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Spatially Inhomogeneous Phonon Amplification in Solids
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A theory is presented for acoustic domains of both the stationary and propagating kinds. In the latter
case, a mechanism of domain generation is also given. The basic assumption of the theory is that the spatially
inhomogeneous amplification can be described by the stimulated emission of incoherent phonons within
individual, macroscopic volume elements. By taking appropriate moments of the Boltzmann equations
of the electron-phonon system, generalized to include drift terms, a set of three coupled integrodifkrential
equations is obtained. With suitable boundary conditions, these equations determine the three unknowns—
drift velocity, phonon number, and macroscopic electric Beld—as a function of position and time. Some appli-
cations of the equations are given, and possible future applications are outlined.

I. INTRODUCTION
' N recent years, the internal generation of acoustic
.. Aux and its physical consequence have been studied
by a number of workers. As is well known, this phenome-
non was first observed by Smith, ' who noted a marked
saturation in the current-voltage characteristic of semi-
conducting CdS at a Geld at which the Ohmic drift
velocity was very nearly equal to the velocity of sound.
By placing a transducer at the downstream contact,
McFee' later observed, among other things, that the
current saturation was indeed accompanied by the
buildup of acoustic noise. It is relevant to the present
paper to note that the internally generated sound ap-
peared incoherent. A physical argument for the satura-
tion based on reversed acoustoelectric currents has been
given by Hutson' in the classical regime. On the other
hand, Yamashita and Nakamura4 have presented a
theory for the current saturation and incubation times
based on the Boltzmann equations for the electron-
phonon system. It is to be emphasized that both of these
latter theories assume a spatially uniform situation.

However, recent experimental observation has shown
that the assumption of spatial uniformity is unrealistic,
and, in fact, that the spatial nonuniformity of the
macroscopic electric field and Aux distributions is an
essential feature of the problem. Specifically, it has been
shown that the large-scale current oscillations are associ-
ated with the generation and propagation of finite
acoustic domains. This has been seen in CdS by Many
and Balberg' and Hadyl and Quate, ' among others.
Domain motion has also been studied in a number of
III-V compounds by Bray. ' Moreover, the spatial non-
uniformity is also characteristic of the steady-state
situation; stationary domains have been observed under

R,. W. Smith, Phys. Rev. Letters 9, 87 (1962).' J. H. McFee, J. Appl. Phys. 34, 1548 (1963).
A. R. Hutson, Phys. Rev. Letters 9, 296 (1962).' J, Yamashita and K. Nakamura, Progr. Theoret. Phys.

(Kyoto} 33, 1022 (1965).' A. Many and I. Balberg, Phys. Letters 20, 463 (1966).' W. H. Hadyl and C. F. Quate, Stanford University Microwave
Laboratory Report No. 1446 (unpublished).

' R. Bray, C. S. Kumar, J. B. Ross, and P. O. Silva, J.Phys.
Soc. Japan, Suppl. 21, 483 (1966);P. O. Silva and R. Bray, Phys.
Rev. Letters, 14, 372 (1965).

various conditions by Many and Balberg. ' McFee and
Tien, ' and Maines and Paige. '

A second aspect of this problem is that the ampli6ed
Aux is initially incoherent, being either the thermal
phonon distribution or a shock-induced excitation. In
the present paper, it is assumed that this incoherence
remains up to the highest phonon levels of interest.
Indeed, there is no dehnitive evidence that the internally
generated flux becomes coherent (in the sense that one
can define a classical strain field as a function of posi-
tion and time). This is to be contrasted with the amplifi-
cation of a coherently impressed sound wave. "

The approach of the present paper is to treat the
effects of spatial dependence and incoherence in terms
of the Boltzmann equations of the electron-phonon sys-
tem, generalized to allow for the possibility that the dis-
tribution functions vary spatially over macroscopic
volume elements. " This approach is perhaps better
suited for the higher mobility III-V compounds studied

by Bray' (p-GaSb, e-GaAs, e-InSb) for which" q/) 1.
However, in the absence of a classical incoherent theory
of comparable simplicity, "it is assumed that the present
theory is also a,pplicahle to CdS for which qIt'&1.

II. THEORY

As discussed in the Introduction, we take as the start-
ing point of the present paper the coupled Boltzmann
equations of the electron-phonon system, in which the
distribution functions are allowed to be slowly varying

' J. H. McFee and P. K. Tien, J. Appl. Phys. 37, 2754 (1966).
~ J. D. Maines and E. G. S. Paige, Solid State Commun. 4, 381

(1966).' A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev.
Letters 7, 237 (1961);D. L. White, J.Appl. Phys. 33, 2547 (1962).

"The conditions on the size of such elements will be discussed
later in the text.

