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verse magnetic field correction to the Franz-Keldysh
terms, would predict A= (8,— #wo)He?/E2. ] In Fig. 8
we plot the experimental values of A, obtained for four
values of E and 8,— #w, and for various values of H,
versus the corresponding theoretical values of A
calculated from Eq. (16); here we used &,/2m*c
=4.5X 1073, Figure 8 essentially illustrates the approx-
imate dependence of Aexpy on H2/E2 It also shows that
Eq. (16) predicts the correct order of magnitude for A.
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Tunneling phenomena in crossed electric and magnetic fields cannot be properly described using the
one-band effective-mass approximation. For this purpose, the two-band Hamiltonian is solved in the
presence of crossed electric and magnetic fields and also in parallel fields. For crossed fields, two types of
solutions are obtained. The first, for E <H (&,/2m*c?)'/2, are of the harmonic-oscillator type, with quantized
energy levels. In this region there is no interband tunneling in a pure material. In the region of high electric
field, where E> H (&,/2m*c?)!/2, the solutions are of the electric-field type with a continuous energy spectrum.
The analogy of this model to the motion of free classical relativistic electrons in crossed fields is discussed.
WKB solutions in the region of high electric field are used to calculate tunneling (Zener) current and photon-
assisted tunneling [Franz-Keldysh (FK) effect]. The Hamiltonian is solved to obtain quasistationary
solutions, neglecting a term which acts as the perturbation causing the Zener tunneling. The tunneling
integrals are computed by the method of steepest descent. The results are nearly identical to those of
Aronov and Pikus, obtained by a different method. In general, the magnetic field decreases both Zener
and FK tunneling. The result for Zener tunneling predicts that the current will depend on E and H approxi-
mately as exp(—H?/E?), in good agreement with experiment. In the FK effect, for photon energies close
to that of the gap, the ratio of the absorption in crossed fields to that at H =0 varies with frequency and
field approximately as exp[ — (8,—7%w)5/2H?/E?]. This is confirmed experimentally, both in the frequency
and field dependence, by Reine, Vrehen, and Lax. Thus the main features of electron tunneling in crossed
fields can be explained by a WKB treatment which in addition provides a good physical picture of the
tunneling process. In order to provide a unified picture of tunneling in crossed and parallel fields, we also
obtain expressions for Zener and FK tunneling in parallel fields using WKB solutions to the two-band
model. The results for FK tunneling are very similar to those of the preceding paper, in that the electron
motion separates into quantized motion transverse to the magnetic field and nonquantized motion parallel
to both fields. The magnetic field reduces the tunneling by increasing the effective energy gap by the energy
of the transverse motion. OQur expressions reduce to those of the preceding paper in the limit of large &,.
The ratio of the absorption in parallel fields to that at H =0 varies approximately as exp[ — (8§, —%w)!2H/E].
The result for Zener tunneling predicts exp (—H/E) behavior, in contrast to exp (— H?/E?) for crossed fields.
The model in the preceding paper does not predict any Zener tunneling.
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I. INTRODUCTION

HE effect of a strong electric field on a semiconduc-
tor is to induce a tunneling (Zener) current.!:?
In addition, a strong electric field induces photon-

* Present address: Institute of Physics, Polish Academy of
Sciences.

t Also Physics Department, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

1 Supported by the U. S. Air Force Office of Scientific Research.

1 C. Zener, Proc. Roy. Soc. (London) Al45, 523 (1934).

2E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959); J. Appl.
Phys. 32, 83 (1961).

assisted tunneling [the Franz-Keldysh (FK) effect],
that is, the absorption of photons of energy less than
the gap.®* When a magnetic field is applied as well, the
resulting motion depends on whether the magnetic
field is parallel or perpendicular to the electric field.
Parallel fields act independently to produce two simul-
taneous motions of the electrons: quantized magnetic-
type motion transverse to both fields and nonquantized

8W. Franz, Z. Naturforsch. 13A, 484 (1958); L. V. Keldysh,
Zh. Eksperim. i Teor. Fiz. 34, 1138 (1958) [English transl.:
Soviet Phys.—JETP 7, 788 (1958)]. -
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electric-type motion along the fields. For interband
tunneling in parallel fields the effective energy gap is
increased by the energy of the transverse motion in
each band. The case of photon-assisted tunneling in
this configuration is studied experimentally and
theoretically by Reine, Vrehen, and Lax (RVL) in the
preceding paper.t A different treatment of the parallel-
field case is included in the present paper.

The effect of a magnetic field perpendicular to the
electric field is more complex in that the magnetic and
electric motions are no longer independent. Also, it has
been shown recently by Praddaude® and by Zawadzki
and Lax (ZL)® that in crossed fields where the electric
field is relatively large, the effective-mass approximation
is no longer valid. The problem must be treated as
one of two coupled bands, the two-band model,” in
order to take proper account of the effect of non-
parabolicity of the bands. In this model the problem is
analogous to classical relativistic motion in crossed
fields, with the energy 2mqc? replaced by &, and with
my replaced by m*, that is, with the velocity of light ¢
replaced by (&,/2m*)Y2. For Ec/H greater than this
quantity, the problem can be transformed by a suitable
Lorentz transformation into that of motion in an
electric field alone. In this case the quantum-mechanical
solutions are nonbound and nonquantized. On the other
hand, for Ec¢/H smaller than (&,/2m*)"/? the problem
can be transformed to one of motion in a magnetic field
alone, with bound, quantized solutions.

