
verse magnetic Geld correction to the Franz-Keldysh
terms, would predict 6=(Bo—Atoo)H, ff /E'. j In I'ig. 8
we plot the experimental values of 6, obtained for four
values of E and 8,—Pavo and for various values of H,
versus the corresponding theoretical values of
calculated from Eq. (16); here we used, 8o/2srs*c'

=4.5)&10 3. Figure 8 essentially illustrates the approx-
imate dependence of t), oe on B'/E'. It also shows that
Eq. (16) predicts the correct order of magnitude for h.
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Tunneling phenomena in crossed electric and magnetic fields cannot be properly described using the
one-band effective-mass approximation. For this purpose, the two-band Hamiltonian is solved in the
presence of crossed electric and magnetic 6elds and also in parallel 6elds. For crossed 6elds, two types of
solutions are obtained. The Grat, for E (II(so/2m'')'t', are of the harmonic-oscillator tyPe, with quantized
energy levels. In this region there is no interband tunneling in a pure material. In the region of high electric
6eld, where E&H ( g~/2m*c')'/', the solutions are of the electric-6eld type with a continuous energy spectrum.
The analogy of this model to the motion of free classical relativistic electrons in crossed fields is discussed.
WKB solutions in the region of high electric Geld are used to calculate tunneling (Zener) current and photon-
assisted tunneling )Franz-Keldysh (FK) effect). The Hamiltonian is solved to obtain quasistationary
solutions, neglecting a term which acts as the perturbation causing the Zener tunneling. The tunneling
integrals are computed by the method of steepest descent. The results are nearly identical to those of
Aronov and Pikus, obtained by a different method. In general, the magnetic 6eld decreases both Zener
and FK tunneling. The result for Zener tunneling predicts that the current will depend on 8 and Il approxi-
mately as exp( —B'/E'}, in good agreement with experiment. In the FK eBect, for photon energies close
to that of the gap, the ratio of the absorption in crossed 6elds to that at II=0 varies with frequency and
Geld approximately as exp|.—(so-the)'re /E'j. This is conhrmed experimentally, both in the frequency
and 6eld dependence, by Reine, Vrehen, and Lax. Thus the main features of electron tunneling in crossed
6elds can be explained by a %KB treatment which in addition provides a good physical picture of the
tunneling process. In order to provide a uni6ed picture of tunneling in crossed and parallel 6eMs, we also
obtain expressions for Zener and FK tunneling in parallel 6elds using %KB solutions to the two-band
model. The results for FK tunneling are very similar to those of the preceding paper, in that the electron
motion separates into quantized motion transverse to the magnetic 6eld and nonquantized motion parallel
to both 6elds. The magnetic 6eld reduces the tunneling by increasing the effective energy gap by the energy
of the transverse motion. Our expressions reduce to those of the preceding paper in the limit of large g, .
The ratio of the absorption in parallel Gelds to that at II=0 varies approximately as exp/ —(so—her) s&»/Eg.
The result for Zener tunneling predicts exp( —II/E) behavior, in contrast to exp (—II'/E') for crossed Golds.
The model in the preceding paper does not predict any Zener tunneling.

L DI'TRODUCTION

~HE effect of a strong electric Geld on a semiconduc-
tor is to induce a tunneling (Zener) current. ' s

In addition, a strong electric Geld induces photon-

*Present address: Institute of Physics, Polish Academy of
Sciences.

t Aho Physics Department, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

t Supported by the U. S. Air Force Ofhce of Scientihc Research.' C. Zener, Proc. Roy. Soc. (I.ondon) AI45, 523 (1934).
'E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959); J. Appl.

Phys. 32, 83 (1961).

assisted tunneling [the Franz Keld)rsh (FK) effectj
that ls thc absorption of photons of cncrgy less than
thc gap. 3 %hen a magnetic GcM is applied as well, the
resulting motion depends on whether the magnetic
Geld is parallel or perpendicular to the electric Geld.
Parallel Gelds act independently to produce two simul-
taneous motions of the electrons: quantized magnetic-
type motion transverse to both Gelds and nonquantizcd

' W. Franz& Z. Naturforsch. 13A, 484 (1958); L y
Zh. Eksperim. i Teor. Fiz. 34, 113'8 (1958) LtFtnghsh trans}. :
Soviet Phys.—JETP 7, 788 (1958)g.
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electric-type motion along the fields. For interband
tunneling in parallel fields the eGective energy gap is
increased by the energy of the transverse motion in
each band. The case of photon-assisted tunneling in
this conGguration is studied experimentally and
theoretically by Reine, Vrehen, and Lax (RVL) in the
preceding paper. 4 A diferent treatment of the parallel-
field case is included in the present paper.

