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The strong surface electric field associated with a semiconductor inversion layer quantizes the motion
normal to the surface. The bulk energy bands split into electric sub-bands near the surface, each of which is
a two-dimensional continuum associated with one of the quantized levels. We treat the electric quantum
limit, in which only the lowest electric sub-band is occupied. Within the effective-mass approximation, we
have generalized the energy-level calculation to include arbitrary orientations of (1) the constant-energy
ellipsoids in the bulk, (2) the surface or interface, and (3) an external magnetic field. The potential asso-
ciated with a charged center located an arbitrary distance from the surface is calculated, taking into account
screening by carriers in the inversion layer. The bound states in the inversion layer due to attractive Cou-
lomb centers are calculated for a model potential which assumes the inversion layer to have zero thickness.
The Born approximation is compared with a phase-shift calculation of the scattering cross section, and is
found to be reasonably good for the range of carrier concentrations encountered in InAs surfaces. The low-
temperature mobility associated with screened Coulomb scattering by known charges at the surface and
in the semiconductor depletion layer is calculated for InAs and for Si (100) surfaces in the Born approxima-
tion, using a potential that takes the inversion-layer charge distribution into account. The InAs results
are in good agreement with experiment. In Si, but not in InAs, freeze-out of carriers into inversion-layer
bound states is expected at low temperatures and low inversion-layer charge densities, and the predicted
behavior is in qualitative agreement with experiment. An Appendix gives the phase-shift method for two-
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dimensional scattering and the exact cross section for scattering by an unscreened Coulomb potential.

1. INTRODUCTION

N #n-type inversion layer is produced at the surface

of a p-type semiconductor when the energy bands

near the surface are bent down enough that the bottom

of the conduction band lies near or below the Fermi

level. This band bending can be introduced by applying

an electric field to the surface, in a configuration like

that shown in Fig. 1, or by the presence of positive

charges at or near the surface associated with impurity
ions or other Coulomb centers.

The electric field associated with an inversion layer
is strong enough to produce a potential well whose
width in the z direction, the direction perpendicular
to the surface, is small compared to the wavelengths
of the carriers. Thus the energy levels of the electrons
are grouped in what we call electric sub-bands, each
of which corresponds to a quantized level for motion
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Fic. 1. Schematic metal-insulator-semiconductor structure
used for inversion-layer experiments. The inversion-layer electron
concentration is changed by changing the gate voltage. The
inversion-layer conductance is measured by applying a small
potential difference between the #-type contacts and measuring
the resulting current.

* Some of the results of this work were presented at the Chicago
meeting of the American Physical Society, March, 1967; Bull.
Am. Phys. Soc. 12, 275 (1967).
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in the z direction, with a continuum for motion in the
plane parallel to the surface.

The quantization of energy levels in inversion layers
has been anticipated for many years,! but the two-
dimensional nature of the electron gas when only one
electric sub-band is occupied was only recently con-
firmed by experiments on #-type inversion layers on a
(100) surface of silicon in the presence of a magnetic
field perpendicular to the surface.?

The principal purpose of this paper is to study the
effect of charged centers near the surface on the
properties of electrons in the inversion layer. To do
this we first find the average potential due to such a
charge seen by the inversion layer electrons, including
for the first time the effect of screening in this quasi-
two-dimensional system. From this potential we find
both the scattering cross section of the electrons and
the inversion-layer bound states that result when the
potential is attractive.

The calculated scattering rate is compared with
experimental results on inversion-layer mobility at
low temperatures in InAs?® and in Si.* These experi-
ments measure the conductance between the #-type
contacts of Fig. 1, and determine the inversion-layer
electron mobility by using the Hall effect! or magneto-
resistance.® Thus an experimental curve of inversion-

1]. R. Schrieffer, in Semiconducior Surface Physics, edited by
R. H. Kingston (University of Pennsylvania Press, Philadelphia,
Pennsylvania, 1957), p. 55.

2 A. B. Fowler, F. F. Fang, W. E. Howard, and P, J. Stiles,
Phys. Rev. Letters 16, 901 (1966); in Proceedings of the Inter-
national Conference on the Physics of Semiconductors, Kyoto, 1966,
[J. Phys. Soc. Japan Suppl. 21, 331 (1966)7].

8S. Kawaji and Y. Kawaguchi, in Proceedings of the Inter-
national Conference on the Physics of Semiconductors, Kyoto, 1966,

[J. Phys. Soc. Japan Suppl. 21, 336 (1966)].
4F. F. Fang and A. B. Fowler (to be published).
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layer mobility versus inversion-layer free-carrier con-
centration can be constructed.

Because the inversion layer is thin—of the order of
100 A or less—the mobility is sensitive to scattering
associated with the surface, and thus provides a power-
ful tool for studying surface-scattering mechanisms.

If the Coulomb centers near the surface are positively
charged, they attract electrons, and in general lead
to bound states. The properties of these bound states
depend strongly on the amount of screening by in-
version-layer electrons, and are among the most
interesting results of our work. In particular, we find
that in Si inversion layers the bound states in the
absence of screening are deep enough to trap the first
electrons which enter the inversion layer at low tem-
peratures. As the gate voltage is increased and more
electrons are added, some will enter the electric sub-
band and will contribute to screening, thus weakening
the attractive potential. At a sufficiently high inversion-
layer electron concentration, the screening will reach
its full value, and the energy levels will be so shallow
that the orbits of inversion-layer electrons bound to
adjacent Coulomb centers overlap. Under these condi-
tions the bound states merge with the bottom of the
lowest electric sub-band and effectively disappear. In
InAs, on the other hand, the bound states merge with
the bottom of the lowest electric sub-band even in the
absence of screening, and effects associated with bound
states are not expected.

Except for the calculation of Landau levels in
Appendix A, all of our results apply to zero magnetic
field. In addition we restrict ourselves to low tempera-
tures, for which only the lowest electric sub-band is
occupied by electrons. We call this limiting case the
electric quantum limit.

The organization of the remainder of the paper is
summarized by the following Table of Contents:

Section 2. Electric Sub-bands
3. Coulomb Potentials and Screening

4. Bound States
A. General Considerations
B. Bound States for a Model Potential

5. Impurity Scattering
A. Born Approximation
B. Validity of the Born Approximation

6. Comparison with Experiment
A. InAs
B. Si

7. Discussion and Conclusions
Appendix A. Landau Levels
Appendix B. Screened Coulomb Potential
Appendix C. Two-Dimensional Scattering

2. ELECTRIC SUB-BANDS

In this section we consider the energy levels of
inversion-layer electrons moving in a potential well
which depends only on z, the distance from the surface.
We find the effective masses for motion parallel to the
surface and the corresponding one-dimensional Schré-
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F16. 2. Surface potential well and surface charge distribution
for a representative Si surface. The curve labeled E, gives the
energy of the bottom of the conduction band near the semi-
conductor-insulator interface at z=0. Also shown are the position
of the Fermi level for 102 electrons/cm? in the inversion layer,
and the positions of the first two excited states, as calculated by
Howard (Ref. 10). The zero of energy is taken to be the bottom
of the lowest electric sub-band. The upper curve is the charge
distribution of carriers in the lowest electric sub-band, taken from
Ref. 10. Also shown is a vertical line at the average mversmn-layer
thickness as computed from the approximate relations given in
Eqgs. (22) and (42).

dinger equation for motion perpendicular to the surface
for an arbitrary surface orientation and for arbitrary
bulk ellipsoidal constant-energy surfaces.

The electron potential well near the semiconductor-
insulator interface is shown for a typical case in Fig. 2.
We wish to find the energy levels E and envelope
functions ¢ belonging to self-consistent solutions of the
effective-mass equation

[T—ep(z)—EW=0, €Y

where T is the kinetic-energy operator and ¢ is the
electrostatic potential, which in turn is the solution of
Poisson’s equation

Vip=—A4mp/k. (2)

Here p is the charge density given by the fixed charge
in the depletion layer plus the charge in the inversion-
layer states, and « is the dielectric constant. The
boundary conditions on ¢ are

6—0 as z— oo, (3a)
Kins (d¢/dz) l 2=0""" Ksc (d¢/dz) ' 2=0%) (3b)

where . and k;ns are the static dielectric constants of
the semiconductor and the insulator, respectively.
The effective-mass equation (1) is perhaps a poorer
approximation in the inversion-layer problem than in
some other applications, since the width (in the z
direction) of the inversion-layer envelope function
is only of the order of 20 A in some cases, and therefore
not much larger than atomic dimensions, The boundary
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F16. 3. Schematic representation of the constant-energy ellipses
and Brillouin zones for the (001), (111), and (110) surfaces of Si
and Ge in the effective-mass approximation. Where both solid
and dashed curves appear, the solid curves correspond to the
electric sub-band of lower energy. Concentric ellipses are shown
to indicate doubly degenerate levels. Note that the dashed curves
for the (110)-Si surface have been displaced by a reciprocal lattice
vector to bring them within the first Brillouin zone. See also
Table I. The horizontal and vertical axes have been marked to
indicate their directions in reciprocal space. The radii of the
circumscribed circles about the three Brillouin zones are 27/a,
(4r/3a)V2, and (r/a)V3 for (001), (111), and (110), respectively,
where a is the lattice constant in real space.

condition we use for ¢ is
¥(0)=0, 4)

since the potential barrier at the semiconductor-
insulator interface will lead to a small amplitude for
the envelope function there.

The kinetic-energy operator in Eq. (1) can be written

T=3 X i wiipipi, (5)

where p;=—1%(3/0x;), and w;; is the reciprocal effec-
tive-mass tensor in a coordinate system in which the
semiconductor-insulator interface is the plane z=0.
In terms of the transformation matrix [af from the
principal axes of a constant-energy ellipsoid of the
semiconductor (indicated by primes) to the coordinate
system we have chosen, we have

Di=2k QP

7
Wi = Zk Qi xWrry = Wjs

(6)
™

where wgr'=1/m;’, and the m;’ are the principal
effective masses of the ellipsoid of constant energy in
the semiconductor.

Since the potential energy —e¢ in (1) is a function
of z only, we take as a trial solution the product

¥ (@,3,2) = £(2) exp(tkrw+ikay) . 8)

If we substitute this in (1), using (5), we find that &
must satisfy the equation

— %w%fﬂ (d2£/d22) —_ h2 (w13k1+Z()23k2) (d,f/dz)
—[ed(z)+EJt(z)=0,

E = E,+%h2 (w11k12+2w1_2k 1k2+w22k22) .

)
(10)

where
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We now make the substitution
£(2) = (2) exp[ —iz(wisk1+wasks)/wss ] (11)

to eliminate the first derivative with respect to z, and
find that {(2) must satisfy

&/ + 2ms/ W) £ +-ep(2) J:(2) =0,  (12)

where ms=1w3357, a subscript ¢ has been introduced to
label the solutions, and

Wyt
E; (kl,k2) = Ei,,+%h2l:<wll"‘_‘>k12

W33

W13Was Was?
+2( wie— k1k2+<w22————->k22], 13)
W33 W33

The Schrédinger equation thus reduces to an equa-
tion in 2, in which the # and y motion enters in the
energy only through (13), and through the boundary
condition on . Since we use the boundary condition
(4), the eigenvalue E” is independent of £y and k,. If
other boundary values at =0 were used, both E;”” and
¢:(2) could depend on k; and &, unless w13 =1w3=0.

