=[aok'— (I/®) 7T,
©):  F=(acks)?, (53)

where Ip=15.279 eV ** and the value of C depends on
which ground-state function is used. It is 0 for the Wang
function, 1 for the Coulson function, and given in
Table I as a function of R for the Weinbaum function.
The quantities Hy, Hs, o, 8, v, €, Wi, and W, depend
on R because of the dependence of the molecular wave-
function parameters on this quantity, as indicated in
Table 1.

As seen in Sec. 2 C [Eq. (21)], it is also useful to
calculate the quantity (|7, @’ (R)|?%). This can be done
using the above equations and gives

(| Ty @ |2)=2n2a? N &N 2N 2 (14-C)28| F (ko) |2
X EH12®11'—‘ (12/1!')H1M1®12

+(36/7)M2015], (54)
(| T ®|%)=2x%aN N1, Nog? (1+C)2e | F (ko k') |2
X[HOn~+ (4/7)HoK 20 20— (20/7) HoLoO o3

+ (4/7%) K2O24+ (100/7%) L2095 ].  (55)

The quantities ;; result from the orientation averaging
process and are defined by

©11=(sin?(3¢R cosX))= () (1—sini¢R), (56)
©12=(sin(%¢R cosX) cosX)

= (2/¢qR)? sinfgR—%qR cosiqR), (57)
O13=(cos™)=3, (58)
O12={cos?*(%¢R cosXx))= () (1+sinigR), (59)
©22={(cos(3¢R cosX))= (2/¢R) siniqR, (60)
©23=(cos(3¢R cosX)Py(cosX))=3(2/qR)? cosiqR

+(2/qR)[1—3(2/qR)*] sinjqR, (61)
Oy=(Pe(cosX))=1, (62)
Oa5=(P2*(cosX))=3. (63)

The actual calculations were done using atomic units
throughout.
B. Excitation Cross Sections

To calculate the total cross sections for the electronic
excitation processes of interest we must evaluate the

quantities defined by Egs. (19), (24), and (25). It is
convenient to consider the two triplet-state excitations
separately.

1. X3 *— 32+ Excitation

The first triplet state (6°Z,*) is a nonbound one.
Let its continuum vibrational wave function be £,V (R)
and let £ @ (R) be the »=0 vibrational wave function
of the ground electronic state. According to Eq. (19) we
must evaluate the quantity

]v’ o (ko,a, @5 Xa¢)§

[ maom

2

XTy® (kof, 05 Rx,¢)[RE (R)JAR| . (64)

Similar type quantities for H, have been considered
in the past?® in connection with spectral intensities in
optical emissions from the a®Z,* to the 4°Z,* state. As
above, this was a discrete to continuum state transition.
The integrals in question involved either the product
of the radial wave functions alone 2% or this product
times the electric dipole transition moment.?® In either
case it was shown that these integrals could be eval-
uated with good accuracy by substituting the radial
function of the continuum state by a é function at the
classical turning point for the transition energy being
considered. We will use here the same approximation and
replace RE, @ (R) in Eq. (64) by A6(R—RW)2:

To0= | A2 T,9 (ko 03 ROXSROLEIRD) 2. (65)

In this expression, 4 is a proportionality constant to be
determined as indicated below. R® is the classical
turning point and, as depicted in Fig. 1, is a function of
the excitation energy Ei, determined by the relation

VO(RW)=Ey=E, ©—E,©, (66)
where Eo@ is the energy of the ground vibrational-

28 (a) A. S. Coolidge, H. M. James, and R. D. Present, J. Chem.
Phys. 4, 193 (1936); (b) H. M. James and A. S. Collidge, Phys.
Rev. 55, 184 (1939).

2 In Ref. 28, the replacement was A’EV4(R—R.), where E was
the energy of the continuum state above its value at infinite
internuclear separation. However, the continuum wave function
was normalized so as to have unit amplitude at large R. It is
simple to show from the information in Ref. 16 that if the normali-
zation of Eq. (20) is used, the EV* factor should be omitted.
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electronic state and E,® that of the »" level of the
first triplet state. V®=V®(R) is the equation for the
potential-energy curve for the first triplet state, mea-
sured with respect to the ground vibrational-electronic
state. Therefore, the function R®=RW (E,;) is simply
the inverse of the function VW =V®(R). Since Eq.
(66) relates »” and E;, either of them can be considered
as the variable which defines the continuum vibrational
level under consideration. We shall use them
interchangeably.