The effect of a magnetic 6eld perpendicular to the
electric Geld is more complex in that the magnetic and
electric motions are no longer independent. Also, it has
been shown recently by Praddaude' and by Zawadzki
and Lax (ZL)' that in crossed fmlds where the electric
Geld is relatively large, the effective-mass approximation
is no longer valid. The problem must be treated as
one of two coupled bands, the two-band model, ' in
order to take proper account of the effect of non-
parabolicity of the bands. In this model the problem is
analogous to classical relativistic mOtion ln CI'ossed

Gelds, with the energy 2moc' replaced by b, and with
mo replaced by m*, that is, with the velocity of light c
replaced by (88/2'*)'". For Ec/H greater than this
quantity, the problem can be transformed by a suitable
Lorentz transformation into that of motion in an
electric field alone. In this case the quantum-mechanical
solutions are nonbound and nonquantized. On the other
hand, for Zc/H smaller than (88/2ss*)"', the problem
can be transformed to one of motion in a magnetic fieM

alone, with bound, quantized solutions.

Haering and Adams' treated the problem of tunneling
in crossed Gelds in the one-band eBective-mass approx-
imation using a WEB treatment. Their expressions are
only valid for Ec/B small, that is, where the one-band
effective-mass approxiination holds. In this region the
solutions are bound states with no Zener tunneling
allowed between valence states and conduction states
because of the requirement of energy conservation.
However, Haering and Adams treat the problem of
tunnehng across a junction rather than within a pure
material, so that the bands on opposite sides of the
overlap in energy allowing tunneling with energy
conserved.

Ke have treated this problem using a similar WEB
treatment, but using the two-band model to obtain
expressions for Zener current and photon-assisted
tunneling which are valid in the region of large electric
field. Recently, Aronov and Pikus (AP)' have obtained

4 M. Reine, Q. H. I .Vrehen, and S.Lax, Phys. Rev. 163, 726
(1967}.' H. C. Praddaude, Phys. Rev. 140, AI292 (1965).

'%.Zawadzki and S.Lax, Phys. Rev. Letters 16, 1001 (1966).
1 B. Laxi 111 PP8888t18sgS of A8 S888sk Isi81soitosoi CosfN'Os88

on the I'hys~cs of Semiconductors, Eorjs, ZW4 (Dunod Cie., Paris,
1964)s p. 253.

8 R. R. Haering and E. N. Adams, J. Phys. Chem. Solids 19,
8 (1961).

'A. G. Aronov and G. K. Pikus, Zh. Eksperim. i Teor. Fiz.
51, 281 (1966); 51, 505 (1966) LEnglish transls. :Soviet Phys. —
JETP 24, 188 (1.967); 241 339 (1967)g; J, Phys. Soc.Japan, Snppi.
Z&, 608 (1966),

IL THE TWO-BAND EQUATION

To describe tunneling in crossed and paraM Gelds we
use a two-band model which has been found to give a
good approximation for the small-gap semiconductors
such as the III-V and IV-VI intermetallic compounds.
The two-band equation of ZL describing a Bloch
electron in the presence of crossed electric and magnetic
fields has been derived, somewhat artihcially, neglecting
the symmetry character (s, p, etc.) of the bands
involved. We note in Appendix A that explicit solutions

may be obtained for a p-like valence band and an s-like
conduction band (such as in Insb). The resulting
equation for the s band is the same as that of ZL,
showing that for this proMem the three degenerate
p-like bands act as one spherical band. In order to
obtain a single valence-band solution we retain the
simplifying assumption of ZL. %e work in the Kohn-
Luttinger representation, in which the electric potential
eE r is diagonal. Neglecting spin and the diagonal
free-mass term E'/2sss, the k y equation for the two
spherical bands is

desi'P fs

-eEa——',8, fi
=8, (l)fi-

nearly identical expressions using a different technique,
namely, canonical transformations analogous to those
used for the Dirac equation. Their treatment includes
the spin of the electron, which, however, does not seem
to affect the tunneling results signiGcantly. We believe
that the two methods give such similar results because
both treatments use the method df steepest descent to
perform several integrations, making their treatment, in
principle more exact, equivalent to our WKH approxi-
mation. The results of both theories are supported, at
least qualitatively, by the experiments of the preceding
paper. 4 The %KB method has the merit of providing a
good physical picture of the tunneling process in
crossed Gelds.

In order to give a uniGed picture of the effects of
parallel and crossed Gelds, we have treated the parallel-
field case, as well as the crossed-Geld case, in the two-
band approximation. The results for photon-assisted
tunneling are very simi/ar to those of RVL given in
the preceding paper, and reduce to their expressions in
the parabolic approximation. In the two-band model
the sects of parallel Gelds still separate into a magnetic
plus an electric motion, as in the parabolic model. The
only essential difference is that the energy gap for
tunneling is given by 8 =188'+488(s+-', )518,$"'
instead of 88+2(N+-', )igoo,. We also calculate Zener
tunneling in parallel Gelds, which can not be done in
the one-band approximation of RVI without ex-

plicitly taking into account the coupling between the
two baIlds.
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where, in the Landau gauge,

P= y+eA/c, E= (—E, 0,0),
A= (O,Hx, O), crossed fields,

A= (O,O,Hy), parallel fields.