Because of the form of the kinetic-energy operator
(5), our results do not apply to inversion-layer energy
levels arising from a degenerate band like the valence
band of Ge or Si or InAs. Furthermore, the strong
electric field associated with the potential ¢ is expected
to remove the degeneracy of the basis Bloch functions,
as does a uniaxial strain,® thereby invalidating the
simple effective-mass approach. We shall not deal with
that case in this paper.

Three effective masses enter in the energy levels of
electrons in the inversion layer. One is ms;=ws3s™), the
mass which determines the energy levels E;” for
motion perpendicular to the surface via Eq. (12). The
other two, 7, and m., are the principal effective masses
of the constant-energy ellipses associated with motion
parallel to the surface, and can be deduced from Eq.
(13). For a simple conduction band like that of InAs,
all three of the effective masses are equal to each other
and to the effective mass in the bulk, apart from the
effect of nonparabolicity, which we have not considered.

It is easy to show from (13) that the product mmem;
equals the product my'ms'ms’ of the principal effective
masses in the bulk for an arbitrary ellipsoidal constant-
energy surface and for arbitrary surface orientation.
This assures that, as in the case of an isotropic mass,"$
the density of states when many electric sub-bands are
occupied approaches the value one would find without
considering surface quantization.

For conduction bands with multiple minima, like
those of Ge and Si, the plane in k space containing the

5 G. E. Pikus and G. L. Bir, Fiz. Tver. Tela 1, 1642 (1959)
[English transl.: Soviet Phys.—Solid State 1, 1502 (1960)].

We thank J. J. Hall for discussions.
¢ R. F. Greene, Surface Sci. 2, 101 (1964),
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TasLe I. Effective masses for three surface orientations, for semiconductors having band structures like those of the conduction
band of Si (six {100} ellipsoids of revolution) or of Ge (four {111} ellipsoids of revolution). The principal effective masses in the ellipsoids
are mq, mq, and m;. The derived values are ms, the effective mass perpendicular to the surface, and m, and m,, the principal masses of
the constant-energy ellipse in the surface, defined by Eq. (13). The degeneracy of each set of ellipses is #7,.

Surface Si Ge
orientation m Ma ms 7y my My ms Mo
(100} iy e m : me neIm)/3 Gmow)/ (meA2m) 4
(110} me (me+mi) /2 (2memy) [ (me+ma) 4 me (mi+-2my) /3 Bmami) / (ma+2my) 2
me my me 2 me m me 2
m m mi 1
{111} o (met-2m1) /3 Bmemy) [ (me+2m1) 6 e (me+8m2) /9 (Omumi)/ (me+8my) 3

wave vectors for motion parallel to the surface will
make equal angles with all the constant-energy surfaces
of the bulk only in special cases, i.e., the {111} surfaces
of Si and the {100} surfaces of Ge. On the other hand,
for a (100) surface of Si, two of the six bulk constant-
energy ellipsoids will give ms=m,, the longitudinal
effective mass of the bulk, while the other four will
give mz=m;, the transverse bulk effective mass. We
list in Table I the values of the masses m,, ms, and ms
for energy bands like those of Si and Ge for three
high-symmetry surface orientations, and indicate in
each case the degeneracy #,, which gives the number
of ellipsoids of the bulk that have equivalent sets of
values. Where two different values of m; enter, the
ith solution of (12) belonging to the larger mass will
have a lower energy E;” than the ith solution belonging
to the smaller mass. Note that the constant-energy
ellipses for motion in the surface are not, in general,
equivalent to slices through the constant-energy
ellipsoids of the bulk.

The two-dimensional Brillouin zones and constant-
energy ellipses for the cases of Table I are shown in
Fig. 3, which indicates the kinds of degeneracy that
can arise. Where a double degeneracy occurs at a point
in the zone, as in the (100) surface of Si, we expect
deviations from the effective-mass approximation to
remove the degeneracy.? Since for low magnetic fields
no splitting of the degeneracy is observed for Si,? we
assume here that the two states can be described in the
effective-mass approximation by the same envelope
function, to which the boundary condition (4) applies.
A more realistic treatment of the boundary conditions
at the surface would give an estimate of the accuracy
of this approximation, and would also give information
about electron scattering associated with the surface.

The effective masses of the constant-energy ellipses
given in Table I can be rather anisotropic, just as in
the bulk. For most of the cases shown in Fig. 3, this
anisotropy does not lead to an anisotropic conductivity
because the ellipses are symmetrically placed. But for
{110} surface orientations, which have lower symmetry,
one should expect to see anisotropic conduction.”

7Dr. E. J. Walker (grivate communication) has informed us

that measurements of the conductivity of (110) surface inversion
layers on p-type Si have not so far shown any significant anisotropy.

Once we know the energy levels on the electric
sub-bands of the surface inversion layer, we easily
find the density of states for electrons, including a factor
of 2 for spin, to be

p(E) = (’lrhz)_l Z‘i n,,imd,H(E—E,-") ’ (14)

where the E;/ are the various eigenvalues of (12),
#,; is the degeneracy of the electric sub-bands whose
lowest energy is E;”, mq; is the density-of-states mass
per ellipse [in the notation of Table I, ma;= (m1im9:)1/2],
and H(x)=1 if x>0, H(x)=0 otherwise.

The number of carriers in the inversion layer at
temperature T is

Ninv=2i Ni'= (KT/WhZ)
XZ,' nvimdiFO([EF_Ei"]/KT) ) (15)

where K is Boltzmann’s constant, Er is the Fermi

energy, and
Fo(x)=In[14exp(x)] (16)

is the Fermi-Dirac integral® with exponent zero. For
large positive x, Fo(x)~x, and for large negative x,
Fo(x)~exp(x). The charge density in the inversion
layer can then be written

pinv="—e2_; Nig:(2), @17
g(@)=8:)]?, (18)

where {; is the normalized eigenfunction corresponding
to the sth solution of (12), and N; is given in (15). The
function g(z) is shown for a representative case in
Fig. 2.

In the depletion layer, we suppose that all donors
and acceptors are ionized, so that the charge density
is equal to e(Np—N4) in a layer whose thickness is
approximately given by

daop1=[x|¢(0) | /2me| Np— N 4| ]2 (19)

in Gaussian units, i.e., with ¢(0) given in terms of
statvolts, where 1 statvolt ~300 V. If an n-type
inversion layer forms, the conduction band edge at
the surface is near the Fermi level, while the valence

8 See, for example, A. H. Wilson, The Theory of Metals (Cam-
bri;if; University Press, Cambridge, England, 1953), 2nd ed.,
p. 147.
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band edge in the bulk is near the Fermi level, so that
to a fair approximation we can replace |¢(0)| by
E,/e.® The total number of negative charges per unit
area in the depletion layer is

Ndepl= (NA“"ND)ddepl . (20)

If Ny—Np=10% cm™3 k=11.8, and ¢|¢(0) | = E,=1.15
eV for Si, we find that dgep1=1.2 u, and Ngep1=1.2X 101
cm~2,

The self-consistent equations (2), (12), and (17) for
the inversion-layer energy levels and charge distri-
butions have been solved for a range of temperatures
and charge densities by Howard.!® In this paper we use
.only the approximate expression!!

g(2) =30%" exp(—bz) (21)

for the charge distribution when only the lowest
inversion-layer energy level is occupied. A variational
calculation shows that for

b= ([:4877'62m3/Ksch2][Ndepl+ (1 1/32)NinV])”3: (22)

where ms has the same value as in (12), the energy of
the lowest inversion-layer state lies within 6%, of the
energy found from a numerical self-consistent field
calculation, for values of the ratio Niny/Naep1 from 0 to
at least 60.10

The average value of 2, weighted by the charge
distribution (21), is 3/b, and we take this as a measure
of the thickness of the inversion layer. It will be a
maximum when Niny— 0. In that case, if ms=m and
Naepi=1.2X10" cm2, we find that 3/b6=45 A. Thus
the inversion layer is considerably thinner than the
depletion layer even in this case. As more charge is
added by increasing the field at the semiconductor-
insulator interface, almost all the excess goes into the
inversion layer, while dgep1 (and Ngep1) remain essentially
constant, provided that the surface states do not play
a role.

Although most of the considerations of this paper
are for zero magnetic field, we give in Appendix A some
approximate results for the energy levels in the presence
of a magnetic field making an arbitrary angle with the
interface between the semiconductor and the insulator.

3. COULOMB POTENTIALS AND SCREENING

To calculate the effect of ionized impurities on the
transport properties of carriers in the inversion layer,
we must find the change in potential energy of the

® This approximation tends to overestimate dgept in high-
resistivity Si, for which the Fermi level in the bulk may be well
inside the energy gap, and to underestimate duep1 in heavily doped
InAs, for which the conduction band at the surface must lie
well below the Fermi level before the inversion layer begins to be
occupied.

10 W, E. Howard (unpublished).

1nF, F, Fang and W. E. Howard, Phys. Rev. Letters 16, 797
(1966). We are indebted to J. F. Janak for pointing out a correc-
tion to the variational treatment indicated by Fang and Howard.
The correction is used in finding Eq. (22) of the present paper.
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inversion-layer carriers because of the presence of an
impurity. The carriers in the inversion layer will
redistribute themselves in the presence of the impurity
potential, increasing in number where their potential
energy is lowered, and decreasing in number where their
potential energy is raised, thus screening the charge
of the impurity or other Coulomb center.

We shall calculate the effect of screening by analogy
with the classical derivation of the screening length
in a semiconductor in three dimensions.”? We suppose
that the impurity potential 6¢ depends only on the
coordinates 7 and z, where 7= (x2+49?%)'2, and consider
a region far enough away from the impurity that the
potential d¢(r,2) is a slowly varying function of 7. The
potential then leads to an extra potential energy
—edp(r,2) in (12), which to first order in 8¢ gives no
change in the eigenfunction {;(z), and gives a change

SEA(r) = —eilr) = —e / S0 EEdE  (23)

in the ith eigenvalue, where g;(z) is the normalized
charge distribution (18). If we substitute the energy
change associated with the impurity potential into
(15), and keep only the terms linear in é¢, we find that
the induced charge density in the inversion layer is

pina(r,2) = — (/2m) 22 s:s()gi(2) (24)
where
§i= (27r62/rc)N,-/Ed,,- s (253.)
Edli/KT= Fo(x)/Fol (x)
=[1+exp(—«)] In[1+exp(x)], (25b)

x=(Ep—E/")/KT, and all other quantities have the
same significance as in (15) and (17).