The proportionality constant 4 can be evaluated from
the condition that replacement of R, (R) by
A8(R—RW) should also furnish a very good approxi-
mation?® to the Franck-Condon factor

gy W=

/ ’ [RE, @ (R) JLR&0 (R) JdR 2- (67)

Expanding the normalized square integrable function
RE®(R) in terms of the complete orthonormal set of
wave functions R£,, @ (R) and using the orthonormality
properties of such continuum functions,'® it is easy to

prove that
/g,r(”dv'=1.

Introducing into Eq. (67) the §-function substitution
just mentioned, and requiring that the approximate
g+ which results still be normalized according to
Eq. (68) furnishes

(68)

|4 lz=[ / T Ro (El>zo°(R<1>(E1>)l2dE1T, (69)

Do

where D, is the dissociation energy of the X', state
measured from its lowest vibrational level.

Substitution of Egs. (65), (66), and (69) into Eq. (19)
furnishes for the rotationally averaged differential
cross section per unit energy range:

I, (ko,6,0)= (3" / ko) PV (Ey)

X{| T WLRW (Ey)]|2), (70)
where
PW(E)=|A[*| RV (E)&W[RW(E)]|*  (71)
satisfies the normalization relation
/ P® (El)dE1= 1 5 (72)
Dy

as can easily be seen from Eq. (69). In addition to
depending on the excitation energy E; (and hence »’)
through R®, the quantity (| T,y O[R® (£;)]|?) [defined
for arbitrary R by Eq. (22)] is also a function of %,
0, and ¢.
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The product R§,@ (R) is well represented by a ground
linear-harmonic-oscillator wave function,® which was
used in our calculations:

Rgg® (R)= (u/m)"* exp[—3u(R—R.)].

Here, p=18.4a¢2, R,, the ground-state equilibrium
internuclear distance, is 1.40@0.*® The range of R for
which this wave function contributes non-negligibly
to the total cross section ¢@ (k) is relatively small. Over
this range, Eq. (66) can be represented to within 39,
accuracy by

(73)

Ei=a®W—pORM® (74)

where a®=21.01 eV and 5®=17.40 eV/a,.
Substitution of Eq. (70) into Eq. (24) furnishes

oy ® (ko) = (3k" [ ko) PV (Ex)
X/(ITV(D[R“)(EO]P) sinfdfdp. (75)

Although (| T, O[R® (E;)]|?) depends in principle
on both 6 and ¢, it can be seen from Egs. (54) and (56)
through (63) that this dependence occurs through the
quantity ¢, which according to Egs. (7) and (16)
depends only on 6:

q="[ko*+FE"2—2kok" cosf /2. (76)

Therefore, the integration over ¢ results in a multiplica-
tive factor 27, whereas the 6 integration can be easily
calculated by changing to variable ¢. Since, from Eq.
(76)

sinfdf= qgdgq/kok"’ , w
we get
Ty @® (ko)= (61r2/k02)P(1) (E1)
gmax(E1)
X / (T, OLRO(E)]|2)gdg, (78)
gmin (E1)
where
min(BD)=ko— k' (Ey),
Iuin(E1)=ko (Ey) (79)

Qmax (El) = k0+ k” (El) .

The quantity P® (E) was calculated from Egs. (69),
(71), (73), and (74), whereas (| T, @ |2) was obtained
from Eq. (54). The most convenient method of evaluat-
ing numerically the integral over ¢ in Eq. (78) is to
perform a Simpson integration taking advantage of the
fact that as the incident energy increases, gmin and
¢max monotonically decrease and increase, respectively.
Therefore, it is convenient to start at the lowest desired
incident energy and for each new energy value just
add the contributions of the two new integration regions
to the integral which has already been calculated. This
is the method we adopted.

30 G. Herzberg, Specira of Diatomic Molecules (D. Van Nostrand,
Inc. New York, 1953), 2nd ed., pp. 76-78, 532.
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F1c. 3. Energy dependence of Franck-Condon factor g/® (X)
and of §-function factor P,/® (O) for transition to second triplet
state. Energy scale on top of graph is linear, but »’ scale is not
because of anharmonicity effects.