"Since the ampli6ed frequencies have not been directly mea-
sured, this condition can only be inferred. Thus, at 77'K, for
p-GaSb (@=4300 cm~ V ' sec ') and n-GaAs (p, =8150 cm' V '
sec '}, we estimate t =800 A. The ql =1 condition corresponds to
c0=3X10'0 sec ', which is to be compared with the classical fre-
quency at maximum gain (n=10'6 cm ') c0, = (, coD}'~~=10'~

(see Ref. 10).
'3 An alternate approach would be the classical, incoherent

theory of Gurevich and co-workers: e,g., V. L. Gurevich, Zh.
Eksperim. i. Teor. Fiz. 46, 598 (1964); 47, 1291 (1964} LKnglish
transls. : Soviet Phys. —JKTP 19, 407 {1964};20, 873 (1965)J.
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functions of position. Specifically, the position is under-

stood to be de6ned over volume elements large com-

pared to the electronic mean free path and phonon
wavelengths of interest, but small compared to the
domain size. For representative values of the param-
eters, it is readily veri6ed that these conditions are
simultaneously realizable. '4

Ass~ng that all spatial variations occur in the di-

rection of the applied electric Geld, the coupled Boltz-
xllann cquRtlons rcRd

8fs(r, i) eF 8fs(r, t)

Bt It

8fs(r, t))i 8f&(r,t)
+ I

—(»). , (2 1)
Br /,„Bx

81V,(r, i) 8$,(r,i)) KV,(r,t))
I+

8$ 8$ ~,s R

BX,(r,i)-~.(C) — (2 2)

Here fs and X, are the electron and phonon distribu-
tion functions, respectively. Ii is the external electric
6eld apphed in the x direction, vs is the (group) velocity
of an electron in Bloch state k,and s(il) is the sound
velocity of a phonon of momentum q. Further, the sub-
scripts ep and pp refer to the rates of change due to
collisions of electrons with phonons and phonons vrith

phonons, respectively. Specifically,

(8fs 2rr
=—P C,s(Lf,(X+1)—f X )

48t .„ Is

Bee(x,i) 8 inn(x)-
X +me(x, t)

8$
(2.8)

The second term arises from the spatial gradient of
the anisotropic part of the distribution. Ordinarily, in
the standard Boltzmann-equation treatments of elec™
tronic thermal conduction and particle diffusion, " this
term is neglected as being of higher order for slow spatial
variation. However, in the present case it must be in-
cluded, since the spatial variation of eg Inust, in prin-
cipal, be taken into account. '~ For the 6rst term, we
have&8

8fs' 8 inn(x)
fee$8$

81ns$8 Js

(2.9)

the second equality following from the form of (2.7).
The other terms of (21.) are treated just as in Ref. 4.
Substituting (2.5) and (2.6) into (2.1) and incorporating
(2.8) and (2.9), we obtain

where
fs'(es)= (2z)se(x)(k'/2rrmkrrT)sIse '"'"sr (2.7)

is the local Maxwell distribution, ee (x,t) is the local drift
velocity, "X,' is the equilibrium Planck distribution,
and $, (x,i) is the excess phonon population of mode q.

Of particular interest are the additional CBects of elec-
tron drift, given by the last term on the right hand side
oi (2.1). Using (2.5), we obtain

Bfs Bfse Bfse—(»)- = —(»). +(»).
8$ 8$86p

Xb( +,— —ko,)+$f,X,—f (S,+1)j Bt e(x,t) 8fee ve(x, t)—ee(x, t) 8fso 1 (8fs)

R 86y T(es) Bee AE R)e
(tsar (8 inn(x)) 8fse 8fss—(»).
Em &4 Bx J Be, Bee

Bee(x,t) 8 inn(x)
X +We(x, f)

8$ 8$

X8(eg, ,—es+ Puo, )}, (2.3)

(2.10)
where eq is the energy of Bloch state k; C,', the electron-
phonon coupling constant, will be specified later. For
the phonon-phonon term of (2.2), we will make a relaxa-
tion-time approximation later.

As R matter of convenience, RQd ln oI'dcl to fRcllltRtc
comparison with the spatially uniform theory, wc gen-
eralize the work of Yamashita and Nakamura. 4 In par-
ticular lt ls RssuIIlcd that thc distribution fuQctlons CRD

be written

fs = fs'(es) »s(x, i)&*(Bf—s'/Bes), (2.5)

«~ Although Yarnashita and Nakamura initially assume a more
general form for the distribution function, namely e =e(eq, t), they
subsequently neglect the energy dependence, in which case it be-
comes just the common drift velocity of the distribution. In the
present paper, this assumption is made from the outset.

«ti A. H. Vhlson, Theory of Metals (Cambridge University Press,
New York, 1958), 2nd ed. , Chap. 1.