For the electric quantum limit at absolute zero, the
screening constant (25) is independent of carrier
concentration, and has the value

(26)

This agrees with the result obtained from the wave-
vector-dependent longitudinal dielectric constant of a
degenerate two-dimensional electron gas.®®

Poisson’s equation (2) for the potential change d¢
thus becomes

V256(7,2)—2 2 5:$i(r)gi(2) = —4mpexs (r,2) [k, (27)

where pext is the external charge density, here associated
with the impurity ions or other charged centers.
Solutions of (27) for a number of cases of interest are
given in Appendix B and are used in the following
sections to calculate the energies of bound states in the
inversion layer, and the differential cross section for
screened Coulomb scattering.

s=2n,maqe*/ M.

12 See, for example, F. Stern, Solid State Phys. 15, 299 (1963),
Sec. 48.
13 F, Stern, Phys. Rev. Letters 18, 546 (1967).
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The simple screening constant given in (26) no
longer applies if more than one electric sub-band is
occupied, or at temperatures for which completely
degenerate statistics cannot be assumed. In particular,
the screening constant for higher sub-bands will be
larger than for the lowest sub-band, an effect discussed
for a three-dimensional case by Robinson and Rod-
riguez.!* The increase in the screening constant for the
higher sub-bands is balanced at least in part by the
smaller values of ¢;(r) and g:(3) associated with the
greater spatial extent of the charge distribution in the
higher sub-bands.

4. BOUND STATES
A. General Considerations

If the electrons in the inversion layer move in an
average potential ¢(r), and if they have an isotropic!®
effective mass m*=m;=m,, then their energy levels
and wave functions will satisfy the two-dimensional
effective-mass equation

[— (2/2m*) Vi~ e (r) — E]Y (%,9) =0.

We assume that only the lowest electric sub-band
is occupied, and identify the zero of energy in (28)
with the bottom of this sub-band. The procedure for
determining ¢(r) in (28) is discussed in Sec. 3 and in
Appendix B. Thus we study here the effect of an
additional potential, assumed to be attractive, whose z
dependence has been treated by first-order perturbation
theory and replaced by its average value, while its 7
dependence is to be treated using (28). The complete
envelope function of bound states in this potential is
given by the product of the envelope function found
in (28) and the wave function £(z) given in (11).

If we take advantage of the circular symmetry of @,
and make a transformation to eliminate the first
derivative, then (28) becomes

PIH{(G—mAr

(28)

+ Qm*/W)[E+-ed(r) 3P (r)=0, (29)
where P""=d2P/dr?, and
V(x,9)=7r"12P(r) exp(t=imb). (30)

The angular-momentum quantum number = here
takes on the values 0, 1, 2, ---, and P(r) must vanish
at the origin and at infinity for a bound state.

If there were no screening by the inversion-layer
electrons, if the inversion-layer charge distribution
g(z) were a delta function at the interface between the
semiconductor and the insulator, and if the Coulomb
center of charge e were also at the interface, then the

(1;‘6{1) E. Robinson and S. Rodriguez, Phys. Rev. 135, A779
16 When the effective mass is not isotropic, the methods de-
scribed by W. Kohn [Solid State Phys. 5, 257 (1957)] can be used.
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TasLE II. Values of parameters used in the numerical calcu-
lations for InAs and for the (100) surface of Si.

InAs Si-(100)
Electron effective mass parallel to 0.025 0.19
surface (m)
Electron effective mass perpendicular to 0.025 0.98
surface (m)
Kse, dielectric constant of semiconductor 14.3 11.8
Kins, dielectric constant of insulator 2.8 3.8v
k= (KsotKins) /2 8.55 ;.8

7y, sub-band degeneracy 1

fyy factor for interband scattering® 1 1
a*, effective Bohr radiusd (&) 181 22
Ry , effective rydberg, Eq. (34) (meV) 4. 42

§, degenerate screening constant using &° 1.1X108  1.8X107

[ =N

(cm™)
& Mylar o See Eq. (46). e See Eq. (41).
b SiO2 d Equation (36)

effective potential energy in (28) would bel®
—ep(r)=—e/ar,
k= % (Ksc+Kins)

is the average of the dielectric constarts in'the semi-
conductor and the insulator. '

The solution of (29) proceeds by analogy with the
three-dimensional case,”18 and the eigenvalues are the
infinite set of (2z—1)-fold degenerate levels!®

(31

where
(32)

E.=—(n—3)"Ry*, (33)
where the unit of energy is the effective rydberg
Ry*=m*et/ (22h?) , (34)

and the quantum number # takes on the values m+1,

m~+2, ---. The ground-state envelope function is
¥=(8/x)'a*" exp(—2r/a*), 35)
where
a*=ih?/m*e? (36)

is the effective Bohr radius. Using parameters ap-
propriate to Si-SiO; interfaces, as given in Table II,
we find that Ry*=42 meV and ¢*=22 A.

For a Coulomb potential due to an ion at the surface
of a semiconductor, with electrons free to move in the
semiconductor, instead of being confined to an in-
version-layer sheet as we assumed, the ground-state
energy is —iRy*.20

16 This found from the results of Appendix B or from the method
of images [see, for example, J. H. Jeans, The Mathematical Theory
of Electricity and Magnetism (Cambridge University Press,
Cambridge, England, 1951), 5th ed., Sec. 22].

17 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), 2nd ed., Sec. 16.

D. Landau and E. M. Llfshxtz, Quantum Mechanics
(Addlson-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1958), Sec. 36.

1S, Fligge and H. Marschall, Reckenmethoden der Quanten-
theane (Springer-Verlag, Berlin, 1952) , 2nd ed., Problem 24.

2 J. D. Levine, Phys. Rev. 140 A586 (1965), Eq. (10). See
also E. P. Prokop’ev, Fiz. Tver. Tela 8, 2770 (1966) [English
transl.: Soviet Phys.—Solid State 8, 2209 (1967)] The dielectric
constant « should be replaced by k=%(xk+1) in these papers if
our Eq. (31) applies.



822 F. STERN AND W. E. HOWARD 163
1.0 T T T T energy of the lowest state is, for small 7,
E= (428%/4m*) exp(—2/I). 39
0.8 -
The strength integral I can be calculated for the
screened potential associated with charge Ze located
2 06 i at an arbitrary distance from the semiconductor-
= insulator interface, as calculated in Appendix B. We
= find, using (B17), that
i oaf 50,540 . I=2|Z|/a*s, (40)
independent of the position of the ion and of the thick-
02+ sd=1 ~ ness of the inversion layer.
e /§d=5 For the electric quantum limit at absolute zero, we
find from (26) that
‘ ! ! S *
° 0 2 4 6 8 10 §=2n./a*, (41)

Fi6. 4. Screened Coulomb potential in an inversion layer of
zero thickness located at the semiconductor-insulator interface
when a charge ¢ is located a distance d away, as given by Eq.
(B19). The screening constant is §=4/a*, where ¢* is the effective
Bohr radius of Eq. (36). The average dielectric constant of the
two media is &, and 7 is the radial distance in the plane from the
point closest to the charge.

For potentials differing from the Coulomb potential,
we can infer something about the solutions from the
strength integral

1= ntefi) [ e ar, 37)

which is finite when there is screening. To do this, we
note that Eq. (29) for the function P(r) is identical
with the corresponding three-dimensional radial equa-
tion if we identify the two-dimensional orbital angular-
momentum quantum number m with /4%, where 7 is
the three-dimensional quantum number. We can then
make use of a theorem proved by Bargmann, which,
restated for two dimensions, says that the number %,
of solutions of (29) for m>£0 obeys the inequality

2mna<lI. (38)

Bargmann’s proof is not directly applicable when
m=0, but it has been shown that for any attractive
circularly symmetric potential there is always a two-
dimensional bound state with orbital angular-mo-
mentum zero, no matter how weak the potential is,*%
which is not true in the three-dimensional case.?' If
we identify the range of the potential with twice the
reciprocal of the screening constant § where § is
obtained from (25) by replacing « by the average
dielectric constant & of (32), we find that the estimated?

21V, Bargmann, Proc. Natl. Acad. Sci. (U. S.) 38, 961 (1952).

2 See p. 156 of Ref. 18.

28 This has been proved for an arbitrary attractive potential in
two dimensions by % Jepsen and T. D. Schultz (to be published)
and by J. C. Slonczewski (unpublished), but disagrees with a
remark in P, M. Morse and H. Feshbach [Methods of Theoretical
Physics] (McGraw-Hill Book Company, Inc., New York, 1953),
p. 1654].

so that I=#u,71if |Z|=1. Thus the screened Coulomb
potential is not strong enough under these circum-
stances to bind states with orbital angular-momentum
quantum number greater than 0. However, I is not
small enough to make (39) a reliable estimate for the
binding energy when m=0. Thus a more detailed
treatment is required to find the binding energy for the
screened Coulomb potential.

B. Bound States for a Model Potential

To investigate the energies of bound states for a
tractable potential ¢(r), we use the model that leads
to Eq. (B19), with Z=-41 to make the potential
attractive. The potential is calculated for an inversion
layer of zero thickness located at the semiconductor-
insulator interface, with a charge e located a distance
d away, and is illustrated for a screening constant
§=4/a* in Fig. 4. This model does not accurately repre-
sent the more realistic potential given by (B9)-(B16)
because it ignores the thickness of the inversion layer,
but was used because of its considerably simpler form.
The difference between our model potential and the
more realistic potential is not likely to obscure quali-
tative features such as the dependence of the bound-
state energies on the separation d and on the screening
constant 8.

In applying our model potential, we identify the
distance d between the inversion-layer sheet and the
attractive Coulomb center with the average thickness,

Zav=3/b, (42)

of the inversion-layer distribution of Egs. (21) and
(22). This is intended to represent the average distance
between an electron in the inversion layer and an
attractive center at the semiconductor-insulator inter-
face. For centers in the insulator, larger values of d
should be used. Note that the ionized acceptors in the
depletion layer of the p-type semiconductor are nega-
tively charged, and thus constitute repulsive centers.
There will be attractive centers in the depletion layer
if it is compensated.
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We have obtained numerical solutions of the two-
dimensional effective-mass equation (28) for the model
potential (B19) with a number of values of d, and a
number of values of the screening constant 3 In
particular, when §=0, the potential becomes the un-
screened potential'®

¢ (r)=(e/R) (r*+d*) 2. (43)

Results of the calculations for §=4/¢* and 5§=0 are
shown in Fig. 5. The integration procedure used is due
to Cooley.2

The large ratio of binding energies for the unscreened
and screened cases shown in Fig. 5 suggests the possi-
bility of interesting freeze-out effects in inversion layers
at low temperatures as the number of charges in the
inversion layer is changed. We shall return to this
point in Sec. 6.

Figure 6 shows how the binding energies vary with
the screening constant for a number of values of d.
From this figure we can estimate binding energies for
InAs at absolute zero, for which §=2/¢*, and can
obtain approximations to deal with the screening at
nonzero temperatures. The lower curve of Fig. 6, for
d=2a*, can be fairly well approximated by E;=0.54
Xexp[—2.8(a*3)" " ]Ry*. The simple result (41) for §
holds only at low temperatures. In general, as shown
in (25), the screening constant depends both on tem-
perature and on inversion-layer carrier concentration.