Haering and Adams?® treated the problem of tunneling
in crossed fields in the one-band effective-mass approx-
imation using a WKB treatment. Their expressions are
only valid for Ec/H small, that is, where the one-band
effective-mass approximation holds. In this region the
solutions are bound states with no Zener tunneling
allowed between valence states and conduction states
because of the requirement of energy conservation.
However, Haering and Adams treat the problem of
tunneling across a junction rather than within a pure
material, so that the bands on opposite sides of the
overlap in energy allowing tunneling with energy
conserved.

We have treated this problem using a similar WKB
treatment, but using the two-band model to obtain
expressions for Zener current and photon-assisted
tunneling which are valid in the region of large electric
field. Recently, Aronov and Pikus (AP)? have obtained

4 M. Reine, Q. H. F. Vrehen, and B. Lax, Phys. Rev. 163, 726
(1967).

5 H. C. Praddaude, Phys. Rev. 140, A1292 (1965).

6 W. Zawadzki and B. Lax, Phys. Rev. Letters 16, 1001 (1966).

" B. Lax, in Proceedings of the Seventh International Conference
on the Physics of Semiconductors, Paris, 1964 (Dunod Cie., Paris,
1964), p. 253.

8 R. R. Haering and E. N. Adams, J. Phys. Chem. Solids 19,
8 (1961).

9 A. G. Aronov and G. E. Pikus, Zh. Eksperim. i Teor. Fiz.
51, 281 (1966); 51, 505 (1966) [English transls.: Soviet Phys.—
JETP 24, 188 (1967) ; 24, 339 (1967)1; J. Phys. Soc. Japan, Suppl.
21, 608 (1966).
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nearly identical expressions using a different technique,
namely, canonical transformations analogous to those
used for the Dirac equation. Their treatment includes
the spin of the electron, which, however, does not seem
to affect the tunneling results significantly. We believe
that the two methods give such similar results because
both treatments use the method of steepest descent to
perform several integrations, making their treatment, in
principle more exact, equivalent to our WKB approxi-
mation. The results of both theories are supported, at
least qualitatively, by the experiments of the preceding
paper.* The WKB method has the merit of providing a
good physical picture of the tunneling process in
crossed fields.

In order to give a unified picture of the effects of
parallel and crossed fields, we have treated the parallel-
field case, as well as the crossed-field case, in the two-
band approximation. The results for photon-assisted
tunneling are very similar to those of RVL given in
the preceding paper,* and reduce to their expressions in
the parabolic approximation. In the two-band model
the effects of parallel fields still separate into a magnetic
plus an electric motion, as in the parabolic model. The
only essential difference is that the energy gap for
tunneling is given by &.=[8,2+48,(n+1)hw, M2
instead of &,42(n+31)hw.. We also calculate Zener
tunneling in parallel fields, which can not be done in
the one-band approximation of RVL without ex-
plicitly taking into account the coupling between the
two bands.

II. THE TWO-BAND EQUATION

To describe tunneling in crossed and parallel fields we
use a two-band model which has been found to give a
good approximation for the small-gap semiconductors
such as the ITI-V and IV-VI intermetallic compounds.
The two-band equation of ZL describing a Bloch
electron in the presence of crossed electric and magnetic
fields has been derived, somewhat artificially, neglecting
the symmetry character (s, p, etc.) of the bands
involved. We note in Appendix A that explicit solutions
may be obtained for a p-like valence band and an s-like
conduction band (such as in InSb). The resulting
equation for the s band is the same as that of ZL,
showing that for this problem the three degenerate
p-like bands act as one spherical band. In order to
obtain a single valence-band solution we retain the
simplifying assumption of ZL. We work in the Kohn-
Luttinger representation, in which the electric potential
¢E-r is diagonal. Neglecting spin and the diagonal
free-mass term P?/2m,, the k-p equation for the two

spherical bands is
—eEx+18 o1 P
S Y T
——eEx——%é’,, f1 f1

W12'P
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where, in the Landau gauge,
P=p+eA/c, E=(—E, 0,0,
A= (0,Hx,0), crossed fields,
A=(0,0,Hy), parallel fields.

@

The electric field is along the x axis, and the magnetic
field is along the x axis for parallel fields, the z axis for
crossed fields. With spin included, this equation for
crossed fields is equivalent to that solved by AP, and
can be written in terms which display its similarity to
the Dirac equation.® In the diagonalizing coordinate
system, m12°maf=04s8,/2m*, thus defining the effective
mass for both bands.