(2)

The electric GeM is along the x axis, and the magnetic
Geld is along the x axis for parallel Gelds, the 2' axis for
crossed Gelds. Kith spin included, this equation for
crossed fields is equivalent to that solved by AP, and

can be written in terms which display its similarity to
the Dirac equation. " In the diagonalizing coordinate

system, frip"frpi =8 ffh, /2m, thus defining the effective

mass for both bands.
For a given energy b this matrix equation determines

conduction and valence-band solutions f' and fP' given

by linear combinations of the envelope functions f
multiplied by the band-edge Bloch functions. As in the
relativistic case, for energies close to the band edges,
each fp has a large and a small component, with the

large component multiplying the band-edge Sloch
function for the band involved. For each band we solve

by substitution for the large component, fp for the
conduction band, fi for the valence band, then use one

of the equations to compute the small component from
the large one. For the conduction band we have, for

energy 8„
g P2

(—eEx+-,'h, —h.)+- f2'
2m*(eEx+-',hp+ h, )

ibSpeEP fp'

2fff*(eEx+-,' hp+ h,)'
—= (Sep' h.)fp'+X—,'f;= 0, (3a)

term for crossed Gelds in the electric-Geld region but
not in the magnetic-Geld region, although our equation
indicates that the term is present as long as there is a
nonzero electric field. However, the term causes no
transitions for crossed Gelds in the magnetic-Geld

region, although it has interband matrix elements. In
this region the energy levels are quantized and there are
no conduction- and valence-band states with the same

energy between which Zener tunneling can take place.
%e show in Sec. III that as long as we adopt the

above method of solving for the large component for
each band, the singular terms are small for the region of
solution for each band and thus can be neglected. In
fact, these terms become the perturbation which cause
the Zener tunneling, although we assume they are
negligible in the photon-assisted case. Thus we are
dealing with quasistationary solutions. Neglecting the
perturbing terms is equivalent to subtracting

-x,' 0-

0 0
or X,'—=

0 0

0 Xg'

from the Hamiltonian (1) when solving for the conduc-

tion or valence band, respectively.
It is shown in Appendix 8 that the tunneling current,

using the golden rule, is proportional to ((p(X,'(ft'))'
= [Q')X,'(fP"))', where fP' and fP' are the quasista-
tionary two-component functions obtained neglecting
3'.,' and X,', respectively. Similarly, these approximate
functions are used to calculate the optical absorption
for the photon-assisted case, putting the vector poten-
tial of the radiation into the Hamiltonian (1) to obtain
the perturbation due to the radiation. %e calculate the
tunneling current and optical absorption Grst for crossed
Gelds, then for parallel Gelds.

and for the small component

fi'= (ppip Pfp')/(eEx+-', 8,+ h,)

For the valence band, for energy 8„, we find

g P2

( eEx ,'8, —8,)+—-—— fi"
2m*(eEx——', h p+ h, )

ih 8peEP,fi"

2fff*(eEx——',h +h„)'

(3b)

III. WEB SOLUTIONS —CROSSED FIELDS

ak„) e'E„f'—
—2e~ —E— B ~x

— x' q(x)
2fff* kh, fff*c J h,

p'

For crossed fields we have from Eq. (2), A= (O,Hx, 0),
so that the electric Geld is along the x axis, the magnetic
field along the z axis. Putting P= y+eA/c, neglecting
one of X,' and X,', and separating each f into the form

f expLi(k„y+k, z) jq (x), we obtain from (3a) and (4a)
the same equation for qp'(x) and yi'(x):

=—(Xp' —$.)fi"+Xi'fi'=0, (4a)

and for the small component,

fp' (pfpi Pfi")/——(eEx ', &p+8.). —(4-b)

The singular terms Xp'f2' and Xi'fi" result from the
fact that the kinetic energy ~ P and the electric
potential eE r do not commute, and are referred to by
ZL as effective spin-orbit terms. AP obtain a similar

' P. A. WolG, J. Phys. Chem. Solids 25, 1057 (1964).

A2

= —(h' —-'h ')— (k '+k ') (*) (6)
2m*

where p=—(k/i)d/dx and Egfp=E Hpff p Heff ~fop/
2m*c2. This equation is identical to that of ZL except
that we have neglected the singular term, the electric
Geld is along the x axis rather than the y axis, and we
measure energies from the midpoint between the two
band edges rather than from the conduction band edge.

Equation (6) has two types of solutions depending on
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PIG. 1. Photon-assisted tunneling in crossed electric and
magnetic 6elds for E&H(8,j2m*c')'/'. The sloping dashed lines
represent the valence and conduction-band edges (or turning
points) for II=0. The shaded regions represent the valence and
conduction-band regions with both 6elds present. A valence
electron of energy 8, tunnels from its turning point x, to x,
absorbs a photon, and tunnels to x„the turning point for a conduc-
tion electron of energy 8,= 8,+ko. The magnetic 6eld acts to
reduce the absorption by curving the band edges away from each
other, thus enlarging the tunneling region.

the sign of 8,«'. In the magnetic-Geld region E,ff'g0
or Ec/H((8, /2m*)'(s, so that upon completing the
square on x, the equation becomes a harmonic-oscillator
equation with bound solutions and quantized Landau-
like levels. In this region no Zener tunneling occurs. In
the electric-Geld region E,(p) 0 or Ec/B) (8,/2m*)"s,
with the analytic solutions to Eq. (6) being parabolic
cylinder functions with nonbound states and a con-
tinuous-energy spectrum.