Thus far we have discussed only the lowest bound
state associated with the lowest electric sub-band. For
completeness, we must consider also three other kinds
of states. The first of these are the higher-excited bound
states associated with the lowest electric sub-band. We
shall not deal with these further, since they are likely
to be so close to the bottom of the sub-band that they
do not have important experimental consequences.

Second, there are the bound states associated with
higher electric sub-bands derived from the same bulk-
energy surfaces that give the lowest sub-band. The
higher sub-bands have more extended charge distri-
butions, and therefore weaker potentials and smaller
binding energies. In addition, the energies of the bound
states will be raised by the amount of the splitting
between sub-bands. Nevertheless they may lie lower
in energy than the bottom of the lowest sub-band if the
screening constant is small, and thus represent possible
excited states of the attractive center. If these states
lie in the first sub-band, they may affect the scattering
of those carriers whose energy lies nearby.

The third type of state arises in a surface such as
(100)-Si, in which there are higher electric sub-bands
associated with bulk-energy ellipsoids not equivalent
to those that give rise to the lowest sub-band. In this
case, as in the previous one, the binding energy is
reduced because of the greater value of z,, for the higher

. #J. W. Cooley, Math. Comput. 15, 363 (1961). We are
indebted to Dr. Cooley for providing the program for the
integration.
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sub-band, and the state is raised by the sub-band
separation. But now the effective rydberg is increased
because of the larger effective masses associated with
the second family of constant-energy ellipses for motion
parallel to the surface. In general, these states could
even lie lower than the states whose energies are shown
in Figs. 5 and 6, and could be the primary bound states
associated with the attractive center. However, esti-
mates for the case of (100)-Si, based on calculations
of the upper electric sub-bands,® indicate that these
states are higher in energy than the ground state
associated with the lowest electric sub-band, at least for
conditions near the conductance threshold. From Fig.
6 it is clear that as the screening increases the last
two types of bound states, being associated with larger

10 T T T T T T T

BINDING ENERGY Ep (Ry*)

‘0‘4 1 1 1 1 i 1 1
0 ! 2 3 4
SCREENING CONSTANT 5 (a*7)

Fic. 6. Binding energy as a function of screening constant for
three distances between the impurity and the inversion-layer
plane, calculated from the model potential (B19),
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Zay, Will decrease in depth at a faster rate than the
ground state associated with the lowest sub-band, and
thus remain higher in energy if they are higher in the
absence of screening.

Since all the kinds of states we have discussed arise
from a single attractive center, they are statistically
linked to each other. Only one state of the set may be
occupied at a given time.

The considerations thus far, including the energies
shown in Figs. 5 and 6, apply only to isolated Coulomb
centers. For densities of practical interest, the over-
lapping of wave functions of the bound states will
limit the range of binding energies for which these
states can be represented as discrete levels separated
from the bottom of the lowest electric sub-band. By
analogy with the three-dimensional situation,? we
estimate that overlap of the bound-state energies with
the continuum occurs when

re/@*~2(E[Ry* )77,

where 7,= (wNint) "%/ is the radius of the Wigner-Seitz
circle associated with a concentration Ny of attractive
centers per unit area, and Ej is the magnitude of the
binding energy of the bound state. We can rewrite

(44a) in the form ’
NoverlapNEb[:Ry*:l/47ra*2 .

(44a)

(44b)

For smaller concentrations of attractive centers the
bound states will form a distinct impurity band, and
for larger concentrations they will merge with the
bottom of the continuum and form a tail in the density
of states.

The density of states associated with random im-
purity centers is a complicated problem in three
dimensions. The reader should recognize that Eq. (44)
is a first attempt to estimate the overlap effects in the
two-dimensional case, and that the specific values are
subject to revision.

If we nevertheless use the estimate in (44), and take
the binding energy from Fig. 5 for the wumscreened
potential, using d=43 A for (100)-Si and d=101 A for
InAs 26 and taking a¢* from Table II to obtain E;=0.5
and 1.2 Ry*, respectively, in the two cases, we find that
the concentrations for which overlap effects become
important are 9X10" cm™2 for (100)-Si and 3X10%
cm™2 for InAs. The values of N, encountered in typical
experiments®*1* on (100)-Si surfaces are in the range
1 to 5X10" cm™2, while the value found in the InAs
experiment? is 6X10" cm™2. We conclude that the
bound states for the umscreened potential have fully
merged with the continuum in InAs, and are more or
less discrete in (100)-Si. As enough carriers are added

26 See, for example, N. F. Mott and W. D. Twose, Advan.
Phys. 10, 107 (1961).

% These values of d are taken from (22) and (42), for 3X 101
inversion-layer electrons/cm?, and for N equal to 1X10% and
2.6)X 1018 cm™ for Si and InAs, respectively,
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to the inversion layer to introduce screening, the bound
states in (100)-Si will also merge with the continuum,

5. IMPURITY SCATTERING
A. Born Approximation

Scattering of an electron in the inversion layer from
an initial state ¥, to a final state y; by the potential of a
charged scattering center is most easily treated in Born
approximation. If the scattering potential is — e¢(7,3),
then the differential cross section is found from time-
dependent perturbation theory?’ to be

o(0) = (@m*e’/2ntitv)) | (4|6 |¥i) |2, (45)

where m* is the effective mass (assumed circularly
symmetric) for the final state, v; is the carrier velocity
for the initial state, and Q is the area of normalization
for the wave functions.
If we write
Yi=0""0;(2) exp(ik;- 1), (46)

where % is normalized, and a similar expression for ¥,
we find that the matrix element in (45) becomes

(2r/2) / To(Sryrdr / i@ @ (ra)ds, (A7)

where S= |k;—k;| is the wave-vector change during
scattering.

When the lowest electric sub-band is degenerate, two
kinds of complications may arise. The first, illustrated
by the (111) surface of Siin Fig. 3, occurs if the #,-fold
degenerate sub-band has minima at %, points equivalent
by symmetry in the two-dimensional Brillouin zone
associated with the surface periodicity. In that case,
one would have to consider the anisotropy in the scatter-
ing associated with the anisotropic mass of each ellipse,?8
and the possibility of intervalley scattering by the
Coulomb centers.? We shall not consider such cases
further here.

A second complication is illustrated by the lowest
sub-band for the (100) surface of silicon, which is at
the center of the Brillouin zone and is doubly degenerate.
The two states are associated with wave functions
having different dependences on the coordinate perpen-
dicular to the surface on an atomic scale, but the same
over-all modulating function. Thus the sub-bands are
degenerate in our effective-mass approximation, but
the degeneracy could be removed in a more exact
treatment. The experimental evidence? suggests that
the splitting is small at low magnetic fields.

27 See, for example, Sec. 29 of Ref. 17.

% R. A. Laff and H. Y. Fan, Phys. Rev. 112, 317 (1958); L. J.
Neuringer and D. Long, bid. 135, A788 (1964); A. D. Boardman,
ibid. 147, 532 (1966);-V. M. Bondar, O. G. Sarbei, and P. M.
Tomchuk, Fiz. Tver. Tela 8, 2511 (1966) [English transl.:
Soviet Phys.—Solid State 8, 2012 (1967)].

® G. Weinreich, T. M, Sanders, and H. G. White, Phys. Rev.

114, 33 (1959).
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We must make allowance for this double degeneracy
in calculating the total scattering cross section, since
carriers may scatter not only within the same sub-band,
but also into the other sub-band of the degenerate
pair. In the absence of a detailed theory, we allow for
such scattering by replacing %(z) in (46) by the en-
velope function {(z) of Eq. (12) for the lowest sub-
band,®® and then multiplying the cross section given
by (45) by a factor u,. If the z dependence of the
perturbing potential is weak, then #,~1. When {(z)
is used for k(z), the integration over z in (47) gives
&(r), the average impurity potential in the inversion
layer, as discussed in Sec. 3 and in Appendix B.

The average potential ¢(r) in the inversion layer
associated with an impurity located at x=y=0,
2=2, is

3= ] " A (o) o) hd, (48)

where the coefficients A (k,20) are given in (B9)-(B16).
Thus the Born approximation differential cross section
associated with an impurity at 2,is

o (0) = (2am*en,/ 1) | A (S,2) |2 (49)
if we use (45)-(48), and make use of the relation (B7)
to evaluate the integral over 7 in (47).

The rate of scattering through an interval df is
taken to be the sum of the scattering rates of the
individual scattering centers acting independently. It
is given by 771(0)d0, where

771(0) = (2rm*en,/H®) / "’ N (20)| A (S,20) [2dz0, (50)

and N (o) is the density-of-scattering centers per unit
volume at a distance z, from the semiconductor-
insulator interface.

To proceed further we must know N (z,), the distri-
bution of charged scattering centers. For the purpose
of this paper we assume that there is a uniform volume
density Nins of centers in the insulator, a density
Ne=Na+Np in the semiconductor depletion layer,
where N, and Np are the concentrations of ionized
donors and acceptors, respectively, and a surface
density Nin of charged scattering centers at the inter-
face. The limits z; and 2, correspond to the boundaries
of the insulator and of the depletion layer, respectively,
but can be taken to be infinite if, as in the cases we
consider, |Sz1|>>1 and Sz>>1 for most values of
scattering angle.

With these approximations we find that the mo-
mentum-scattering rate due to charged scattering

0 If the quantities wis and w; in Eq. (12) are nonzero, the
expression for the cross section becomes somewhat more compli-
cated. This complication does not arise for electrons in (100)-Si
or in InAs inversion layers,-and is ignored in the following
discussion.

SEMICONDUCTOR SURFACE INVERSION LAYERS

825
centers can be written
Tion += / 771(8) (1— cosf)db
= (2rm*en,/1®)Z;N; ) B;(S)(1—cosf)ds, (51)

-y

where § enters through S=2k sin}6. The index j refers
to the interface, insulator, and semiconductor depletion-
layer scattering centers, respectively, with surface or
volume concentrations N;. The coefficients B; are
given in (B21). At low temperature, the only case we
evaluate in this paper, the mobility is given by erion/m*,
where 7 is evaluated for k=%, the wave vector at the
Fermi surface.

Numerical examples for the mobility calculated from
the foregoing expressions for (100)-Si inversion layers
and for InAs inversion layers are given in the following
section.

B. Validity of the Born Approximation

We now turn to the evaluation of the validity of the
Born approximation for screened potentials. The
example we analyze is that of an impurity of charge
Ze, with Z=+-1, located a distance d from an inversion
layer of zero thickness located at the interface between
two dielectrics whose average dielectric constant is .
The screened potential for this case is the same one
used in Sec. 4B, and is given by Eq. (B19) and illus-
trated for various values of 4 in Fig. 4.