For a given energy & this matrix equation determines
conduction and valence-band solutions y° and ¢? given
by linear combinations of the envelope functions f
multiplied by the band-edge Bloch functions. As in the
relativistic case, for energies close to the band edges,
each ¢ has a large and a small component, with the
large component multiplying the band-edge Bloch
function for the band involved. For each band we solve
by substitution for the large component, f» for the
conduction band, f; for the valence band, then use one
of the equations to compute the small component from
the large one. For the conduction band we have, for
energy &,

8,P*
b
2m*(eEx+5 84+ 6o)
' th84eEP, fo
TZm”‘ (eEx+318,+ 8.)?
= (3Co°— &.) fo"+3Cy f°=0,
and for the small component
fro= (w12 P[3)/ (eEx+3 6,1 o).
For the valence band, for energy &,, we find
8,P?
b
2m* (eEx—18,+ 8,)
% ihéﬂeEP,ff’
2m*(eEx—31 8,4+ 8,)?
= (3Co"— &,) fr*+3C4 f1*=0,
and for the small component,
f2'=(ma-Pfr*)/ (eEx—3 6,1 8,). (4b)

The singular terms 3y’ f2¢ and 3¢, f1? result from the
fact that the kinetic energy =P and the electric
potential ¢E-r do not commute, and are referred to by
ZL as effective spin-orbit terms. AP obtain a similar

|:(~eEx+%8,,— &)+

(3a)

(3b)

[(—eEx—%é’p— &)+

(4a)

0P, A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964).
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term for crossed fields in the electric-field region but
not in the magnetic-field region, although our equation
indicates that the term is present as long as there is a
nonzero electric field. However, the term causes no
transitions for crossed fields in the magnetic-field
region, although it has interband matrix elements. In
this region the energy levels are quantized and there are
no conduction- and valence-band states with the same
energy between which Zener tunneling can take place.
We show in Sec. IIT that as long as we adopt the
above method of solving for the large component for
each band, the singular terms are small for the region of
solution for each band and thus can be neglected. In
fact, these terms become the perturbation which cause
the Zener tunneling, although we assume they are
negligible in the photon-assisted case. Thus we are
dealing with quasistationary solutions. Neglecting the
perturbing terms is equivalent to subtracting

3y 0 (]
/= or 3¢,/= (5)
0 0 0 ¢/

from the Hamiltonian (1) when solving for the conduc-
tion or valence band, respectively.

It is shown in Appendix B that the tunneling current,
using the golden rule, is proportional to | (|3, |¢°)|?
= | (|3, |¢°)|?, where y¢ and ¢* are the quasista-
tionary two-component functions obtained neglecting
3¢, and 3¢/, respectively. Similarly, these approximate
functions are used to calculate the optical absorption
for the photon-assisted case, putting the vector poten-
tial of the radiation into the Hamiltonian (1) to obtain
the perturbation due to the radiation. We calculate the
tunneling current and optical absorption first for crossed
fields, then for parallel fields.

III. WKB SOLUTIONS—CROSSED FIELDS

For crossed fields we have from Eq. (2), A= (0,Hx,0),
so that the electric field is along the x axis, the magnetic
field along the z axis. Putting P=p+eA/c, neglecting
one of 3¢,” and 3C,’, and separating each finto the form
f~expli(kyy+k.2) Jo(x), we obtain from (3a) and (4a)
the same equation for ¢,°(x) and ¢,°(x):

PZ & tky 6 Eots?
———-—-2e<——E——-—H x— p x{|<p(x)

* *
2m 8, m¥c .

e bk e, ©
B 80 e 2’}%* Y ’ o ’

where p= (1/i)d/dx and Eef=E?— Hef, Het?=H?8,/
2m*c?. This equation is identical to that of ZL except
that we have neglected the singular term, the electric
field is along the x axis rather than the y axis, and we
measure energies from the midpoint between the two
band edges rather than from the conduction band edge.

Equation (6) has two types of solutions depending on
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Fic. 1. Photon-assisted tunneling in crossed electric and
magnetic fields for E>H (&,/2m*c?)2, The sloping dashed lines
represent the valence and conduction-band edges (or turning
points) for H=0. The shaded regions represent the valence and
conduction-band regions with both fields present. A valence
electron of energy &, tunnels from its turning point %, to %m,
absorbs a photon, and tunnels to #., the turning point for a conduc-
tion electron of energy &= &,+7w. The magnetic field acts to
reduce the absorption by curving the band edges away from each
other, thus enlarging the tunneling region.

the sign of Ee?. In the magnetic-field region Eq<0
or Ec/H<(8,/2m*)?, so that upon completing the
square on ¥, the equation becomes a harmonic-oscillator
equation with bound solutions and quantized Landau-
like levels. In this region no Zener tunneling occurs. In
the electric-field region Ee?>0 or Ec/H> (8,/2m*)2,
with the analytic solutions to Eq. (6) being parabolic
cylinder functions with nonbound states and a con-
tinuous-energy spectrum.

We calculate tunneling and photon-assisted tunneling
in the electric-field region where E.#>0. In order to
find the matrix elements of the perturbations we obtain
approximate solutions to Eq. (6) in the form of WKB
functions as follows. We solve Eq. (6) for p(x) which is
now regarded as a number rather than an operator.
We find the turning points of the motion where (x)=0.
Beyond these points, p(x) is imaginary and the WKB
solutions are decaying exponentials. In our case, this
occurs within the forbidden energy gap.