We calculate tunneling and photon-assisted tunneling
in the electric-Geld region where E.rP) 0. In order to
find the matrix elements of the perturbations we obtain
approximate solutions to Kq. (6) in the form of. WKB
functions as follows. We solve Kq. (6) for p(x) which is
now regarded as a number rather than an operator.
We find the turning points of the motion where p(x) =0.
Beyond these points, p(x) is imaginary and the WKB
solutions are decaying exponentials. In our case, this
occurs within the forbidden energy gap.

The turning points of the motion are plotted in Fig. ].
for energies corresponding to the conduction and valence
bands, for k„=k,=0. A valence electron of energy 8,
tunnels from its turning point x, to x, absorbs a photon
if the tunneling is photon-assisted, then tunnels to x„
the turning point for a conduction electron of energy
8,= 8,+he). We can easily see how the magnetic Geld
acts to reduce the tunneling by curving the bands away
from each other, thus enlarging the tunneling region.
The effect of the magnetic 6eld on photon-assisted
tunneling becomes small as Aao approaches 8, since then
the optical transition takes place near @=0where the

bands are not moved apart by the magnetic 6eld. This
is observed experimentally. 4

We can also see from this model how the magnetic
6eld can become large enough to create bound states with
no tunneling possible. In this case the valence-band edge
is curved downvrard on the left, and the conduction-
band edge is curved upward on the right. Within these
bands the energy is quantized into Landau-like levels,
vrhere because of the electric 6eld some of these levels
are left closer together in energy than the zero-Geld gap.
Between these levels oscillatory magnetoabsorption can
take place for A~& B„as observed by Vrehen. "How-
ever, no Zener tunneling is possible between these levels
because now there are no conduction and valence-band
states with the same energy betvreen vrhich Zener
tunneling can take place vrith energy conserved.

With this picture of the tunneling region we can now
see hovr to treat the perturbations X,' and X,'. The
singularities of these perturbations /See Eqs. (3a),
(4a), and (5)j are at x,.'= —(S,+-', 8,)/eE and x,'
= —(8,——,'8,)/eE. But x,' is to the right of x„
= —(8,+8,)/2eE (See Appendix C), and x,' is to the
left, by a distance (b,+8, 8„)/2eE.—Since 8,—8. is
either zero (Zener tunneling) or A&0 (FK effect), x, ' is
well to the right of the region where the valence-band
solution )P" is used, and x,' is well to the left of the
conduction-band region. Thus we can neglect X,' vrhen
solving for )ps and K,' when solving for ))t ', as we did in
obtaining Eq. (6). This analysis of the perturbations
also holds for parallel 6elds.

For the valence band inside the forbidden region the
WKB solution to Kq. (6) is

A p I
((r'(x)= —— exp' —— . ip. (x)idx i. (7a)

) p, (x) )"' 4 6,„)
For the conduction band,

where at x„~p, (x) [
=0 and. x„~p, (x)

~
=0, and where

2—= (m*/T, )'(' 8= (m"'/T, )"' wit—h T, and T, the
classical periods of the motion in the two bands. ' A and
8 are normalization constants which cancel out vrhen
we multiply by the density of states.

To the left of x, the valence-band solution is oscil-
latory, and. similarly for the conduction-band solution
to the right of x,. The vrave functions in these regions
have no contribution to the transition matrix elements.

Using the WEB functions q2' and y~', we form the
large components fs', fr' and from these, using Eqs.
(3b) and (4b), calculate the small components fr', fs'.
Using the two-component solutions P, f' thus obtained,
we calculate the tunneling current and optical absorp-
tion following a procedure similar to that of Haering

&' Q. II. F. Vreherl, Phys. Rev. Letters 14, 558 (1965).



of Adams. ' We note that the solutions 1P' and P" are
orthogonal even when b,= 8,.