The momentum scattering cross section, which
includes the weighting factor 1—cosf, has been evalu-
ated numerically for this potential using the phase-shift
method and Eq. (C11). In addition, we have evaluated
the momentum cross section using the Born approxi-
mation. From (C11), (49), and (B18) we find

om= (2rm*e/ih*v)

‘K'

X | (S438)"? exp(—2Sd)[1—cosf]ds.

-7

(52)

The screening constant § was taken from (41) to equal
either 4/a* or 2/a*, corresponding to #,=2 or n,=1,
respectively. The former case would apply to (100)-Si
surfaces, and the latter to InAs surfaces. We take the
scattering factor 7, of Eq. (49) to equal 1 here.

The momentum cross section, in units of a*, is given
in Fig. 7 as a function of Fermi energy im*s for three
values of 8d, with §=4/a* The curves for the phase-
shift calculation are for attractive (Z=1) and repulsive
(Z=—1) potentials, while the Born-approximation
curve applies for both signs of Z. The Born approxima-
tion gives quite good results over a wide energy range
when 8425, but fails at small values of 5d and at low
energies.



826

30

MOMENTUM CROSS SECTION (a*)

F. STERN AND W. E. HOWARD 163
T T T T 30 T T T T 3
sd=1
feasa*

03

| ol
~~ <REPULSIVE
N
—_—
03 1 ! 1 1 1 1 1 1
0 0.2 04 06 08 10 030 -0.2 04 06 08 1.0 0'030
ENERGY (REDUCED RYDBERGS)
(a) (b)

Fi1c. 7. Momentum cross section, calculated using Eq. (C11) and
between the external charge Ze and the inversion-layer plane, for
Born-approximation cross section is independent of the sign of Z.

To see what values of the parameters correspond to
typical experimental conditions, we identify the distance
d between the scattering charge and the inversion layer
with the average inversion-layer thickness given by
Eq. (42). We consider a (100)-Si sample with 10%
inversion-layer carriers/cm? and with 10' acceptor
ions/cm?® in the depletion layer. The momentum cross
section, as given by the phase-shift method of Eq.
(C11), and by the Born approximation, Eq. (52), is
shown in Table IIT. We see that the phase-shift cross
sections for attractive and repulsive potentials lie
within 159, of each other, and that the Born-approxi-
mation cross section lies slightly higher.

Also shown in Table III is a similar comparison for
InAs, using numbers representative of the experiment

TasLe III. Comparison of the momentum cross section as
calculated by the Born approximation and by the phase-shift
method of Eq. (C11) for attractive (Z=1) and repulsive (Z=—1)
screened Coulomb scatterers of charge Ze. The potential used
is that of Eq. (B19), in which the distance d between the scatterer
and the inversion layer is taken to equal the quantity zay of
Eq. (42). The calculation is made for the indicated values of
the inversion-layer electron concentration and bulk-acceptor
concentration, using the parameters of Table II. Also given are
the sums of the scattering phase shifts, taken over all values of
the orbital angular-momentum quantum number 7.

Si (100) InAs
Ninv (cm™) 1.0X 1012 3.0x 101
Ny (cm™3) 1.0X 1018 2.6 1016
Er Ry*) 0.15 6.2
Zav (&) 29 101
sd 5.3 1.1
om(Born) (a*) 091 0.017
om(Z=1)(a*) 0.89 0.015
on(Z=—1)(a*) 0.78 0.019
> nm (Friedel) /4 /2
> m(Z=1) 0.80 1.57
S mZ=—1) 0.75 1.57

(c)

the model potential of Eq. (B19), for three values of the distance d
Z=1 (attractive potential) and Z=—1 (repulsive potential). The

of Kawaji and Kawaguchi.? Here again we find the
three cross sections to be rather close together.

Another test of the screened potential due to a charge
Ze is the Friedel phase-shift sum rule, which we write
in a slightly generalized form® for electrons in two
dimensions:

0

2005 i [ (dnm,i/dE) f(E)IE=Z,

—00

(33)

where the sum"goes over all orbital angular-momentum
quantum numbers m from —w to e, and over all
electric sub-bands ¢, with orbital degeneracy #,;. The
integration is over all electron energies E, and f(F)
is the Fermi-Dirac occupation probability of a state
of energy E.

Implicit in our use of a phase shift is the requirement
that the constant-energy surfaces have circular sym-
metry, which is satisfied for InAs, and for the lowest
sub-band in (100) surfaces. Then if only the lowest
electric sub-band of electrons is occupied, (53) simplifies
at absolute zero to

wZ

3 mm(Er)= (54)

2%,

We have evaluated the phase-shift sum in (54) for
the cases summarized in Table III, and give the results
at the bottom of that Table. Phase shifts through
|m|=5 were calculated for Si, and through |m|=19
for InAs. The contributions of higher terms were
estimated by using the Born approximation (C16) for
the phase shifts, the asymptotic expression ¢(r)~r"3

31 F, Stern, Phys. Rev. 158, 697 (1967).
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for s7>>1 given in (B20a), and the relation®

/ wJ;F(kf)f“ tr=(k/m)(W—1)"  |w[>3, (55)

0

which shows that the phase shifts fall off approximately
as m~2 for large |m|. This behavior was exhibited by
the calculated phase shifts.

The phase-shift sums for InAs agree to three figures
with the requirement of the Friedel phase-shift sum
rule, suggesting that we have chosen a self-consistent
screened potential ¥ yet the Born-approximation mo-
mentum cross section differs from the phase-shift
results by about 15%,. One of us has shown elsewhere®!
that in three dimensions the Friedel sum rule is satisfied
for the conventional screened Coulomb potential if the
Born approximation is valid. A similar result applies
in the two-dimensional case. The results of Table III
show that the converse does not necessarily hold.

For Si (100) surfaces the phase-shift sums differ
by less than 59, from the predicted value. They are
smaller than those for InAs by about the factor of 2
which arises via (54) because #,=1 for InAs and
n,=2 for Si (100) surfaces. We note that the Born-
momentum cross section of Table III is quite close to
the phase-shift value for an attractive potential. The
dominant scatterers are the interface scatters, which
for the experimental case considered?* have an attrac-
tive potential. However, the agreement must be
considered accidental, and the spread of about 159,
between the attractive and repulsive values of oy,
must be taken as a better guide to the validity of the
Born approximation.

On the basis of the results in Table III and in Fig. 7
we conclude that the Born approximation is satisfactory
for the experimental range of N,y in InAs, but becomes
increasingly unreliable for determining the momentum
cross section in (100)-Si surfaces from the screened
Coulomb potential when the inversion-layer carrier
density is much below 10* cm™2. On the other hand,
for values near 10'? and above, which cover much of the
range examined experimentally,* the Born approxi-
mation should give reasonable estimates for screened
Coulomb scattering in the lowest electric sub-band.

In calculating the potential and the scattering cross
section, we have here considered only screening by
free electrons in the inversion layer. But there will
also be screening by bound electrons, and modification
of the screening by free electrons in the neighborhood
of bound electrons. We have not treated these problems,
although they are clearly important when the inversion
layer is sparsely populated by electrons, some of which
may be in bound states and some in the electric
sub-band.

Although our calculations are restricted totheelectric-
quantum limit, in which only the lowest electric

#G. N. Watson, Theory of Bessel Functions (Cambridge
University Press, Cambridge, England, 1962), 2nd ed., p. 403.
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Fic. 8. Calculated low-temperature mobility for an z-type
inversion layer on InAs with the indicated values of bulk-acceptor
concentration N4 per cm’, and with 6X10" singly charged
scatterers per cm? at the InAs-Mylar interface. The points were
measured at 4.2°K by Kawaji and Kawaguchi (Ref. 3), on a
sample with a net acceptor concentration of 2.6X1016 cm3. The
calculated curves for N4=10% and 2.6X10¢ cm™3 terminate
where the Fermi level enters the next-higher electric sub-band
(see Ref. 10) and additional scattering processes must be con-
sidered. For N,=10"7 cm™3, the calculated crossover occurs at
Niny=1.3X1022 cm™2,

sub-band is occupied, the scattering rate may be
affected by virtual transitions to higher-lying sub-bands
as the carrier concentration increases and the Fermi
level approaches the bottom of the first excited sub-
band. Such processes have not been included in the
cross sections calculated in this section.

6. COMPARISON WITH EXPERIMENT

Since InAs and Si are the only materials for which
low-temperature inversion-layer mobilities have been
measured,>™* we have calculated surface mobilities for
a number of cases for these materials, using the Born
approximation as expressed in Eq. (51) and (B21),
and material parameters given in Table II. Note that
while the comparison of Born approximation and phase
shift cross sections in Sec. 5 was made for a delta-
function electron distribution in the z direction, the
calculated mobilities given in this section have been
obtained for electrons distributed according to the
variational function given by (21) and (22). The results
apply only to the low-temperature limit, and assume
that screened Coulomb scattering within a single
sub-band is the only important scattering mechanism.

A. InAs

We have calculated the electron mobility at absolute
zero in inversion layers on uncompensated p-type InAs
with 6X 10" interface Coulomb scatterers per cm?, the
value estimated by Kawaji and Kawaguchi® for their
sample if all the centers are singly charged, and for
several values of bulk-acceptor concentration Na,.
The results are shown in Fig. 8 together with the



828

I

STERN AND

5]
>

Si

SURFACE MOBILITY (cm?2 /VOLT - SEC)

N‘n'=‘4x10”cm'

14 -3
N,=10 "cm
3y 103 /

2

FANG AND
3 / FOWLER—
103 , ¢ 4
I
1
]
]
1
;
1
1
]
1
1
3x10° 1 1
3x10" 10'? 3x10'2 o'

INVERSION LAYER ELECTRON CONCENTRATION (cm™2)

F16. 9. Calculated and measured low-temperature mobility of
electrons in inversion layers on (100) Si-SiO. interfaces. The two
upper curves are calculated for 4X 10! interface scatterers per
cm? and for the indicated bulk-acceptor concentrations, using
Eq. (51). The curve for No=10" cm™ is terminated where the
Fermi level enters the next-higher electric sub-band. The experi-
mental data are taken from the work of Fang and Fowler (Ref. 4),
for a sample with Ny=1X10" cm™, The lower dashed branch
of the experimental curve is obtained from the surface conductance
at 4.2°K, assuming that the carriers do not freeze-out. The upper
dashed branch is obtained by extrapolating the exponential
dependence of conductance on 7! to zero reciprocal temperature.
It represents the estimated mobility if the exponential dependence
is ascribed to freeze-out of carriers into inversion-layer bound
states, as discussed in the text.

mobilities measured at 4.2°K by Kawaji and Kawaguchi
on a sample with 2.6)X10'® net acceptors per cm?.

The case of InAs is rather straightforward because,
as noted in Eq. (44), we expect the bound states to
merge with the lowest electric sub-band even in the
absence of screening for Nin=>3X10° cm—2, Further-
more, the Born approximation is expected to give
a reasonably good value for the scattering cross sec-
tion for the range of values of Nin, covered by the
measurements.