The turning points of the motion are plotted in Fig. 1
for energies corresponding to the conduction and valence
bands, for k,=%.=0. A valence electron of energy &,
tunnels from its turning point #, to £, absorbs a photon
if the tunneling is photon-assisted, then tunnels to x,,
the turning point for a conduction electron of energy
8.= 8,+%hw. We can easily see how the magnetic field
acts to reduce the tunneling by curving the bands away
from each other, thus enlarging the tunneling region.
The effect of the magnetic field on photon-assisted
tunneling becomes small as %w approaches &, since then
the optical transition takes place near x=0 where the
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bands are not moved apart by the magnetic field. This
is observed experimentally.4

We can also see from this model how the magnetic
field can become large enough to create bound states with
no tunneling possible. In this case the valence-band edge
is curved downward on the left, and the conduction-
band edge is curved upward on the right. Within these
bands the energy is quantized into Landau-like levels,
where because of the electric field some of these levels
are left closer together in energy than the zero-field gap.
Between these levels oscillatory magnetoabsorption can
take place for Zw< §,, as observed by Vrehen.! How-
ever, no Zener tunneling is possible between these levels
because now there are no conduction and valence-band
states with the same energy between which Zener
tunneling can take place with energy conserved.

With this picture of the tunneling region we can now
see how to treat the perturbations 3¢,” and 3¢,". The
singularities of these perturbations [See Egs. (3a),
(4a), and (5)] are at x.°=-—(8,+16,)/eE and =z,
=—(8,—%8,)/eE. But x,* is to the right of xn
=— (8,4 &8,)/2¢E (See Appendix C), and x.* is to the
left, by a distance (8,4 8.— 8,)/2¢E. Since §,— &, is
either zero (Zener tunneling) or 7w (FK effect), x,° is
well to the right of the region where the valence-band
solution y? is used, and x.°® is well to the left of the
conduction-band region. Thus we can neglect 3¢,” when
solving for ¢ and 3¢,” when solving for y¢, as we did in
obtaining Eq. (6). This analysis of the perturbations
also holds for parallel fields.

For the valence band inside the forbidden region the
WKB solution to Eq. (6) is

A4 1 p7
‘plv(x)=m eXp(—£‘/;” |p,,(x)|dx> . (76,)

For the conduction band,

B 1 e
ei=mmen( = [ Inele), @

where at %,, | $,(x)| =0 and w,, |p.(x)| =0, and where
A= (m*/T)\2, B=(m*/T,)"?, with T, and T, the
classical periods of the motion in the two bands.® 4 and
B are normalization constants which cancel out when
we multiply by the density of states.

To the left of x, the valence-band solution is oscil-
latory, and similarly for the conduction-band solution
to the right of x,. The wave functions in these regions
have no contribution to the transition matrix elements.

Using the WKB functions ¢s¢ and ¢;?, we form the
large components fs¢, fi* and from these, using Egs.
(3b) and (4b), calculate the small components f°, f..
Using the two-component solutions y¢, ¥? thus obtained,
we calculate the tunneling current and optical absorp-
tion following a procedure similar to that of Haering

1 Q. H. F. Vrehen, Phys. Rev. Letters 14, 558 (1965).
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of Adams.®? We note that the solutions y¥*¢ and ¢* are
orthogonal even when §,= &,.
IV. TUNNELING CURRENT—CROSSED FIELDS

For tunneling in crossed fields the golden rule (See
Appendix B) gives the tunneling rate from the valence
band state y° as

2w
Wnc=—" Z l<¢c[38”'[¢v>‘2a(gc__ gv)- (8)

# final states ¢

We calculate

W°1 50, |92) = BkyhyOstr

0

Lo (x) T3¢ er*(x)dx.  (9)

—0

For §,= 8,= 8 and therefore | p.(x) | = | po(x) | = | p(x) |,
the integral becomes

e [1!'21’]* —m\d B
I=/ dxl-—————————( >

20 eEx+38,+ 8
1h&,eE

X@Z;[,jw exp(-iﬁ, - o

From Eq. (6) we have

dal | p| 2

|p]2= (2m*/ ;) Eai?(a*— £) (11)
where
a*= (2eEei?) [ 8, Eet?+ 48" Heti ],
t¢=a+8/eE+ (8 /eE)(Heti?/Eess®) (12)

8,2 = 82+28 1%k 2 /m*, &'=&—hk,Ec/H.

Then, using = (3m12)V2=(8,/2m*)"2/V3, and as-
suming eEf, eEq:£K38,, we expand the integrand in I
and find, to order &,

8A Bihe? EE o5 /
V3m*§,2

\

2)| |"[T®)TV2, (13)
Ogueﬁ

where

re=en| [iotase [ " iplas) |
=exp<-—§ / l p!dx). (14)

Then including the density of initial and final states,
with a factor of 2 for spin, the tunneling rate from all
states &,= & to all states §,= 8 is

2L T > ( T, > (21r>
N pe= -
(27)? (Zrh 2ah/ \ %

% / a8 1(8) / dbydh (k). (15)
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Since I%(k) includes an exponential factor T'(k,)
multiplied by slowly varying functions of %k, and &k,
(through @, p, and &) we calculate the integrals on
ky and k., by the method of steepest descent, evaluating
the slowly varying factors at the saddle point of the
exponent in T'(%.). The calculation of the transmission
coefficient T'= fdk,dk.T (k) is done in Eq. (C12). The
saddle point is found to be §'=0, 8,’= &,. The resulting
expression is independent of §. Using