For tunneling in crossed fields the golden rule (Sec
Appendix 3) gives the tunneling rate from the valence
band state f' as

2Ã

Z l(~ l~.'l~ &I ~(8.-8,). (g)
Pg final states c

Since P(kl) includes an exponential factor T(k,)
mu1tiplied by slowly varying functions of k„and k,
(through a, p, and 8') we calculate the integrals on
k~ and k, by the method of steepest descent, evaluating
the slowly varying factors at the saddle point of the
exponent in T(k,). The calculation of the transmission
coefficient T=J'd—k„dk,T(kl) is done in Eq. (C12}.The
saddle point is found to be 8'= 0, b,'= S~.The resulting
expression is independent of b. Using

We caiculatc

Q"I3"IP&=4„a„4,1; [q 1'(h)7'xl'q 1*(h)ch. (9)

I,g/2 8$

where 8(h) is plotted in Fig. 1, we find the tunneling
current j=N„/I, J„I;to be

F«8.= S.= San«hcr«»e IP.(h) I
= IP (*)I

=—IP(*) I

the integral becomes

—k d 8
Is

eEh+ ', Sg+8 -i dh lpl"'
c egg gg

@exp -- IPIChk, 2m~(eEh —-', hg+ h)'

k)d 2 1
x —

I

— - - exp —
I pic* . (10)

&'dh lpl"' k

From Eq. (6) we have

I p I'= (2m*/Sg)e'E. III(a' p), —

a'—= (2eE,Ip) '[Sg"E,II2+48"B,Ip7,
f=—h+8/eE+(8'jeE)(&. «'/E. «'), (12)

Sg"——Sg'+280k'k, '/m", 8'=—8—kk„Ec/H.

Then, using Irlq =(-,'-mIP)I"=(8,/2m*)I"/V3, and as-
suming eEt, eE,II+(-', S„we expand the integrand in I
and find, to order P,

LfBike'EE,«28'II, II/I=— 1—
I I a I '[r(k, )71&', (13)

%Em*80' SgF.gp )

2 xa

2"(4)=- exp --
I P I dh+ IP I dh

~II% A g

=exp ——
I plCh I. (14)

Then including the density of initial and Gnal states,
%'ith R fRctox' of 2 fox' spin the tunDellng lRte from all
states 8,= 8 to all states 8,= 8 is

X dS f(h)
'

dk, dk.P(k~) (15).

e'E~ 2m*) ~2 s m*) '1~

(»)
3x'k' Sg f' 2keE,«2 3

The above expression is nearly identical to that obtained
by AP. The exponent is the same; this is the factor
which is most sensitive to the cIIfect of the magnetic
Geld. In the prefactor, however, wc have a factor
E/3~', whereas AP obtain E,II2/36m. The effect of
replacing E' by E,II2 is to maize j(H)/ j(0) decay more
sharply Rt 1ow DlRgQctlc GCM RQd IQOI'c slo%'ly Rt high
Geld. The CGect is small except when thc ciectric GCM
becomes 1argc. EvcD fox low E thc dMcrcncc ln thc
prefactor will RGect the identification of the parameters
involved %'hcQ comparing thc thcoly 76th expcriIQcnt
Rs ls done lD Fig. 4 of AP. Thc principal uIlknown
parameter is the electric Geld E; however, the tunneling
experiments are performed in diodes, so that the
assumption of constRDt electric GcM ls ln question.
However, the general exp( —8'/E'} behavior pre-
dicted by both theories for j(B)/j(0) is confirmed by
experiment.

We Gnd the perturbation due to the incident radiation
by replacing P-+P+eA /c in the Hamiltonian (1)
and obtain

+21 eA„/c-

+12 eA„/c

where in the dipole approximation A„=(m„c/2«e)
g exit, whexe IE„is the electric vector of the radiation.
The matrix element of X ' between the approximate
wave functions iP' and 1P' is given by

O'll'-'l0"&= [(ejc)~ A-7((fl'If~'&+(f~'I fl'&) (19)
but (fl'I fm'&(((fg'I fl') since the functions fl' and f~'
al'e 'tile slllall colllpoIlcIlts of tile 1'cspcctlvc states. [TlM
ratio of the two terms is approximately (8,—h~)/
28 ((1.7
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Thcrcforc wc have

dx(q, ')*p„'. (20)Q ~x„'~y)= „As,„,„,r,,„,
C

The integral then becomes

I= dx(q g')*q i"= I'&A .. I p.(x)p. (x)l "'

1
g exp ——

A
ip. (x)idx ——

We evaluate this integral by th
descent, using the expressions
Appendix C, and And

I=BA (xB,T(k,)/m*~eE~ p~)')2,

where

2
T(k,)—=exp(—

xv

i p, (x) idx
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VI. WEB SOLUTIONS —PARALI, EEL FIELDS

0 H with the electric andFor parallel fields A= (0,0, y, w
tic 6elds along the x axis. Putting =p e

oband neglecting one of K. . ., we
(3a an a) d i4 ) the same equation for f2', fi'.