Over the experimental range, our calculated mobility
has the same dependence on Ni,y as does the measured
mobility, and is larger by about a factor of 2. Since our
approximations are not expected to have very high
accuracy, and since there are no adjustable parameters
in the calculation, the agreement is quite good. Com-
pensation, either in the interface scattering charges or
in the bulk doping, is not unlikely, and will tend to
bring the calculated and observed mobilities into closer
agreement.

As the family of curves in Fig. 8 suggests, the calcu-
lated mobility for a single sub-band is not very sensitive
to the bulk doping; for Na=2.6X10' cm™3, only about
109, of the calculated scattering is due to ions in the
depletion layer, the remaining 909, being due to the
interface charges.

The mobility calculated from the scattering cross
section given by Kawaji and Kawaguchi is smaller
than the observed mobility at 4.2°K if their value for
the number of interface scatterers is used, and thus is
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hard to reconcile with the experimental results.®
They used the classical Coulomb cross section (C29)
for coplanar electrons and scatterers, and cut off the
angular integration at a value corresponding to an
impact parameter about half of the distance between
scatterers. Their method gives a mobility p~ N3
and our method gives u~ Nin! for the parameters cor-
responding to their experiments. Only the latter result is
consistent with the observed variation, u~ N, 1202,

The agreement between calculated and observed
mobilities for InAs must be viewed with caution because
of the narrow range of values covered by the data.
Other scattering mechanisms may well become im-
portant outside this range, and extension of the data
to both higher and lower values of Nin, is highly
desirable. But we may conclude that over the range
of values covered by Kawaji and Kawaguchi,? screened
Coulomb scattering by the known interface charge can
account for the measured inversion-layer mobility of
InAs.

B. Si

Silicon surfaces, particularly the (100) surface of Si,
have been investigated extensively through transport
measurements in metal-oxide-semiconductor struc-
tures. The annealed oxides used in such structures
generally show no significant evidence of trapping and
typically have fixed-positive surface-charge densities
N of a few times 10" cm™2, Although this number is
an equivalent interface charge and may actually arise
from a distribution of positive charge throughout the
oxide, we assume that this charge is due to Coulomb
centers at the interface and thus identify Ny in (51)
with the experimental quantity N,,.

Figure 9 shows the calculated mobility versus
inversion charge in (100) surfaces for the case Ning
=4X10"/cm? with two different substrate doping
levels. The factor #, in (51) has been taken as 1; that
is, no intervalley scattering is assumed. This follows
from the effective-mass approach.

The flatness of the curves at low inversion charge
densities reflects the importance of screening in Si. On
the other hand, our approach does overestimate
screening at low charge densities. As with InAs, we
have terminated the calculated curve for N,=104
cm™® where the Fermi level enters the next higher

3 Instead of using the average of the dielectric constants of the
semiconductor and the insulator, as would be appropriate for a
scatterer at the interface, the calculation in Ref. 3 used the
dielectric constant of the semiconductor in calculating the cross
section. In addition, Kawaji and Kawaguchi appear to have
integrated the differential cross section only from 0 to , instead
of from — to . If the indicated changes were made, their calcu-~
lated mobility would be reduced, and would be in poorer agree-
ment with experiment both in its magnitude and in its dependence
on inversion-layer carrier concentration.

#To show that our expressions overestimate the screening
at low charge densities, we note that at absolute zero the screening
constant of Eq. (25) is independent of inversion-layer charge
density. Thus a single mobile electron would fully screen an
arbitrarily large number of Coulomb centers if this result were
correct.
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electric sub-band.® For N,=10" cm™3, the crossover
occurs at N,y =1.2X10% cm™2.

The measured mobility in Si at low temperatures is
more difficult to describe than that in InAs, but we
shall try to summarize the results of Fang and Fowler.
First, at high charge densities the mobility drops fairly
rapidly, approximately as Nin, ™}, and in this region it is
rather insensitive to temperature below ~20°K. This
region we show as a heavy solid line in Fig. 9. It is clear
from the divergence between this line and our calculated
curves that the first Born approximation for scattering
by charged Coulomb centers within a single sub-band
cannot explain the measured mobility at high inversion-
layer carrier concentrations. The mobility turns down
even before the inversion-layer carrier concentration
is high enough that the Fermi level enters a higher
electric sub-band, making possible real transitions
between sub-bands and a reduction in mobility.** This
discrepancy may be due to higher-order scattering
involving virtual transitions to higher-lying electric
sub-bands. We are at present attempting to evaluate
the magnitude of these terms.

Another possible explanation of the decrease in
mobility at high inversion-layer carrier concentrations
may be an additional interface-scattering mechanism
unrelated to the Coulomb centers.?® Such interface
scattering would become more pronounced at higher
values of Niny, as the inversion layer is drawn closer
to the interface. It might also affect the boundary
conditions for the wave functions at the interface.
The apparent absence of interface scattering in the
InAs data of Fig. 8 is not inconsistent with such a
model, since—as shown in Table ITI—the inversion
layer is considerably wider in InAs than in Si.

Below about 10" electrons/cm? the surface conduct-
ance o,, and thus the surface mobility wetr=0s/Ninve,
is a strong function of temperature. If one simply
takes the results at 4.2°K and assumes that all the
inversion-layer electrons are mobile, then one obtains
the lower dotted curve of Fig. 9, implying a strongly
increasing mobility with increasing electron density.

On the other hand, we have pointed out in Sec. 4
that in Si surfaces the bound states associated with the
interface Coulomb centers should be important. Thus
one expects at low temperatures and low-electron
densities some freeze-out or binding of electrons with
its associated thermal-activation behavior. However,
as shown in Fig. 5, the binding energy should depend
strongly on the amount of screening present.

Fang and Fowler* have found that for constant
surface charge in this low-temperature, low-density
region, the surface conductance varies approximately
as exp(—A/KT) over fairly wide ranges of temperature,
with the activation energy A depending upon total

% Indications of such scattering were also found by E. Arnold
and G. Abowitz [Appl. Phys. Letters 9, 344 (1966)] in their
room-temperature measurements.
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charge density and decreasing rapidly with increasing
charge density.

An intriguing quantitative result of this analysis
is that the binding energy obtained for the lowest
charge levels measured (for which the measurements
actually were extended above 200°K) is about 20 meV.
As seen in Fig. 6, the binding energy for a Coulomb
center when d=2a¢* and in the limit of no screening is
0.54 Ry* or about 23 meV. Although the evidence
is by no means conclusive, the closeness of these
numbers suggests that the bound states of Sec. 4 do
play a role in the conductance of Si inversion layers.
If we assume that the exponential factor in the conduct-
ance is associated with the number of mobile electrons
and extrapolate the exponential regions to 7-1=0, then
the intercept conductances or mobilities, as indicated
by the upper dotted curve of Fig. 9, give a slowly
varying function of charge density. The proximity of
the calculated mobility curves to the upper dotted
curve is consistent with our model, which assumes that
Coulomb scattering within a single electric sub-band
is the dominant scattering mechanism in (100)-Si
surfaces except at the highest values of inversion-layer
carrier concentration.

It must be conceded that our interpretation of the
conductance curve is in apparent contradiction to the
results of the Hall-effect measurements on these
surfaces,* which indicate that the strong variation of
conductance near the conductance threshold is domi-
nated by a mobility change rather than a change in
carrier density. However impurity-band conduction
associated with the inversion-layer bound states is
likely, especially after some carriers are induced and
screening by these carriers increases the overlap of the
bound-state wave functions. In such a case the interpre-
tation of the Hall effect becomes very difficult, and
further experimental and theoretical work is required
to distinguish between carrier-concentration changes
and mobility changes in the surface conductance near
the conductance threshold.

Another manifestation of the thermally activated
domain of conductance is the observed shift of conduct-
ance threshold to higher gate voltages with decreasing
temperature. This is expected within the framework
of our model, with each positive interface charge
having a bound state. Indeed the total shift from room
temperature to, say, liquid-helium temperature, when
converted to the equivalent charge, should equal the
density-of-interface charges. If our identification of
Niny with N,, is correct, then the threshold shift is a
measure of N,,, and the threshold at low temperatures
is simply the voltage required to induce a charge
density equal to the integrated charge per unit area in
the depletion layer. For (100)-Si-SiO, interfaces, this
appears to be the case.? Other surfaces show some extra
positive charge which does not trap electrons at low
temperatures.
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The observed* temperature dependence of the
threshold shift does not fit the simplest model of a
single unscreened binding energy of 23 meV corre-
sponding to ions right at the interface. One must
accept, rather, a distribution of ions near the interface,
yielding a distribution of bound states with a maximum
binding energy of 23 meV. Such a situation would
require that the calculated mobility curves of Fig. 9
be revised upward.

Freeze-out effects can also account for some ob-
served? structure in the field-effect mobility ure
=do/dQ, where o is the surface conductance and Q is
the induced charge. This can be seen from the following
considerations: If at low to moderate temperatures
one begins to add charge to a surface channel, initially
there is no screening, binding energies are large, and
most of the charge goes into bound states. As one
continues to add charge, the fraction which goes into
the band begins to screen the centers. The resulting
decrease in binding energy of the localized states in
turn leads to an increased fraction of electrons in the
band. When enough carriers have been added to the
inversion layer, the screening is sufficient to bring the
binding energy down to such a small value that overlap
effects lead to energy levels merged with the band, and
bound states no longer exist.

We have attempted to model this situation numeri-
cally for the case Nin=4X 10" cm~? by using the bound-
state energy E»=0.54 exp[—2.8(a*5)"-] Ry* found for
d=2a* in Sec. 4, taking the screening constant § from
(25) with « replaced by & Assuming the density of
states in the lowest electric sub-band to be unperturbed,
one can calculate the free-carrier concentration N in
this sub-band as a function of the total (free plus
bound) inversion-layer electron concentration N;n, and
the absolute temperature 7.

The calculated results generally yield a peak in the
derivative of the inversion-layer free-carrier concen-
tration with respect to total (free plus bound) inversion-
layer electron concentration near the onset of inversion-
layer conduction. This will also produce a peak in the
field-effect mobility, and such peaks are generally
observed at intermediate temperatures near the onset
of conduction in Si-SiO, inversion layers.*

At some temperatures our calculations indicate bi-
stability for IV, i.e., two stable values of NV for a single
value of Niny. Such bistability would, among other
things, manifest itself in an abrupt increase in the
surface conductance as the inversion-layer charge
increased beyond a critical value. This behavior may
be related to the sharp conductance jumps found in
some early experiments.®® We intend to pursue this
question with an improved calculation of the bound-
state energies with varying screening, using the more
realistic potential given by Egs. (B9)-(B16).