+Lg/2 aé’
—dx=eEL,,
—L/2 ox

/dgf(é’)= (16)

where &(x) is plotted in Fig. 1, we find the tunneling
current j=N,,/L.L,L, to be

e2E2 zm* 1/2 T m* 1/2

(—) expl:— (———) 8,”{' . an
3r’h2\ &, 2heEese\ 2
The above expression is nearly identical to that obtained
by AP. The exponent is the same; this is the factor
which is most sensitive to the effect of the magnetic
field. In the prefactor, however, we have a factor
E?/37% whereas AP obtain E2/36w. The effect of
replacing E? by Ee is to make j(H)/j(0) decay more
sharply at low magnetic field and more slowly at high
field. The effect is small except when the electric field
becomes large. Even for low E the difference in the
prefactor will affect the identification of the parameters
involved when comparing the theory with experiment
as is done in Fig. 4 of AP. The principal unknown
parameter is the electric field E; however, the tunneling
experiments are performed in diodes, so that the
assumption of constant electric field is in question.
However, the general exp(—H?/E®) behavior pre-
dicted by both theories for j(H)/(0) is confirmed by
experiment.

j=

V. PHOTON-ASSISTED TUNNELING—
CROSSED FIELDS

We find the perturbation due to the incident radiation
by replacing P— P+-eA,/c in the Hamiltonian (1)
and obtain

’

™oy eAw/c:l

0
5. —[ 18)
w2 eA,/c 0

where in the dipole approximation A,= (E.c/2iw)
X expiwt, where E, is the electric vector of the radiation.
The matrix element of 3¢,” between the approximate
wave functions y° and y* is given by

Welacs' |yn)=[(e/c)m- AJ((frol for)+{fof] /1)), (19)

but (f1°| f2*)&K({f2°| f1°) since the functions f;° and fy’
are the small components of the respective states. [The
ratio of the two terms is approximately (8,—#w)/
28,&1.]
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Therefore we have
[
el [¥0) = —mze Abk iy Orn f dx(o)* . (20)
¢

The integral then becomes

I /d (p29)* BA N o
= [x(p2° v=[3 ———
e / » [pe@)pe@)]

Z

><exp<~% i x wx)ldx——:; i Clpwlas). @y

v

We evaluate this integral by the method of steepest
descent, using the expressions for p.(x), p.(x) in
Appendix C, and find

I~BA(x8,T(k)/m*weE| p| )2, (22)

where

T(k»sexp(—z / m | pola)

_z / "’ [Pc(x)ldx> . 23)

m

and at =%, |p.(x)| =]|p.(x)|=|p|. The total transi-
tion rate N, is defined as for the tunneling case. N,
is again proportional to a transmission coefficient
T= fdk,dk.T(k,) with other functions of %, and £k,
evaluated at the saddle point of the exponent of T'(%,),
which is found in Appendix C to be at &§' = $#w, §,'= §,.
The absorption coefficient is defined as

Ny 8rhw
= , (24)
L,L,L,ncEw?

where 7 is the index of refraction. We use the expression
(C13) for T in Appendix C and the fact that (=1s- E,)?
= §,E2/2m* and make the approximation (&,—7%w)
K 8, for absorption just below the gap. The absorption
coefficient becomes

4(8,— o) 2m* V2
am~E o 8,2/ 8nchiw?(§,— hw)exp’ e ——

3heE

><|:1— (8,—hw) (3E2—8Heff2)]} (25)

208, E?
or

o(EH) l:_ 8(8,— hw)slzm*mﬂeffz:l 26)

= € e
«(E,0) 15%¢8, E?

Equations (25) and (26) are even closer to the
corresponding expressions of AP than is the case for
the tunneling current. Equation (26) and the exponent
of (25) are exactly the same as the expressions of AP,
and the experiments of the preceding paper* confirm the
qualitative features of the behavior thereby predicted,
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especially the lack of magnetic effect on absorption of
photons at #w= &,. There are some differences in the
full expression (25) for a: Where we have Eo8.2/%%?
in the prefactor, AP have E§,/#%s, a difference of a
factor (wE/ 8,Ee)~ 1. These differences are negligible
when comparing the theoretical predictions with
experiment. The experiments approximately confirm
the predictions of field and frequency behavior of the
form (8,—#w)52H?/E®.

Also from Eq. (25) it can be shown? that the energy
shift of the isoabsorption lines is approximately
2(8,— ) H*/15m**E?, in agreement with the experi-
mental results. This was predicted almost exactly by
Lax” on the basis of the analogy to free relativistic
electrons. Lax’s result was also obtained by Reine,
Vrehen, and Lax® from a generalization of the zero
magnetic-field expressions consisting of the replacement
of E by E:. However, this gives an expression for
a(E,H)/a(E,0) which incorrectly predicts exponential
behavior of the form (8,—7%w)¥2H?/ E3. This was the sub-
ject of some discussion at the Kyoto conference.’® We
wish to emphasize that our result gives the (8,—7%w)5?2
behavior in agreement with the result of AP.

VI. WKB SOLUTIONS—PARALLEL FIELDS

For parallel fields A= (0,0,Hy), with the electric and
magnetic fields along the x axis. Putting P=p-+eA/c
and neglecting one of 3¢/, 3¢,’, we obtain from Egs.
(3a) and (4a) the same equation for fs°, f°:

{ Lot/ 2m— (1 &,) (e B+ 8)°]

62H2y2
VP

T
2m*c?