L .'/2m* —(1/h, ) (eEx+ 8)'j

S,. Svrhcv

)
L I.„L,nC&O2

(24) 2 * m*c 2mc 42' m m

4(8g—Puv) 8)'m*'I'

3k'
(hg —h(o) (3E' 8II,ii2)—

20b E2

ol

t this equation by substitutingKe can separate isthe index of refraction. We use the expression

f(x y s) = p(x)p(y)expik, s,
k the approximation (b,—

below the gap. The absorp io

2~2m* and ma e e
tion

29

((b, for absorption just e ow

Lp„'/2m*+-,'m*o), ycoeKcient becomes

n =e'E, ii Sg'/8nch'(u'(hg —h(o) exp-

ith this result for p(y) the equationorbit center I. 'k, .Wit t isresu
for i))(x) becomes

6/2 Q'
2m*—(1/Sg) (eEx+ h)'+-,' 8,

u(E,II) 8(hg —ha&) ',gi2-

a(E,O)n, 15keSg

'
d dx. The analytic solutions to q.oE . 30),

E . 6 fmE, P 0, bol' li dres on ing
'

than is the case for as to Eq. (6)
h' hp

e same as th io s of APof (25) are exactly the same as e ex

qualitative features o t e e
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functions obtained by RVL. We see this another way
by noting that Kq. (30) reduces to Kqs. (3a) and (3b)
of RVL when we solve for (eEx+8)' and take the
square root of the operator equation, making the
approximation Lp'/2m*+ (zz+-,')kur, f((8,. We obtain

(8+eEx) y =&(,' 8g+ [-p'/2m*+ (zz+ i2) A-re, ])q, (31)

with the plus sign for the conduction band and the
minus sign for the valence band. The solutions to Eq.
(31) are the Airy functions obtained by RVL.

As for crossed fields, we obtain the perturbation
matrix elements by using WEB solutions to (30).
These solutions are given by Kqs. (7a) and (7b), where
now p(x) is obtained from Kq. (30).The turning points
of the motion, where p(x)=0, are plotted in Fig. 2.
In this case the bands are not curved, as they are for
crossed fieMs as shown in Fig. 1, but are displaced by
a constant amount from the II=0 lines. The energy
separation of a pair of conduction and valence bands
with the same quantum number m is

8„—=$8,'+ 480 (zz+-,')k~e,]'".
Thus the effect of the magnetic field is to reduce the
tunneling by increasing the effective energy gap to
h„& 8,. For large h„8„reduces to that obtained by
RVL for parabolic bands, namely, 8„~8,+2(tz+iz)tue,

Using the WEB functions y and the harmonic-
oscillator functions p„we form product functions f and
from these, as for crossed fields, form the two-component
solutions P to calculate the tunneling current and
optical-absorption coeKcient.

VII. TUNNELING CURRENT—
PARALLEL FIELDS

PIG. 2. Photon-assisted tunneling in parallel Gelds. The sloping
solid lines represent the conduction and valence-band levels
quantized by the magnetic Geld. A pair of levels with the same
ma etic quantum number n are separated in energy by= s,'+4s, (~+;)h .5'~'

the center of the magnetic orbit y =I. 'k, is contained in
the crystal) contributes a factor L„/L '=L„(eH/kc),
and J'd8f(8) contributes a factor eELx. From this
the tunneling current is calculated to be

2e'EH 8 4 zr8 '/m*
j(H)= Z m —

I

— . (36)
3 kzr'zc ~ 80' 2keE(28'

We again use the golden rule (8) and calculate

Lz i,- '(*)j*
XXi'z i,."(x)dx.

Now
~
p~' is given by Kq. (11),where

Because of the exponential factor the most important
term is the zz=0 term. We find j(0) by converting the
sum to an integral and taking the limit as B~0. The
result is the same as the H ~ 0 limit of the crossed-6eld

(32) result (17).The exponent of j(H)/ j(0) is proportional
to H/E in comparison to H'/E' for the crossed-field
case.

&z= (1/4~E )L8.z+48, (~+-,')fz~.)= 8.'/4~E',

P =x+ 8/eE. (33)

Then the integral is found to be

I= —(gggzkezEz/~m+8 z)
~
g[ Ti~

VIII. OPTICAL ABSORPTION—
PARALLEL FlELDS

Using the perturbation 3'.„' defined in Kq. (18), we
calculate for parallel fields

where T is defined by Kq. (16).The tunneling rate iV„
becomes C

2I-. p T. )2', t2zr
d 8f(8)g dk, I'. (35)

(2zr)(2zrk (2zrb kk n

Since 12 is independent and 8 and k„ the sum over k,
(converted to an integral over values of k, for which

As above, we 6nd the integral by the method of steepest
descent, to be given by Kq. (22), with T defined in
Kq. (23). T is now independent of k, and 8, and is
calculated simply by evaluating the integrals in the ex-
ponent. As for crossed fields, x = —(8,+8,)/2eE. The
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absorption coefficient is found to be, for 8„—5~&&8„,

~3aa,3~2

n(E,B)=

4~01/2 (g I/2

exp —
I

— (8„—Ace) 3~'

3heE (8g

8„'~'(8„—ko) 'I' (38)

We calculate n(E, ,O) as we did j(0) and obtain the same
expression as the H —& 0 limit of the crossed-Geld result

I Eq. (25)]. As for j(H), the most important term of
n(E, H) is the N=O term. The result for n(E,B) is the
same as that obtained by RVL for parabolic bands
apart from the definition of 8, the factor (8„/8,)'"=1
in the exponent, and a factor (8,/8„)"z in the prefactor.
For n(E,H)/n(E, O) we obtain for small H the expression
of RVL, and note that the exponent is proportional to
(8 fr~)"'H/E— rather than (8,—fi~)"'EP/E for
crossed fields. Note that our result is the first term in an
expansion in terms of (8„—Are)/8„((1, whereas RVL
expand in terms of (8 —fiM)/Ag»1, where 8'=e'E'/
km*. Thus there is only a limited range of co for which
both expressions hold, and neither calculation holds un-
less 58«$„,or unless the electric field is relatively small.