3 W. E. Howard and F. F. Fang, Solid State Electron. 8, 82
(1965).
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Our treatment of the inversion layer near the onset
of conductance is inadequate for a number of reasons.
First, we have used the simple screening relation (25),
which is invalid at low inversion-layer carrier concen-
trations. Second, we have ignored the perturbation in
the density of states of the electric sub-band which
results from the presence of the attractive Coulomb
centers which produce the bound states. Third, we
have based our analytical modeling of freeze-out on a
single curve of bound-state energy versus screening
constant, ignoring the change in inversion-layer thick-
ness with inversion-layer charge, and have used the
curves of Fig. 6, which are based on a rather crude
model potential. Finally, we have not treated the
Coulomb scattering for the case in which some of the
interface centers are ionized, while others have in-
version-layer electrons bound to them, and are neutral.
Specifically, when the screening parameter § is small,
the bound electrons are tightly bound and provide a
significant amount of screening. At higher inversion-
layer carrier concentrations, electrons either are no
longer bound [see Eq. (44)] or are so weakly bound
that they provide a negligible amount of screening.
Some of these approximations can be improved rela-
tively easily, while others require major improvements
in the theory. We are continuing the analysis of the
freeze-out effects, and hope to present improved
calculations later.

None of the approximations we have described is
likely to invalidate the qualitative consequences of
our freeze-out model, and we expect a peak in the
field-effect mobility at intermediate temperatures to be
present in any theory which includes screening effects
on the inversion-layer bound states.

7. DISCUSSION AND CONCLUSIONS

In this final section we summarize some of the limi-
tations of the approach we use to describe the inversion
layer, indicate some directions in which the present
calculation should be extended, and summarize the
nature of the results already obtained.

The approximations used to derive the results of the
present paper include the following:

(a) The effective-mass approximation, which may
not be valid in the inversion layer because the potential
there varies considerably in a distance of the order of
10 atomic spacings.

(b) The assumption that a charged center near the
surface causes a weak perturbation of the average
smooth surface potential. This assumption fails in the
immediate neighborhood of the center, except when
the center is in the insulator, and is also rather poor
when the concentration of the centers and of the in-
version-layer carriers is small.

(¢) The linearized treatment of screening employed
to construct the effective potential, which ignores the
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oscillatory terms that would arise from a more exact
treatment,® and which is likely to fail altogether at
low inversion-layer carrier concentrations.

(d) The first Born approximation for treating the
scattering, which—like our screening model—fails at
low inversion-layer carrier concentrations. In addition,
the higher-order scattering terms which we have
ignored may become important when the Fermi level
approaches the bottom of the first excited electric
sub-band.

There are a number of directions in which our
present results should be extended. First, the higher-
order scattering terms mentioned in Sec. 6 and in (d)
above should be evaluated. Second, a more realistic
potential than the model potential of (B19) should be
constructed to calculate the energies of bound states
in the inversion layer for arbitrary screening constants.
This might make possible a more quantitative treat-
ment of the freeze-out effects discussed in Sec. 6. And
third, the calculation should be extended to higher
temperatures, both by the including lattice scatter-
ing®%% and by taking into account the population of
more than one electric sub-band. When many electric
sub-bands are occupied, it should be possible to relate
the calculation to a conventional surface-scattering
calculation.t® We are at present working on the first
two of these extensions.

In this paper we have studied some properties of
thin semiconductor inversion layers under conditions
such that they are effectively two dimensional. In
particular, we have investigated the additional potential
associated with charged centers near the inversion
layer, including the contribution of screening to the
potential. We have found some properties of bound
states in the inversion layer associated with attractive
charged centers, and have calculated the effect of
charged scattering centers on the mobility of inversion-
layer electrons at low temperature. The results appear
to explain the low-temperature mobility in InAs
inversion layers and some of the properties of (100)-Si
inversion layers. Our approach has the advantage of
simplicity, and can be applied to other inversion layers
as experimental results become available.

Because of its location just under the surface of a
semiconductor, the inversion layer provides a very
useful tool for probing the surface. We believe that
further study of semiconductor inversion layers will
lead to new quantitative information about semi-
conductor surfaces and interfaces.

37V. Ya. Demikhovskii and B. A. Tavger, Fiz. Tver. Tela
?, 996(; ](1964) [English transl.: Soviet Phys.—Solid State 6, 743
1964) 7.

8 L. V. Iogansen, Zh. Eksperim. i Teor. Fiz. 50, 709 (1966)
[English transl.: Soviet Phys.—JETP 23, 470 (1966)].
( “R). F. Greene and R. W. O’Donnell, Phys. Rev. 147, 599
1966).
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APPENDIX A: LANDAU LEVELS

We give here an approximate treatment of the
Landau levels associated with a single-ellipsoidal
energy surface in the bulk when both a strong electric
field perpendicular to the surface and a magnetic
induction of arbitrary orientation are present. Electron
spin is not considered.

If the magnetic induction has components (B,,B,,B.)
in the coordinate system used in Sec. 2, in which the z
direction is normal to the surface, then the Hamiltonian
is

H=} % wij(piteds/c)(pited;/c)+V(z), (A1)

where A is the vector potential and V(2) is the surface
potential well. We use the gauge

A= (Byz—B,y, —B.3,0). (A2)

For simplicity we introduce b;=eB;/c.
The Hamiltonian (A1) with the gauge (A2) does not
contain x, so that we may choose a wave function

¥ =exp(ik.x) f(y,2). (A3)
The Hamiltonian acting on f then becomes
H=3ws3p2+V (2)+was(py—b.2) ps
3w (hke—b:y+by2)24-Fwas (py— b.2)?
+ %iwng ,;h . (A4)

We use coordinates such that wi,=w;3=0, which we
can do without loss of generality provided the constant-
energy ellipsoids of the semiconductor are ellipsoids of
revolution.

We first find an approximate eigenfunction associated
with the first three terms of (A4), which are the domi-
nant terms, and then replace the remaining three
terms by their expectation value. This treatment will
only be valid if the Landau level spacing is small
compared to the separation between the electric
sub-bands, as is the case experimentally 24

The approximate eigenfunction associated with the
first three terms of (A4) is

exp[ —iwas (py2—$0.2%) /wssh J¢ (2) (AS)

“F. F. Fang and P. J. Stiles, Bull. Am. Phys. Soc. 12, 275
(1967) ; also (to be published). We are indebted to Dr. Fang and
Dr. Stiles for discussions of their work.
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where the exponential factor is introduced to eliminate
the term linear in p, in (A4), and {(2) is the solution of
(12) belonging to the lowest eigenvalue E”. The
expectation value of (A4) for the wave function (AS) is

E" 4% (woa—wss/wss) (py—022)%av
+ 2w [ Bk — by — (was/w33) b2+ byz Pay

where we used exp(iap,/h) f(v)= f(y+a) exp(iap,/7).

Equation (A6) can be simplified if we introduce the
new variable y'=y-4[(was/wss)— (by/bz) Jzav—#k2/b.,
and if we introduce into the approximate eigenfunction
a factor exp(ib,%.vy’/#) to eliminate the term linear
in p,. The expectation value of (A4) then is

(A6)

310y - 3ms ™ py P (G by — (wes/wss) b. T

+%1ﬂ2_1522} (Zzav'_ Z2av)+E” ) (A7)
where m; and m, are the principal effective masses of
the constant-energy ellipse, as in Sec. 2.

The first two terms of (A7) give the harmonic
oscillator Hamiltonian for the Landau levels, and the
two terms in braces are small correction terms. The
approximate eigenvalue of the sth Landau level relative
to the energy of the bottom of the lowest electric
sub-band in the absence of a magnetic field is

E= (n+3%) (e| B:|h/m*ms%c)+% (6¢/¢*) (v —2av®)
X{[By— (was/ws3) B. P/mi+ B2 /ma}. (A8)
The principal results embodied in (A8) are that the
Landau-level spacing depends only on the component
of the field perpendicular to the surface, and that the
cyclotron mass which enters in the level spacing is
(mym2)'2, which is the density-of-states mass. These
results are consistent with the interpretation of the
oscillatory magnetoresistance experiments.?4

Even when the magnetic induction parallel to the
surface is 105 G, the correction terms in (A8) are only
of the order of 0.1 meV if m;=ms=0.2m. These terms
do not affect the level spacing, and they do not appear
to be easily observable; however, for some surfaces
with degenerate energy ellipses, a tilted magnetic field
can lift the degeneracy. We do not expect our neglect
of higher sub-bands to lead to significant errors until
high enough magnetic quantum numbers # are reached
to place the energy (A8) near the beginning of the
second electric sub-band.

Not considered here is the effect of slight energy
splitting between levels assumed to be degenerate
in our work, like the doubly degenerate lowest electric
sub-band of (100)-Si surfaces, as shown in Fig. 3. Such
splittings cannot be treated within the framework used
in this paper. ’

The Landau levels for the special case of a magnetic
field normal to the surface and ellipsoid orientations
such that the Hamiltonian (A1) contains only terms
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with ¢= j have been given by Duke,* and are consistent
with the results given here.

APPENDIX B: SCREENED COULOMB
POTENTIAL

We want to find the additional potential produced
by a charge in the oxide, in the semiconductor, or at
the interface between them, for a structure like that of
Fig. 1. For a charge Ze located at r= (a2+42)12=0
and z=32, the additional Coulomb potential (in the
quantum limit, when only the lowest electric sub-band
is occupied) must satisfy

Vi (r,2) — 256 (r)g(2) = — 4w Zed (x)3(9)d (2—20)/x, (B1)

as shown in Sec. 3. Here s is the screening constant
given in (25);

8(2)=30%" exp(—b) (B2)

gives the approximate distribution of inversion-layer
charge, as in (18) and (21);

()= f o(r2)g(2)ds, (B3)

asin (23); and « is the dielectric constant, which equals
kso In the semiconductor (2>0) and equals kins in the
insulator.

To solve (B1) we take advantage of the cylindrical
symmetry to write

5(r,5)= / " Lo An @ (B4)

The potential will satisfy (B1) if
@A 1/d2— A —25sA (F)g(z) = —2Zed (z—20) [k, (B5)
where

A= / A4(2)g (). (B6)

Equation (BS5) is easily found from (B1) if we multiply
the latter by »Jo(k7) and integrate over 7, noting that*

0

f Jo(kr)T (k') rdr=k"15(k—F'). (B7)

Both 4 and «(d4 1/dz) must be continuous across the
discontinuity in « at z2=0.

The impurity potential ¢ will go to zero at the
metallic contact to the insulator, and in the semi-
conductor bulk, because of screening by free carriers.
Such screening effects are absent in the insulator and
in the semiconductor depletion layer. Since both the
insulator thickness and the depletion-layer thickness
are considerably greater than the surface screening

41 C, B. Duke, Phys. Letters 244, 461 (1967).
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length s7! and the carrier wavelength, which are the
characteristic lengths of our problem, we can with
negligible error use the approximate boundary conditions

Ax(z)—0 as (B8)

The solution for A(z) under these conditions is
straightforward, and will not be given here. Only
A(F) enters in any of the calculations for which we
need the potential, so we quote only the results for this
average over the inversion-layer charge distribution.
Charges located in the insulator or at the interface, or
in the semiconductor, respectively, we find

|z]—e.