I:Pv2 . 2 , ed

T T
2m*  2m*  m¥c

]+~if}f=o. (21)

We can separate this equation by substituting

f(x)y;z) =@ (x)P (3’) eXPikzZ ’ (28)

giving for p(y)
Lo/ 2m*+5m* ol (y+iks/m*ocfJo(3)=Mo(y), (29)

where w,=eH/m*c. The solution to this equation is
0= pn(y/Ln~+ Lynk.;), a harmonic-oscillator function with
magnetic quantum number # and eigenvalue A=\,
= (n+%)hw., with magnetic radius L,= (%c/eH)"? and
orbit center L,?k.. With this result for p(y) the equation
for ¢(x) becomes

[#*/2m*— (1/ &,) (eEx+ 6)*+16,
+ (n+3)hwJe(®)=0, (30)
where p= (%/1)d/dx. The analytic solutions to Eq. (30),

as to Eq. (6) for E.?>0, are parabolic cylinder func-
tions which reduce, for large energy gap, to the Airy

2 M. Reine, Q. H. F. Vrehen, and B. Lax, Phys. Rev. Letters

17, 582 (1966).
13 B. Lax, J. Phys. Soc. Japan Suppl. 21, 165 (1966).
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functions obtained by RVL. We see this another way
by noting that Eq. (30) reduces to Egs. (3a) and (3b)
of RVL when we solve for (eEx+ 8)? and take the
square root of the operator equation, making the
approximation [ $?/2m*+ (n+3)hw, << 8,. We obtain

(8+eEx)pm£{58,+[1"/2m*+ (n+3)hw ]} o, (31)

with the plus sign for the conduction band and the
minus sign for the valence band. The solutions to Eq.
(31) are the Airy functions obtained by RVL.

As for crossed fields, we obtain the perturbation
matrix elements by using WKB solutions to (30).
These solutions are given by Egs. (7a) and (7b), where
now p(x) is obtained from Eq. (30). The turning points
of the motion, where p(x)=0, are plotted in Fig. 2.
In this case the bands are not curved, as they are for
crossed fields as shown in Fig. 1, but are displaced by
a constant amount from the H=0 lines. The energy
separation of a pair of conduction and valence bands
with the same quantum number # is

8.=[82+48,(n+1)hw, 2.

Thus the effect of the magnetic field is to reduce the
tunneling by increasing the effective energy gap to
&.> 8,. For large 8,, 8, reduces to that obtained by
RVL for parabolic bands, namely, 8,— 8,42 (n+3)kw,.

Using the WKB functions ¢ and the harmonic-
oscillator functions p, we form product functions f and
from these, as for crossed fields, form the two-component
solutions ¢ to calculate the tunneling current and
optical-absorption coefficient.

VII. TUNNELING CURRENT—
PARALLEL FIELDS
We again use the golden rule (8) and calculate

@130 ¥y =katbun | Lonwe ()]

—0

X3y 1,22 (x)dx.  (32)
Now | p|? is given by Eq. (11), where
= (1/4E)[ 8 2+48,(n+3)hw. )= E.2/4EE2,
E=a+8/¢E. (33)
Then the integral is found to be
I=— (84 Bihe*E*/N3m* 8 %) | a|2T"2 (34)

where T is defined by Eq. (16). The tunneling rate N,,

becomes
(22;;)(2};)/ d6f(81% f dk.I*. (35)

2L, /T,
Nyo= ( >

27) \2xh
Since I2 is independent and & and k., the sum over %,
(converted to an integral over values of k, for which
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o — >

F1G. 2. Photon-assisted tunneling in parallel fields. The sloping
solid lines represent the conduction and valence-band levels
quantized by the magnetic field. A pair of levels with the same
magnetic quantum number z are separated in energy by &,
i T T

the center of the magnetic orbit y= L2k, is contained in
the crystal) contributes a factor L,/L.2=L,(eH/kc),
and Sd8f(E) contributes a factor eELx. From this
the tunneling current is calculated to be

@) 2¢*EH 5 &t [ w82 m*>1/2

= —exp| — — . (36

7 3nh%c » 8, 2heE<2é’a :l (36)
Because of the exponential factor the most important
term is the n=0 term. We find 7(0) by converting the
sum to an integral and taking the limit as H — 0. The
result is the same as the H — 0 limit of the crossed-field
result (17). The exponent of j(H)/7(0) is proportional

to H/E in comparison to H2?/E? for the crossed-field
case.

VIII. OPTICAL ABSORPTION—
PARALLEL F1ELDS

Using the perturbation 3¢, defined in Eq. (18), we
calculate for parallel fields

e
<¢°lﬁca'l¢”>=‘ﬂ12'A(.ﬁk,k,fﬁn,n"/dx(<p2,n:°)*gol,n". (37
c

As above, we find the integral by the method of steepest
descent, to be given by Eq. (22), with T defined in
Eq. (23). T is now independent of k. and &, and is
calculated simply by evaluating the integrals in the ex-
ponent. As for crossed fields, x,= — (8.+ &,)/2¢E. The
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absorption coefficient is found to be, for &,—#wK &,,

eSH 803/ 2

2nm* Y202 %0

4m*l/2 gﬂ 1/2
exp| — — 5,.—%«»)3/2:]
xp[ 3heE(é’g> (
X2

n gnl/z(gn___hw)l/z

a(EH)=

(38)