IX. SUMMARY

Ke have calculated expressions for the Zener tunnel-
ing current and optical-absorption coefficient in the
presence of crossed and parallel electric and magnetic

6elds, using %KB solutions to the two-band model.
We have obtained results which are supported by the
photon-assisted tunneling experiments in the preceding
paper, and by other tunneling experiments. Apart from
di6erences not resolved by these experiments, our
results for crossed fields are the same as those obtained
by Aronov and Pikus using a quite different treatment
of a model identical to ours except for the inclusion of
spin eIIfects which do not appear to alter the results
significantly. Our results for parallel fields are similar
to those obtained for parabolic bands in the preceding
paper. Thus we have shown that the main features of
electron tunneling in crossed and parallel fields can be
adequately explained using a semiclassical %KB
treatment which in addition provides a good physical
picture of the tunneling process.
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APPENDIX A: SOLUTIONS OF THE TWO-BAND
EQUATION FOR s AND p BANDS IN

CROSSED FIELDS

We calculate the k p equation in the Kohn-Luttinger
representation for two coupled bands, an s-like conduc-
tion band and a triply degenerate p-like valence band
in the presence of crossed electric and magnetic fields.
Neglecting spin and the free-electron mass term, we
obtain

eE r+z8g —8
m-2i E+
7l 2]

&21~ z
zP

Xg2 E'+

|,K r—-'8 —b

0

7l i2

0
eE r —-'8 —82 g

0
0 f

eE r——,'8 —8. .f, .

where f, is the envelope function which multiplies the
band-edge Bloch function for the ith band, and I'+ ——I,
+iP„, with the other terms defined in Eq. (2). The
valence band-edge functions corresponding to the
envelope functions f+, f, and f, are the linear combina-
tions of the three p-like states IX), I F), and IZ)
given by I&)= IX)&iI I ) and Iz)= IZ), which are
eigenfunctions of the spin-orbit interaction. The
functions

I X), I Y), and
I Z) transform as the coordinates

along the cubic axes. Equation (A1) is an extension of
an equation obtained by Yafet'4 for a magnetic field
alone.

Assuming an isotroPic mass with (~~z)'=8,/2m',

'4 Y. Yafet, Phys. Rev. 115, 13.72 (1959); R. Bowers and Y.
Yafet, i' 115, 1165 (1959)..

Eq. (Ai) can be solved for f, (not for f+, f, or f,
explicitly) since each of the last three equations
couples f, with only one of the f+, f, and f,. The
complete sotution can be written, for crossed-fields,

f+

-f'
I
eEx+ hg/2+ h

I'" expI i(key+&*z)3y(x) ]
(8,/6m*)' '(p f.)/( Ex+ ,' 8,+h). -
(8./6~*)"'(p f.)/(eEx+z 8,+8)-
(8,/6m")" (p,f,)/(eEx+ ,'8,+h)-

where &p(x) obeys Eq. (3a), which we rewrite in the
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form

2m*

3A'

8m~ t x+ (b+-,'h, )/eE 12

Ak„) e2E,.2/2

H lx- x' 22(x)
2m*c & h,

A calculation of the matrix elements shows that
lV„=S",. Thus we are justified in using different
perturbations X,' and X.' for the conduction and
valence bands since they leave the approximate solu-
tions orthogonal and the transition rate is the same
whether we start with the conduction-band or valence-
band solution.

=
I (1/8c) (8'—~4 Sc')—(k'/2m*)

X (k„'+k.')]2 (*) (A3)

This is the equation obtained by Zawadzki and Lax
for two-spherical bands. The difhculty with this equa-
tion for our purposes is that it is only soluble when the
singular term is small, that is, when solving for the
conduction band to the right of the barrier. It is neces-
sary to solve explicitly for the large component of the
valence-band solution to the left of the barrier in order
to obtain a perturbation which has no singularity in
that region. Therefore, for the tunneling problem we
have assumed no explicit character for the bands. This
case of interacting simple bands occurs in real semi-
conductors such as Bi and PbTe.