Finally, the total cross section ¢@ (k) for excitation
from the ground vibrational-rotational state of H,
to all vibrationally accessible levels of the first triplet
state by electrons of initial energy Eo= #2k¢*/2m can be
obtained by substitution of Eq. (78) into Eq. (25), and
use of E; rather than »" as the vibrational-state label.
The resulting expression is

6r o
a‘(l)(ko)=l;/ P(U (E1)

0 Dy

x[ f TS <1><R<1><E1>)|2>qdq}d&. (80)

min (E1)

It is convenient to change integration variables from
E; to RW through Eq. (66) [and specifically Eq. (74)].
The resulting expression is

oo

or
o (ko) =—

0" J R(Eg)

x[ / T (e (R>|2>qdq]<—§%>dze, (81)

min (R)

P(I)EEI(R)]

where we have dropped the superscript on the new
integration variable. The integral over R in this equation
was performed by a three-point Gauss-Hermite quadra-
ture® to 4 significant digit accuracy.

2. X'Z,t— a&®2,+ Excitation

The second triplet state is a shallow (dissociation
energy of 2.91 eV) bound state which has a minimum
at R,®=1.864a,. It has 16 bound vibrational states
and no continuum states whose left classical turning
points fall within the Franck-Condon vertical band
depicted in Fig. 1. In principle, the calculation of the

31 A. Kopal, Numerical Analysis, (John Wiley & Sons, Inc.,
New York, 1961), 2nd ed., p. 569.
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total cross section for the excitation of this state
[according to Egs. (19), (24), and (25)] requires in-
serting expressions for the £#©® and £,@ vibrational
wave functions, and performing the integration over R.
Then the absolute value of the result obtained must be
squared and averaged over all possible orientation
angles of the molecular axis. This process requires
very extensive numerical work in view of the large
number of vibrational states involved, but is unneces-
sary within the scope of this paper, since we are attempt-
ing to calculate only the total electronic excitation
cross section as defined by Eq. (25). Instead of using
Eq. (19), we used two approximate methods. In one
of them, Eq. (19) was replaced by Eq. (21). We shall
discuss the validity of this approximation later in this
section. The total excitation cross section which results
from Egs. (21), (24), and (25), after making the change
of variables defined by Eq. (76), is

o ® (ko)= (61/k?)S, g, ®

qmax (v')
X|:/ <| Tv’ @ (Re,) i?>qd(]:| ) (82)

min (»”)

where R, is the equilibrium internuclear distance of
the ground electronic-vibrational state, and ¢min and
gmax are defined by Eq. (79) with " replacing E;.
(|T,®]%) was calculated using Eq. (55). For each
incident energy Eo=#%%*k¢*/2m, the integral over ¢ in
Eq. (82) was calculated for all of the allowed » [for
which £”, defined by Eq. (16), is real]. The correspond-
ing Franck-Condon factors g,® were calculated by
numerical integration® and the total cross section ob-
tained by performing the sum over »' indicated in
Eq. (82). Because these Franck-Condon factors de-
crease rapidly with increasing »/, essentially all the
contribution to ¢® (ko) comes from the first 8 vibrational
levels ('=0, ---, 7). In addition, contributions to
0@ (ko) from continuum values of »' were neglected
since the corresponding values of g,»® are very small.
The assumption used to derive Eq. (21), and hence
Eq. (82), was that T,,»*" was approximately inde-

TasLE II. Comparison of §-function and Franck-Condon methods.

Total cross section ¢® (rao?)

Incident energy & function Franck-Condon
Eoy (eV) [Eq. (83)] [Eq. (82)]
11.90 0.0072 0.0117
12.30 0.0376 0.0418
12.70 0.0710 0.0841
13.43 0.1312 0.1321
15.00 0.1783 0.1787
18.00 0.1602 0.1634
Computer 125 350

time (min)

32 R. N. Zare, J. Chem. Phys. 40, 1934 (1964); University of
California Radiation Laboratory Report No. 10925, 1963 (unpub-
lished). The authors would like to thank Dr. Zare for providing
the programs necessary for this calculation.
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pendent of R over the important range of R as de-
termined by the ground vibrational state. To test this
assumption we computed (|7, @ (R)|) for different
values of the momentum transfer ¢, by using Egs.
(41) and (47) through (52). We found that it varied
linearly over this range of R with a slope that decreased
rapidly with increasing ¢. From these considerations,
the error introduced in this approximation is expected
to be largest in the threshold region where it might be
as high as 159%,. Above 20-eV incident energy, the error
associated with this approximation is estimated to be
less than 89,

An alternate approximation to Eq. (19) was used
which is much faster computationally while still giving
essentially the same total cross section as Eq. (82).
This approximation consists of replacing the function
R£,@(R) by a é function at the classical turning point
of the »’ state in a manner analogous to that done for
the first triplet excitation. The total cross section for
excitation of the second triplet is then given by expres-
sions analogous to Egs. (81), (71), and (69), with the
superscript and subscript (1) replaced everywhere by
(2). In particular, the expression corresponding to
Eq. (81) is

©

O
0(2)(130):_/ PO[E,(R®)]
RO (Hp)

0

qmax(R(z))
><[ f (T, ® (R<2>)12>qdq]
=J q

min (R(2))
dE,
><<——————>dR<2>. (83)
dR®

Although this is a rather drastic approximation, espec-
ially for small +/, it does not assume that 7T',,® is inde-
pendent of R, as the previous method did.