We calculate a(E,0) as we did 7(0) and obtain the same
expression as the H — 0 limit of the crossed-field result
[Eq. (25)]. As for j(H), the most important term of
a(E,H) is the n=0 term. The result for a(E,H) is the
same as that obtained by RVL for parabolic bands
apart from the definition of &,, the factor (8,/8,)?=1
in the exponent, and a factor (8,/8,)"/? in the prefactor.
For a(E,H)/a(E,0) we obtain for small H the expression
of RVL, and note that the exponent is proportional to
(8;—hw)?H/E rather than (&,—hw)%?H*/E* for
crossed fields. Note that our result is the first term in an
expansion in terms of (8,—7%w)/8.&K1, whereas RVL
expand in terms of (8,—7w)/h0>>1, where 6*=¢E?/
#im*. Thus there is only a limited range of w for which
both expressions hold, and neither calculation holds un-
less #0<< &,, or unless the electric field is relatively small.

IX. SUMMARY

We have calculated expressions for the Zener tunnel-
ing current and optical-absorption coefficient in_the
presence of crossed and parallel electric and magnetic

eE-r-l——%(‘;'g—g 7!'12_P+
mor Py eE~r-—-%60——é’
Tt P 0 eE-
m21?P, 0

where f; is the envelope function which multiplies the
band-edge Bloch function for the sth band, and P.= P,
+iP,, with the other terms defined in Eq. (2). The
valence band-edge functions corresponding to the
envelope functions fy, f-, and f, are the linear combina-
tions of the three p-like states |X), |V), and |Z)
given by |=4)=|X)%i|¥) and |z)=|Z), which are
eigenfunctions of the spin-orbit interaction. The
functions | X), | V'), and | Z) transform as the coordinates
along the cubic axes. Equation (A1) is an extension of
an equation obtained by Yafet for a magnetic field
alone.

Assuming an isotropic mass with (w9)?=8,/2m*,

1Y, Yafet, Phys. Rev. 115, 1172 (1959); R. Bowers and Y.
Yafet, ibid. 115, 1165 (1959).
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fields, using WKB solutions to the two-band model.
We have obtained results which are supported by the
photon-assisted tunneling experiments in the preceding
paper, and by other tunneling experiments. Apart from
differences not resolved by these experiments, our
results for crossed fields are the same as those obtained
by Aronov and Pikus using a quite different treatment
of a model identical to ours except for the inclusion of
spin effects which do not appear to alter the results
significantly. Our results for parallel fields are similar
to those obtained for parabolic bands in the preceding
paper. Thus we have shown that the main features of
electron tunneling in crossed and parallel fields can be
adequately explained using a semiclassical WKB
treatment which in addition provides a good physical
picture of the tunneling process.

ACKNOWLEDGMENT

We gratefully acknowledge many helpful discussions
with M. Reine.

APPENDIX A: SOLUTIONS OF THE TWO-BAND
EQUATION FOR s AND p BANDS IN
CROSSED FIELDS

We calculate the k- p equation in the Kohn-Luttinger
representation for two coupled bands, an s-like conduc-
tion band and a triply degenerate p-like valence band
in the presence of crossed electric and magnetic fields.
Neglecting spin and the free-electron mass term, we
obtain

Tt P T12°P, fs
0 0 AN

r—18,~ 8 0 =% (A1)
0 eE-r—18,—8) \f.

Eq. (Al) can be solved for f, (not for fy, f-, or f.
explicitly) since each of the last three equations
couples f, with only one of the f;, f-, and f.. The
complete solution can be written, for crossed-fields,

g fa
Jr
-
|eEx+ 84/2-+ 6|1 exp[i(kyy+F.2) Jo (%))
_ | (Eo/6m )P (prfa)/ (eEx+58,+ )

| (8a/6m*) 2 (p-fo)/ (eEx+58,+ 8) ’
C (80/6m*) 2 (p.fs)/ (eEx+3 8,4 6)

where ¢(x) obeys Eq. (3a), which we rewrite in the

(A2)




G o(%)
8 [t (8+18,)/eET?
=[(1/8,)(8—18,2)— (2/2m*)
X (ky? k) Jo ().

This is the equation obtained by Zawadzki and Lax
for two-spherical bands. The difficulty with this equa-
tion for our purposes is that it is only soluble when the
singular term is small, that is, when solving for the
conduction band to the right of the barrier. It is neces-
sary to solve explicitly for the large component of the
valence-band solution to the left of the barrier in order
to obtain a perturbation which has no singularity in
that region. Therefore, for the tunneling problem we
have assumed no explicit character for the bands. This
case of interacting simple bands occurs in real semi-
conductors such as Bi and PbTe.

(A3)

APPENDIX B: PERTURBATIONS CAUSING
THE TUNNELING CURRENT

The approximate equations we solve are
(3C—5€c')¢°= gc\bc ) (3@——-.’}(3/)\!/": 51,\0” ) (Bl)

where 3¢, 3¢/, and 3¢,” are defined in Eqgs. (1), (3a),
(4a), and (5). We seek the first-order corrections to
the orthogonal functions y° and ¢* using the correct
equation

SC¢1°'”= 81c’v¢1°’", (Bz)
where

lplc,v:wc,v_*_Ac'v.‘//v,c, glc,v= gc,v+Aé’c,v. (BS)
Assuming the system is initially in a state y?, we find,
substituting Eq. (B3) into Eq. (B2) and using Eq. (B1)
and the orthogonality of ¢¢ and 7, that the perturbed
state ¥,? is given by

{elac v
pomprry LW,

(B4
T 8,—&, )

so that the transition rate from the statesy? to the states
Y¢is given by the golden rule as

2
ch:; Z I <‘/’clgcvll\w>l 28(86" 8,,) .