A (k20)=(Ze/R)Po exp(kz0)/D, <0, (B9)
A (k,20) = (Ze/kso) [P (20)+ 8P exp(—k20) ]/ D,
20>0, (B10)
where
D=Fk+sPy+s6P¢, (B11)
8= (Kso— Kins)/ (KscKins) = (Kso—King) /2K , (B12)
Po=03(b+k)3, (B13)
Poo= (80902 3b%2) (b+k)~3/8, (B14)
P(z)=0*(b—k)3[exp(—kz)
—exp(—d2) (ataiztax?)], kb,
ao=2k (304 k) (b+k)3,
a1=4bk(b—k) (b+k)2,
ar=k(b—k)2(b+k)1, (B15)
P(z)=(1/8)[1+2bz+ 2022
+(4/3)6%*] exp(—bdz), k=0b. (B16)
We find from these results, that
/w r$(r)dr=_Ze/ks, (B17)
0

where §=sks/k This integral enters in Eq. (37) in
considering bound states. Note that (B17) is in-
dependent of the location of the Coulomb center and
of the thickness of the inversion layer. This is a conse-
quence of (B7), which shows that only the value of
A (k,z) for k=0 enters, and of (B9)-(B16), which show
that 4 (0,2) is independent of 2y and of &.

The expressions (B9)-(B16) simplify considerably
when g(2) = 6(2), i.e., when the inversion-layer thickness
goes to zero. We reach this case in the limit b — o0, for
which we find, for any impurity location g,

()= (Ze/’_()/” k (k48" o(kr) exp(—kd)dk, (B18)

where d= | 20| and § is the screening constant calculated
from (25) using a dielectric constant equal to &. In the
absence of screening this gives ¢(r)=Ze/k(r2+d*)'72, as
expected for that case from simpler considerations.'¢
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For numerical purposes it is useful to transform
(B18) to®

(&/Ze)$ ()
= { (@+r)12—5 exp(3d)[ (w/2){Ho(r5)— Vo (r5)}

¢
—/ (224212 exp(—.§z)dz:|¥ ,

(B19)
- { (@4-r*)12—5 exp(3d)

0

X/ (213102 exp(—§z)dz} )

in which H(x) and ¥ (x) are the Struve function and
the Bessel function of the second kind, respectively.
They have been tabulated by Watson,® and approxi-
mate numerical formulas for Hy— ¥, have been given
by Luke,* but numerical values are easily obtained
directly from (B19). Values of #r¢(r)/Ze for various
values of 3¢ are shown in Fig. 4.

Asymptotic expressions for the potential (B18) can
be given in a number of cases:

(%/Zes)$(r)
=27 £ (65°—9%)
NR—s[H_ } 1 :l’
R Rt
R>1, (B20a)
~ QA+ +In(Co)], Kok1, (B20b)
~RH(140) In(/C), pKiLL, (B20c)

where p= &, { = 5d, R*=p*4-{? C=1% exp(y)=0.891, and
v is Euler’s constant. At large distances ¢ falls off as
r=3, apart from oscillatory terms associated with a
sharp Fermi surface,'® while in three dimensions the
corresponding screened Coulomb potential decays
exponentially. '

Finally, we give the coefficients which enter in (51)
in the Born-approximation calculation of the scattering
rate associated with Nin singly charged scatterers
per cm® at the interface, and N, and N, singly
charged scatterers per cm?® in the insulator and the
semiconductor, respectively. They are

Bintz |A—(S,0) 12= (e/’-()2P02/D2’

Bin= f | A(S,20) |*dz0= Bing/2S,

(B21a)

(B21b)

42 See Chapter 14 of Ref. 32.

4 See Table I of Ref. 32.

4“4V, L. Luke, Integrals of Bessel Functions (McGraw-Hill Book
Company, Inc., New York, 1962), pp. 80, 92; Y. L. Luke, J. Soc.
Ind. Appl. Math. 3, 179 (1955).
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B= f wlzi(s,zo) |2dz,

= (¢/ks)2(CotC10Po+8)/2SD2, (B21c)

Co= (205 24b°S+ 4854524435353
+18p254+3b5%)/2(b+S)¢, (B21d)
Ci= (2b*4-148%S)/ (b+S)*, (B21e)

where S=2k sin3f is the momentum transfer in the
scattering process, and the remaining symbols have
the same meaning as in (B9)-(B16).

APPENDIX C: TWO-DIMENSIONAL
SCATTERING

The conventional treatment of elastic scattering in
three dimensions*® must be revised for two-dimensional
scattering. We give here a number of results for po-
tentials with circular symmetry.

At large distances from a scattering center the wave
function can be written as a plane wave plus an out-
going wave:

¥ (r,0) ~exp (thx)+r"12f(0) exp(ikr) ,

where 7= (x*49*)'2 is the radial coordinate in two
dimensions and x=r cosf. The scattering cross section is

o(0)=11(6)|*. (C2)

If the solution of Schrédinger’s equation is expanded
in a Fourier series

V(0= 3 Ru(r) exp(imf)

m=—00

(C1)

=§ r12P,,(r) exp(imf), (C3)
then P, (r) satisfies
P +[(G—m)r2+k—U(r)]Pu(r)=0, (C4)

where B2=2m*E/h? and U (r)=2m*V (r) /%2
The expansion of a plane wave in two dimensions is

exp(ikx)= 5 inTn(kr) exp(imb),  (CS)
and for large kr
Tm(br)~ (2/wkr)12 cos(kr—imr—3w).  (C6)

At large distances from the scattering center the
phase is shifted by 7m, and we can write

R (r)~An(2/wkr)'2 cos(kr—imr—4m+nm). (CT)
By comparing (C3) and (C1), and using (C5)-(C7),

46 See, for example, Chapters V and VII of Ref. 17, or Chapter
XIV of Ref. 18.
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we find
A pn=1" exp(tym)
and

FO)=Qi/xk) 2 S exp(inm) singm exp(imb), (C8)

from which the differential cross section is given by
(C2). The total cross section is obtained by integrating
over o(f) from —= to w, giving

c=@&/k) Y sinpm. (C9)

Comparing (C8) and (C9), we find that the two-
dimensional form of the optical theorem? is
o= (8m/k)12 Im[ f(0) exp(—3im)]. (C10)

The momentum cross section, needed for transport
calculations, is

a,,.=[7r o (8)[1—cosf]do

. (4,/;3)%;0 S0 (pm—mss) . (C11)

The phase shifts can be calculated in Born approxi-
mation. We put

Run(r) = A [T m(er)+Xn(r) . (C12)

If the potential is treated as a perturbation, we can
write

Xon(r) = / G U Wy (C13)

where the Green’s function

Gn(ry") =37T m(br )V (Brs) (C14)
is the solution of
BG ) AP+ 124G/ dr+ (2 —m2r )G (r,r)
=¢"15(r—7¢"), (C15)

and 7« and 75 are the smaller and larger, respectively,
of r and 7. We compare (C12) with (C7) and find that
the phase shift is given in Born approximation by

tang,=—3m / T2 (kr)U (r)rdr. (C16)
0

16 See, for example,®A. Messiah, Quantum Mechanics (North-
Holland Publishing Company, Amsterdam, 1962), Vol. II. Chap.
XIX, Sec. 31; or Eq. (19.14) of Ref. 17; or Eq. (117.7) of Ref. 18.
The extra phase factor in Eq. (B10) arises because of the asymp-
totic form of Jo(x), Eq. (B6).
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If we use the relation®”

Jo(Sr)= > Ja2(kr) exp(imf), (C17)
Me—c0

where

S=|k—k'| =2k sinif (C18)
is the change in wave vector upon scattering, |k|
= |K'| =k, and cosf=k-k'/F2, and if we assume that
all phase shifts are small, we can substitute in (C8) and
(C2) to obtain

© 2

o (6) = (x/28) / U\ Jo(Sr)rdr| . (C19)

This is the Born-approximation result for the scattering
cross section, and can be obtained more directly
without introducing the phase shifts.*

An exact solution of the scattering problem is possible
for the Coulomb potential energy V(r)=—Zé/kr.4®
The Schrodinger equation then is

V&Y~ (k2+2kGr1)y =0, (C20)
where V% is the two-dimensional Laplacian, and
G=m*Ze/kih*=Z/a*k, (C21)

where ¢* is the effective Bohr radius, defined in (36).
If we introduce £=7—x as a coordinate, we find that a
wave function of the form #(§) exp(ikx) satisfies
(C20) if

h(§)=F (iG,3,ikE) (C22)
where F(a,b,%) is the confluent hypergeometric func-
tion.*® The asymptotic form of y for large £ is

¥(r,0) ~exp{ikx—iG In[kr(1— cosd) ]}
+ f(6)r1”2 exp[tkr+1G In(2kr) ],
T'(3—1G) exp(2:G In sin6)
T(iG)(2ik)2sindd
47 See Sec. 11.2 of Ref. 32.
48 See, for example, Sec. 29 of Ref. 17.

49 See, for example, Sec. 20 of Ref. 17, or Sec. 112 of Ref. 18
for the three-dimensional calculation, which we follow.

(C23)

where

0)= (C24)
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If we note that™®
I'(3+4iG)T'(}—1G)=n/cosh(zG) , (C25)
I'(iG)T(—iG)=7/G sinh(xG) , (C26)

we find the differential scattering cross section for
two-dimensional Coulomb scattering to be

o(0)=G tanh(7G)/2k sin?36. (c27)

In the limit of large carrier velocity we can replace
the hyperbolic tangent by its argument and obtain

o (0)~ (r/2k)(Z&*/khv)?/sin%0, =G<K1, (C28)

which is exactly the result obtained for this case from
the Born approximation. This can be seen if we let the
distance %o and the screening constant § go to zero and
the inversion layer width constant b go to infinity in
(B9), and substitute this result in (49), using n,=1.

In the limit of small carrier velocity the argument of
the hyperbolic tangent in (C27) goes to infinity, and
the cross section becomes

c(0)~ (| Z| &/ 2%m*?)/sink0, =G>1. (C29)

This is the classical differential cross section,? given by
|db/df|, where b= (Zeé*/km*1?) cotlf is the classical
impact parameter.

Two-dimensional Coulomb scattering thus provides
a case in which the Born, exact, and classical cross
sections are all different, while in three dimensions they
happen to be the same. The conditions GK1, or G>>1,
are conditions for the validity of the Born and the
classical approximations, respectively, as is nicely
confirmed by our example. It is interesting that the
exact cross section for unscreened Coulomb scattering
is independent of the sign of Z. This is not true for a
general potential, as shown for example in Fig. 7.

To estimate the value of G, we suppose that there
are 3X10" inversion-layer electrons per cm? in InAs
and 102 cm™2 electrons in the (100) surface of Si, and
use the parameters of Table II. Then #G=1.3 for
InAs, and #G=8 for Si, which would make the classical
cross section slightly better in the former case, and
essentially exact in the latter case if the unscreened
Coulomb potential were valid.

% E. Jahnke and F. Emde, Tables of Functions (Dover Publi-
cations, Inc., New York, 1945), 4th ed., p. 11.
51 See Eqs. (45.7) and (49.10) in Ref. 18,