Over the region of R of importance, the counterpart
of Eq. (74) was obtained by a least-squares fit to the
potential-energy curve for the second triplet state as
calculated by Wakefield and Davidson,d yielding (to
within 19)

Ey=a®—p@OR® 4 cO[ RO, (84)

where a®=20.22 eV, b®=17.48 eV/ay, and ¢®=1.44
eV/ ao’.

A comparison of the total electronic excitation cross
section obtained from Egs. (82) and (83) is given in
Table II for a few energies in the threshold region. The
total computing time necessary to obtain the cross
section by Eq. (83) was 125 min, while that using
Eq. (82) was 350 min. Therefore, the §-function method
is faster than the Franck-Condon one but the results
are equivalent. For this reason, all other calculations
done for the second triplet state used the faster method.
The good agreement of the two methods could be due
in part to errors of the same size and in the same direc-
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F1c. 4. Effect of ground-state wave function on cross section
for excitation to first and second triplets: (1) Wg—first triplet,
Wang; (1) Wb—first triplet, Weinbaum; (1) C—first triplet,
Coulson; (2)—second triplet (curves corresponding to the three
different ground-state wave functions coincide within plotting
accuracy).

tion in the two different approximations. More likely,
it is a consequence of the fact that the general behavior
of the total electronic cross section is determined
primarily by the parameters of the electronic states
involved. In other words, the range of excitation energies
due to excitation of different vibrational states is
relatively small and hence the integral over ¢ varies
slowly over the range of »’. The distributions g,»® and
P® (E,) are both normalized :

Sy’gr' = 1 (85)
and
/P<2>(E2)dEz=Zw P,®=1, (86)
where
Ea(v'+1)
P, ®= / PO (Ey)dE,. (87)
Ey(v')

These relationships can be proved in a manner analogous
to that used to verify Eqs. (68) and (72). In addition
to being normalized, g,» ® and P,,® have approximately
the same shape, as can be seen from Fig. 3. Therefore,
the result of Stiltjes integrating over »' (or E,) is
relatively insensitive to the details of the »" dependence
of o @ (k).

As for the first triplet, the integration over
R in Eq. (83) was performed by a Gauss-Hermite
quadrature.®
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TasiE III. Moments of the charge distribution
of the ground electronic state.®

Binding
Ground-state energy  {(x%)=(y?) {z%) {r?)
wave functions (eV) (a®) (@) (a®
WeinbaumP 4.04 0.738 1.082 2.558
Wang? 3.76 0.767 1.131 2.665
CoulsonP 3.47 0.742 1.073 2.557
Experiment® 44764 0.7663 1.0604 2.593

a T, P, Das and R. Bersohn, Phys. Rev. 115, 897 (1959).

b Calculated at Re=1.40a0.
. csl\g F. Ramsey, Molecular Beams (Oxford University Press, New York,
956).

d Reference 30.

6. RESULTS AND DISCUSSIONS
A. The Effect of Different Approximate Wave Functions

Figure 4 shows the effect on the calculated total
excitation cross sections of using different approximate
wave functions for the ground state of the molecule.
Only the results using the complete OR approximation
are illustrated, since the O curves show the same relative
differences. It can be seen from this figure that the first
triplet cross section is quite sensitive to the choice of
the ground-state wave function while the second-
triplet one is not, which is at first surprising. In addition,
the relative magnitude of the first triplet cross section
does not change monotonically as the qualtity of the
ground-state wave function is improved. Indeed, in
order of increasing quality (from an energy-criterion
viewpoint), the ground-state wave functions are
Coulson, Wang, and Weinbaum, but in order of increas-
ing relative cross section they are Coulson, Weinbaum,
and Wang. This suggests that the relative sizes of two
cross sections calculated from two different ground-
state wave functions depends on properties of the wave
functions other than those optimized by the energy
minimization. This is indeed the case and both the rela-
tive magnitudes and ordering of the calculated cross
sections can be qualitatively understood as follows.
From the expression for the sctttering amplitude T';
[Eq. (10)], it is seen that the effect of the electronic
wave functions on the excitation cross section is en-
tirely contained in the one-electron overlap charge den-
sity defined as

Pn'n(rl 5 R) = /¢n'* (1'1,1'2 3 R)\l/n (r17r2 3 R)dl'2 . (88)

Therefore, any change in the ground-state wave func-
tion also produces a change in the overlap charge den-
sity. The nature and magnitude of this effect is expected
to depend on the symmetries of the ground- and excited-
state wave functions.