T—= dk„dk, T(k/, ), (C1)

APPENDIX C: EVALUATION OF THE
TRANSMISSION COEFFICIENT FOR

CROSSED FIELDS

In order to calculate the tunneling current and
optical-absorption coeKcient in crossed 6elds we must
calculate integrals J'dk„dk, f(k„,k.)T(k,), where f(k„,k.)
is a slowly varying function and T(k,) is the rapidly
varying exponential defined in Eq. (23), and, for the
special (Zener) case 8,=8„=8or Ace=0, in Kq. (14).
%e calculate the integral by the method of steepest
descent, and evaluate f(k2) at the saddle point k„0, k, 2

of the exponent of T(k). The integral is then f(k„e,k,c)
times the transmission coeS.cient

APPENDIX 8: PERTURBATIO5'S CAUSING
THE TUNNELING CURRENT

The approximate equations we solve are

(X—X'g'=8/' (X—X')f"=Beg") (31)

where

T(k&) = expL —p],

where X, X,', and X„' are defined in Kqs. (1), (3a),
(4a), and (5). We seek the first-order corrections to
the orthogonal functions P' and f' using the correct
equation

Xp e, e g c,ef c,e

where

y c, e yc, e+g ye, c g c,e —gc, e+ggc, e (33)

Assuming the system is initially in a state P', we find,
substituting Eq. (33) into Kq. (32) and using Kq. (31)
and the orthogonality of f' and g', that the perturbed
state f&" is given by

gg

I p. (x) Idx+-
I p, (x) Idx, (C2)

where p, (x) and p, (x) are obtained from Eq. (6) with
so, at x=x

I p (x) I
=

I p (x) I

—= lp(k ) I
~

We hand, for i referring to the conduction or valence
band,

I
p'(x)

I

= (2m*/h )'"eEcnly, —a, I'/'

= (2m*/g )1/2eEeff(g2 —y2)1/2 (C3)

where, for 8,=—8= 8,+Ace, and defining, for H~p,

(34)

so that the transition rate from the states P' to the states
pc is given by the golden rule as

8'—= 8 Ak„cE/H, —
8 "—= b 2+28 A'k '/m*

t2 2—(2eE 2)—2I g &2E 2+4//2H 2j

= (2eE ff ) 'I &2"E.fP+4(Acc —8')'H. ff j,
(C4)

2x
if/-= —Z I

8"
I x.' I 0")I '6(&.—@.)

A, e, c

and

y. ..=x+ Bc.eE/eE—.2p ScAk„H/2eE, 2f m*c—. (C5)

Similarly, the rate starting with the conduction-band
solution is found to be

For the matching point x we 6nd

x = —(@.+&.)/2eE= —(2S—Aa))/2eE. (C6)

The integrals in y can be evaluated exactly, to give

y = I+II+III,



where

2m,* '~'

[(8 &2 $2~2)E2
2keE, ff' 80

+ (2 8'—ha&) 2H, //2] "2,

where ay/ak, =o. This is at k, =o or

g '=g

The exponent of the 6nal expression for T is

(C10)

1 22/2*q '/'

[8,"E.«'+4(k —8')'H. /P3
4keE, //2 82 )

E.«[(8,"—k2a&2) E'+ (2 b' Pun) —2H. //2 ji/2
XSln

E[E2"E,«2+4 (ha) —8') 'H «2 j'/2

I 82"E.//'+48"H. /P]
4AeE.,ff'- 8,

E.//[(82" —k2cu2)E'+ (2 8'—ko) 2H, //2 j'/2
Xsin '

E[8 &2E 2+4 g2H 2j1/2

y (22&,8,)= (1/keE. //2) (//2*/28, ) '/2

X (bg2L&', //2+ k2a&2H, //2)

(8 2 $2~2)1/2E
Xsin '

(8 '2E 2+$2~2H 2)1/2

—AcoEE «(8 2—Aug) 1/2 (C1,1)

This exponent is exactly the same as that obtained by
AP.

For the tunneling case 8,= S„5~=0, we find the
transmission coeScient to be

We integrate exp( —y} over k„and k, by the method
of steepest descent, evaluating the k„ integral first. «e«' 22/2 i"'
Since 8'=8 kk„/E//H, —we use dk„= —(H/hcE)d8'.
The saddle point 8', where By/88'=0, is

Then the integral is
&&e~ — (-,'m*)'/28, »2, (C12)

2AeEef f

T= dk„dk, exp[—y(8', 8,')]

(H/kcE) —d8'dk, exp[—y(b', b, ')g

and for the optical absorption, Bg—Sco&&8„

T= (2reE, /2k) [2/2*/(8, —ho)) j'/'

4 (82—ha))»2//2*1/2

=—(22r)'/2(H/AcE) dk, exp[—y(-2, A42, 8,')] (8,—Ao&) (3E'—SH, /22)

X (C13)

$2 —-112

X y(-', A, 8,')
ab'

(C9)

The slowly varying function 82y/88" is taken outside
the integral, and it and the exponent are evaluated at
the saddle point of the k, integral which is the point

The above development is not valid for B=O. For
this case we de6ne 8'= 8 and 8 "=8 2+520 2/22/2*

The saddle points of the integrals are at k„=k,=0, and
the resulting expression for T is the same as that found

by letting II~0 in the expressions for T calculated
above.