Similarly, the rate starting with the conduction-band
solution is found to be

2w
Wer=— |15 19 % (6~ &.).

d U
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A calculation of the matrix elements shows that
Waoe=We. Thus we are justified in using different
perturbations 3¢ and 3¢, for the conduction and
valence bands since they leave the approximate solu-
tions orthogonal and the transition rate is the same
whether we start with the conduction-band or valence-
band solution.

APPENDIX C: EVALUATION OF THE
TRANSMISSION COEFFICIENT FOR
CROSSED FIELDS

In order to calculate the tunneling current and
optical-absorption coefficient in crossed fields we must
calculate integrals /" dk,dk.f(ky,k.) T (k.), where f(ky,k.)
is a slowly varying function and T'(%,) is the rapidly
varying exponential defined in Eq. (23), and, for the
special (Zener) case 8,= 8,= & or 7w=0, in Eq. (14).
We calculate the integral by the method of steepest
descent, and evaluate f(k,) at the saddle point &y, k.0
of the exponent of T'(k). The integral is then f(kyo,k-0)
times the transmission coefficient

T= / dkydk,T (ky) (C1)

where

T(k)=exp[—v],
and

2 o A
v—h/" o x+;[m pe(@)dx,  (C2)

where p.(x) and p,(x) are obtained from Eq. (6) with
8= 8., 8.. Also, at x=am, | po(®)| = | pu(®)| = | p(k1)].
We find, for 7 referring to the conduction or valence
band,
| 2i(%) | = (2m*) 8, 2e Bte| yi— a2 |12

= (2m*/ 8;)\*eEerr(a—y2)'2, (C3)
where, for §,= = 6,1+ hw, and defining, for H0,

8'=8—hk,E/H ,
8,2= 82428 72k 2/ m*

0= (2eEct?) Y 8, *Eet?+482H 1], (C4)
a"= (2eE o) [ 8,*Eei?+4(ho— 8')2H o],
and
Vo,o=%+ E¢,oE/ eEott— 8,1tk H /2e Estm*c. (C5)
For the matching point x.,, we find
tm=—(E+ &,)/2eE=— (26—hw)/2¢E. (C6)

The integrals in v can be evaluated exactly, to give

y=T+II+11I,
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where where dv/dk,=0. This is at £,=0 or
hw  2m*\ 1?2 8,/=8,. (C10)
=— ( [(gﬂlz_hzwz)Ez
2heEos?\ &, The exponent of the final expression for 7 is

+ (28 —Tw) H ]2,

1 2m*\ V2
II= > [8,/2Ects® 44 (hw— &')2H o1
4h6Eeff3< 8g ! " i :]

Eeti[ (82— Ww?) E*4- (28’ — hw)2H o> V2 }
E[E,*E ot +4 (ho— 8')?H o1 ]"?

><sin’1<

III=

Zm* 1/2
AheE; a( 8 > L8/ Buu+ 48" Hort']
€L eff g

Eoti (8,2 — W) E2+ (28'— ) ZHeHZJI/Z}
E[8,2Eo1*+482H 12 ]1/2 )

X sin“l

(€7

We integrate exp{—v} over k,and %, by the method
of steepest descent, evaluating the k, integral first.
Since &= 8—tk,cE/H, we use dky=— (H/hcE)dE'.
The saddle point &', where dv/38'=0, is

8'=1}hw.
Then the integral is

(C8)

T= /dkudkz exp[—v(6,8,)]
=— (H/th)//dé”dk, exp[—v(8,8,')]
= — (2m)V*(H/hcE) / dk, exp[—v (G, 6,') ]
62 1/2
X[ =atosn]| - (@)
482
The slowly varying function 3*y/d8" is taken outside

the integral, and it and the exponent are evaluated at
the saddle point of the k, integral which is the point

v (37w, 811) = (1/heEes) (m*/28,)11*

X { (84%E e+ hPw?H os?)

(8= )V B ]

Xsin‘l[
(82Eeie®+ 12w H o?) V2

— TiwEEt:(8,2— h2w?) 1/2] . (C11)

This exponent is exactly the same as that obtained by
AP.

For the tunneling case .= §,, fiw=0, we find the
transmission coefficient to be

eEets? / 2m*\ V2
T w=0"" ( >
WE \ &,

Xesp| ———@mtynegn|, (c1)

€Lleff

and for the optical absorption, §,—#w<K§,,
T'= (weEets/ 2)[m*/ (84— o) JH2
4(gg_hw)3/2m*1/2
3neE

gy,

Xexp[—

The above development is not valid for H=0. For
this case we define &'=§8 and §,2= 82+ #2k.2/2m*.
The saddle points of the integrals are at k,=%,=0, and
the resulting expression for 7' is the same as that found
by letting H— 0 in the expressions for 7' calculated
above.