Consider the excitation to the first triplet state. The
ground and first-triplet-state wave functions are both
symmetric with respect to reflection of one of the
electrons (electron 2, for example) through a plane con-
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taining the internuclear axis. However, the former one
is even with respect to inversion of one electron through
the center of the molecule whereas the latter one is
odd. Therefore the plane passing through the origin and
perpendicular to the internuclear axis is a one-electron
plane of symmetry for the ground-state function and a
nodal plane for the first triplet state. The effect of this
nodal plane is to reduce the contribution to p of spatial
regions of the ground-state wave function close to it,
i.e., of regions for which |2,| is small (Oz being the
direction of the internuclear axis). As a result, the
relative importance of the spatial extent of the ground-
state wave function in the x and y directions is greatly
reduced whereas the contribution to p from regions of
large |z.| is relatively enhanced. Consequently, slight
differences in the z-direction tails (outer regions) of
different ground-state wave functions will have their
effect on p amplified by this nodal plane, and appreciable
differences in the resulting cross sections might be
expected, as is indeed found to be the case. From these
arguments, the ground-state wave function with
largest extent in the z direction might be expected to
give the largest excitation cross section since the region
in which p is appreciable has then the largest spatial
extent. Table IIT contains the values of the second-
order moments of the ground-state charge density of
the hydrogen molecule as calculated for the three
ground-state wave functions used and as determined
experimentally. As suggested by these qualitative con-
siderations, the relative ordering of the values of (22
for the three ground-state wave functions used is indeed

10— T T

0.9

o (ra3)

E(eV)

TFic. 5. Effect of different excited-state wave functions on the
cross section for excitation to the first triplet. Ground state is
Weinbaum for both, PM—Phillipson-Mulliken, H—Hurley.
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TasLE IV. Comparison between complete and separated-atom OR calculations of the total cross section for excitation
to the first triplet state (R=1.40a0, Eo=14.0 eV, E;—E;=8.8 V).
v \Y% VI

I II (F %/ ke?)- (|F|*/ko)- ([P |%/ked)- VII VI

. onr 2 12 36 Sum of  Cross
Ny NN 1 Hy?@nqdq —H 1M 012qdq —M2@13¢dq columns section

Calculation (ao™®) (@078 127NN 2N 2(14-C)282 x? x? IV,V,VI (ma®)
Complete 0.0668  0.0720 0.9610 1.274 —0.734 0.106 0.646  0.621
Separated 0.1417 0.0056 0.1165 3.517 0.000 0.000 3.517 0.410
atom

the same as the relative ordering of the magnitude of the
corresponding cross sections for excitation to the first
triplet state.

In the case of excitation to the second triplet, the
excited-state wave function has the same one-electron
symmetry characteristics as the ground-state wave
function, that is, no one-electron nodal planes. As a
result, the second triplet wave function does not strongly
emphasize the importance of the ground-state wave
function along any one axial direction over the other
two. Consequently, the relative differences in puq (1)
as calculated for different ground-state wave functions
is expected to be much smaller than in the first triplet
case, and the resulting cross sections are expected to
be much less sensitive to the choice of ground-state
wave function. Figure 4 shows that this is indeed the
case.

The cross section for excitation to the first triplet
state was also calculated using the best (Weinbaum)
ground-state wave function and the Hurley® wave
function for the excited state. This excited-state wave
function is much less accurate than the Phillipson-
Mulliken one (from an energy standpoint) and from
the above arguments should predict a significantly
different cross section. This is indeed the case as shown
in Fig. 5, which illustrates the first triplet cross section
as calculated using the Weinbaum ground state and
the two different excited-state wave functions, in the
complete OR approximation. The large discrepancy
between the two curves further serves to indicate the
magnitude of errors which can result from the use of
excessively inaccurate wave functions.

B. Comparison of Ochkur, Ochkur-Rudge, and
Separated-Atom Approximations

Figure 6 shows the theoretical cross sections for
excitation to the first triplet state from the ground state
as calculated in the complete Ochkur-Rudge (ORC),
complete Ochkur (OC), the separated-atom Ochkur-
Rudge (ORSA), and the separated-atom—-Ochkur (OSA)
approximations. The wave functions used for the ground
and excited states were the Weinbaum and Phillipson-
Mulliken ones, respectively (see Sec. 3). From the
curves in this figure it can be seen that the OR and O
calculations give significantly different results. As will
be indicated in Sec, 6 C, the ORC results agree better

with experiment than the OC ones. Two differences
between the OR and the O approximations can be noted.
First, in either the complete or the SA approximations
the cross sections obtained using the O form for the
transition amplitude [Eq. (6)] are about two times the
corresponding OR cross sections [Eq. (10)], a result
that might be expected from a comparison of the energy-
dependent coefficients which precede the integral in
Egs. (6) and (10). Second, the location of the maximum
in the O cross sections occurs at a lower energy (by
about 0.5 to 0.75 eV) than the corresponding OR cross
sections. In addition, the SA approximation, applied to
either the O or the OR transition amplitudes, produces
cross sections that have the proper shape but whose
magnitude will generally be significantly smaller (by
about 309%,) than those predicted by the corresponding
complete calculations. This is due to the fact that in the
SA approximation all multicenter terms that appear in

E(eV)

F16. 6. Energy dependence of excitation cross section to first
triplet: OC—Ochkur, complete; OSA—Ochkur, separated atom;
ORC—Ochkur Rudge, complete; ORSA—Ochkur Rudge, separ-
ated atom,
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Fi1c. 7. Energy dependence of excitation cross section to first
triplet: ORC—Ochkur Rudge, complete; OC—Ochkur complete;
El—first-order exchange; K—XKhare one-center Ochkur.

the normalization constants and scattering amplitude
are ignored. For purposes of illustration of the effect
of multicenter terms, the following approximations
were applied to Eq. (80): The quantity (|7, ®
X(RW(Ey))|?) was evaluated at R,=1.40a, only and
the excitation was assumed to occur at only one energy
(8.8 €V). From these approximations and the normaliza-
tion property of P(E;) [see Eq. (72)] we get

671- gmax
O f (IT®(R)|%gdg,  (89)
aQ;

0

‘min

where (|T®W(R,)|?) can be calculated from Eq. (54).
Table IV gives the contribution to the total cross section
of the various terms in this equation as obtained in the
complete and SA calculations for an incident energy of
14.0 eV. The OR approximation was used along with
the Weinbaum and Phillipson-Mulliken wave func-
tions for the ground and excited states. Columns I, II,
and IIT contain the energy-independent constants
associated with the molecular (electronic) wave func-
tions. Columns IV, V, and VI show, respectively, the
values of each of the three terms in the bracket of
Eq. (54) after they have been multiplied by g, inte-
grated over ¢, and finally multiplied by |F|%/kg.
Column VII is the sum of the three preceding columns
and column VIII gives the total cross section (column
III times column VII) in units of ma¢®. Note thatin the
SA approximation, the second and third terms in this
bracket are zero because they are three-center terms.
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It is evident from Table IV that application of the SA
approximation leads to significant changes in all of the
quantities involved in the scattering amplitude, some
increasing and some decreasing. These changes are not
justifiable on either physical or mathematical grounds,
and as a result, the SA approximation should not be
relied on to give more than order of magnitude results.

Figure 7 is a comparison of the OC and ORC calcula-
tions (using the Weinbaum and Phillipson-Mulliken
wave functions) with two other recent calculations of
the excitation cross section to the first triplet state.
The curve labeled (E1) is the first-order exchange
approximation of Khare and Moisiewitsch® in which the
excitation was assumed to occur for a fixed energy loss
of 11.0 eV and at the fixed internuclear distance
R,=1.404a,. This is equivalent to assuming that the
ground-state vibrational wave function R£©®(R) is a
8 function centered at R, instead of being given by
Eq. (73). This is a drastic assumption at energies close
to excitation threshold. In addition, the authors found
it necessary to apply the SA approximation in order to
evaluate the cross section. The curve labeled K is a
recent calculation by Khare!® in which the O approxi-
mation was employed along with the assumption that
the excitation occurred at a fixed energy loss of 10.62 eV
and at a fixed internuclear distance R,=1.40a,. To
facilitate the evaluation of the integrals, only one-
center molecular (electronic) wave functions were used
in this last calculation. From Fig. 7, it is apparent that
the assumption of fixed energy loss for the incident
electrons and fixed internuclear distance predicts a
steeper rise of the excitation cross section as a function
of energy than either the ORC calculation, the OC calcu-
lation, or experiment (see Sec. 6 C).

Figure 8 is a comparison of the total cross section
for excitation of the second triplet as calculated in the
ORC and ORSA approximations using the three dif-
ferent ground-state wave functions. Included for com-
parison is the corresponding K cross section calculated
by Khare! in the O approximation using one-center
molecular (electronic) wave functions, a single energy
loss (11.7 eV), and single internuclear distance
R,=1.40a,. As can be seen from the figure, the cross
sections calculated with the ORSA approximation are
smaller and more sensitive to the choice of ground-state
wave function than those calculated in the ORC ap-
proximation. In this latter calculation, the cross sec-
tions obtained from the three ground-state wave func-
tions coincide with the plotting accuracy of Fig. 8.
It is difficult to explain the large difference between the
K and the ORC results but it is probably due to the use
by Khare of the O approximation [which always leads
to larger results than the OR one] and of one-center
electronic wave functions which are less accurate than
the two-center ones employed in the ORC calculations.
It is interesting to note that the threshold energy in the
K curve was normalized to the approximately correct
value of 11.7 eV by using this as the single excitation
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energy, although the excitation energy consistent with
the equilibrium internuclear distance used is 12.55 eV .24
This mode of normalization makes the maximum cross
section occur at an energy about 1.2 eV lower than the
ORC one.

C. Comparison with Experiment

The only experimental results with which these calcu-
lations can be directly compared are the approximate
measurements by Corrigan® of the total cross section
for the electron-impact dissociation of H, into two H
atoms. This experiment essentially measured the sum
of the total cross sections for the excitation to all the
triplets in molecular hydrogen. These states then decay
radiatively to the lowest repulsive triplet (#Z.%),
which dissociates into two ground-state H atoms. Since
experimental evidence indicates that the magnitude of
the total cross sections for electronic excitation to level
(n) from the ground state falls off very rapidly with
increasing 7, the sum of the total cross sections for
excitation of the first two triplets should account for
most of this experimentally measured dissociation cross
section. There is also a ¢?II, state which lies close in
energy to the ¢’Z,* state. However, we were unable to
find a minimum basis set wave function for this state in
the literature. Because of its IT symmetry, a calculation

0.4 T T T T T

0.3

E(ev)

Fi6. 8. Effect of ground-state wave function on cross section
for excitation to second triplet state, for OR, complete and
separated atom approximations: — — —— separated atom SA:
C—Coulson; Wb— Weinbaum; Wg—Wang; —— complete
(curves corresponding to the three different ground-state wave
functions coincide within plotting accuracy); ———- K, Khare
one-center Ochkur.

3 A. H. Gabriel and D. W. O. Heddle, Proc. Phys. Soc. (London)
A258, 124 (1960).
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Fic. 9. Dissociation cross section of H; into 2H by electron
impact. The points are experimental but include the effect of
ionization (see Ref. 3). —— (Exp.), experimental curve (Ref. 3)
after subtraction of molecular ionization cross section; —-—-
(ORC), present calculations of the sum of excitation cross sections
to first two triplet states (using Weinbaum ground state), in-
cluding effect of variation of excitation energy; ——-- (K
Khare’s one-center Ochkur dissociation cross section (see Ret. 10).

of this type of wave function and of the corresponding
scattering amplitude would have involved an extensive
amount of computer time. We decided not to undertake
this expense because this state is not expected to
contribute much to the dissociation cross section. Its
total excitation cross section is expected to be smaller
than that for the a3Z,* state in view of its different
symmetry.4% This behavior is indicated by the one-
center calculations of Khare, which show the cross
section for excitation to the ¢*II,, state to be about 609
of that to the a®Z,* state. Because of the relative small-
ness of the former cross section, the error in the total
dissociation cross section due to the neglect of the con-
tribution from the ¢*I1, state should not exceed 59,.
Figure 9 is a comparison of the experimental data
(full curve) and the sum of the theoretical cross sections
for the excitation to the first and second triplets (dash-
dot curve) as calculated by us in the complete OR
approximation, with the methods described above, and
using the best (Weinbaum) ground-state wave func-
tion. The theory is seen to predict quite well the linear
rise above threshold and the magnitude and general
shape of the measured dissociation cross section.
Although there actually exists a sudden change in
slope of the theoretical curve at the onset of the
second triplet excitation (~11.9 eV), this change is
negligible within plotting accuracy of the figure and
thus cannot be seen in the ORC curve. The discrepancy
between the predicted and observed location (in energy)
of the maximum of the cross section is perhaps due in
part to the scatter in the experimental points (which
are the dots shown in Fig. 9 before the effect of molecular
ionization is subtracted), which is particularly bad for
energies above 13 eV. In addition, neglect of the con-
tribution of the ¢*II, to the cross section tends to make
the theoretical maximum shift slightly towards lower
energies. It is encouraging (but perhaps fortuitous)
that the best agreement between the present ORC
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F16. 10. Dissociation cross section of Hj into 2H by electron
impact. —— (ORC), present calculations (same as in Fig. 9);
—-—-—, Corrigan data as modified by using ionization cross sec-
tion of Golden and Rapp (Ref. 36); ----- , Corrigan data as
modified using ionization data of Harrison (Ref. 37). The shading
along the two experimental curves indicates the spread in experi-
mental data as reported by Corrigan (Ref. 3).

calculations and experiment occurs in the energy region
between threshold and maximum cross section, where
the experimental points have highest accuracy.

Included in Fig. 9 is the dissociation cross-section
curve reported by Khare,® in which his calculations for
the cross sections for excitation of the »Z,*, a*Z,*,
and ¢TI, states are added together. The high threshold
energy and excessively steep rise between the threshold
and maximum of this curve is due to the assumption
that the excitation of each state occurs only at the
most probable value of the internuclear distance (the
equilibrium internuclear distance of the ground elec-
tronic state).

The ionization cross-section curve used by Corrigan
to subtract the effect of ionization on his experimental
results was that obtained in 1932 by Tate and Smith.3*
More recent measurements®37 furnish somewhat
larger values for that ionization cross section, which
would reduce the dissociation cross section of Corrigan
and decrease the discrepancy between it and the ORC
calculations at energies above 16 eV. In Fig. 10 are
illustrated two dissociation cross sections obtained by
modifying the Corrigan curve using the more recent
experimental ionization data of Golden and Rapp,?®
and of Harrison.?” The modification is a simple sub-
traction from the Corrigan curve of the difference be-
tween the more current data and that of Tate and Smith.
The upper dash-dot curve represents the dissociation
cross section obtained by modification with the Golden-
Rapp?® ionization cross section. The shaded area along
this curve indicates the error in the experiment as deter-
mined by the spread in data points reported by Corri-

3 J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).

35 .. J. Kieffer and G. H. Dunn, Rev. Mod. Phys. 38, 1 (1966).

36 P, Englander-Golden and D. Rapp, Lockheed Missiles and
Space Company Report No. 6-74-64-12 (unpublished).

37 H. Harrison, The Experimental Determination of Ionization

Cross Sections of Gases under Electron Impact (Catholic University
of America Press, Washington, D. C., 1956), Table 4.
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gan.® The lower dashed curve is the similar dissociation
cross section obtained from the Corrigan and Harrison?®
data, with the experimental error in the former again
denoted by the shading. It is apparent from this figure
that more accurate measurements of the dissociation
cross section are necessary before the quality of this ex-
change excitation model can be evaluated more precisely.
Finally, it should be stressed that all the calculations
we made are completely ab initio and absolute, with
no experimental parameters having been used and no
normalization to experiment having been performed.

D. Conclusions

The total cross section obtained in the OR model for
exchange excitation appears to describe the dissociation
excitation of the hydrogen molecule better than any
other currently tractable model. When proper allowance
for nuclear motion (vibration) is made, the results agree
quite well with the experimental data in the threshold-
to-maximum region. When the excitation is assumed to
occur only at the equilibrium internuclear distance of
the ground electronic state, an excessively high thresh-
old energy results as well as too steep an increase in the
cross section between this threshold and the energy of
maximum cross section.

It is apparent from the results of these calculations
that care should be exercised in the choice of the wave
functions used to describe the bound system. In some
cases the excitation cross sections for a molecular
electronic excitation process may be quite sensitive to
the “quality” of the wave functions used and in other
cases not. It appears that the degree of this sensitivity
on molecular (electronic) wave functions depends on
the symmetries of the molecular states involved. The
results of this investigation suggest that along with the
energy, other properties such as moments of the one-
electron charge density predicted by the approximate
wave functions should be used to determine the “best”
over-all approximate wave function.

In addition, it is evident from the calculations here
reported that the SA approximation to the transition
amplitude should be used with caution, since the cross
sections predicted by it may differ by 309, from the
more accurate results.

The results reported in this paper and elsewhere*®
show that the OR approximation describes reasonably
well the exchange excitation processes and indicates
that more accurate experiments are now needed in
order to make a complete evaluation of this model.
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