"This follows from the existence of a nonuniform electric-6eld
distribution; such a variation in eq would be required to ensure
current continuity in the steady state, for example.' In the present case, we allow for a spatial variation of the
equilibrium distribution function only via its dependence on a
spatially varying carrier concentration n (x).In general, a tempera;
ture gradient might also be present, in which case the term
(cI,/kgT2)fI, ~(8T/8x) would add to the right-hand side of (2,9).
However, we neglect the possibility of a temperature gradient in
the present work.

X,=Xse+ $,(x,1), (2.6)

"Thus, for the III-V compounds, X a={2s/pl&i 10 ' cm,
while typical domain sizes are 30p&D 0.5 mm.

BXq 2x'
=—Z C.'(fs+s(&a+ 1) fs&s}—

83 && k
X8(esp, es Puo,), (2—.4)—
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vo(x, t) = eF—(x,t)r (ek)/m.
Averaging this equation over a Maxwell distribution,

we obtain

The quantity (8fk/8t)k is the rate of change due to col- 8v„(x t)
llslons with cxccss phoDons aDd ls glvcD by

Bt
8fk 2zr

=—Z Cq'&q(Lfk+. fk3-
8&

X 8(ok+q ek hzoq)+ Pfk q fk—j
X8(ek q

—ek+hooq)). (2.11)

vs(x, t) vo— m

2qrhozz(x)

XP qCqsfo(o„) cos8q{v& cos8, s}&—q

1 8zz(x)D, (2.14)
zz(x)r Bx

Following Ref. 4, the first xnoment of (2.10) is taken
by multiplying through by k,8(e—ek) and summing over
k. For the left-hand side and first and third terms of the
right-hand side of this equation, one must take sums of
the form Dor an arbitrary g(ek)]

&fk'
P k.8(e—ek)k. g(ek) =

Bek (2zr)'

X (2~) ok'"dek —&(e—ek) g(sk)
A:' 3

e,= (h'/2m) (-,'q)',

D = -'; (vzh'r) (2.15)

is the standard diffusion constant for a MaxweIl-
BoltzmaDIl gas.

Hence, the sole modification of the 6rst moment of
the Boltzmann equation is to add a simple diffusion
term to the right-hand side.

The treatment of the Boltzmann equation for the
phonons, (2.2), is straightforward. Substituting (1.5)
and (2.6), one obtains"

V 2m 't' Bfko
e»'=- g(,) & & VC,' m '

a. ' —+ C»8.—k.(xt)=- —f'( )
Bt Bx 2x h'

having replaced the sum by an integration, and having
introduced the usual density of states for a parabolic
band.

In taking the fzrst moment, no contribution is ob-
tained from thc anlsotroplc palt, of thc drift tclIIl, thc
last term in (2.10). This follows from the fact that the
summand. is odd in k, :

Bfko h Bfko—Q k.b(e —ek)(vk). k.= ——g k.' 8(e—ek)=0.
86y tg & Bf]&

For the first moment of (8fk/Bt) f, we use the result of
Ref. 4, namely,

1/8fk V m '
If&'&= P -~ — k.8(o—o,) = ——

& h( Bt o 2zrh h'

8/k~
X — P gCq $q cos8qLvg cos8q sg, (2.12—)

861„-

where 0~ is the angle between the direction of the phonon
of momentum q and the applied field.

Assexnbling results, the first moment of (2.10)
becomes

],(x,t)
X (vq(x, t) cos8,—s) $q(x, t) — —. (2.16)

The modification here is to replace the time deriva-
tive by the total convective del ivative for the particular
mode in question.

Anticipating that zz(x) will later be related to P (x) via,
Maxwell's equations, it, is seen that (2.14) and (2.16)
constitute only two equations in the three unknowns:
vq, $„and F. The third required relation is obtained by
taking an even moment of (2.10), the simplest being the
zcl'oth moment. 20

Multiplying (2.10) to the left by 8(e—ek) and sum-
ming over k, it is first noted that

Bvd(x, t) vo(x, t) —vo kyar 8 inzz(x)'+- '

83 'T 7'S 8$

X8(.—e,)=0, (2.11)

0= —A to& —Q 8(e—ek) (zk).k. —

k ~ e)c

Bvq(x, t) vv(x, t) —vo

r(e) 2(2m)'tsests

XQ gCq cos8q(vo(x)t) cos8q —r) $q

Bvg(x, t) 8 1nzz(x)-
X +vq(x,t), (2.18)

In tl1is equation only thc llncal phoIlon loss tclxn ls lctalncd
the nonlinear phonon loss terms are neglected. Also, the so-called
"spontaneous emission" source term p~(Ãqo+ 1)]is neglected for
the reasons discussed in Ref. 4.

~ Any even moment would suKce. In particular, the second
moment, giving an energy balance, is equivalent. However, the
zeroth moment is the simplest to consider.
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where, in analogy with (2.12), and Poisson's equation

BF/Bx = (4tr/e) p,
Ir.&'& =—P h(e —es)

h I Bg
(2 19) where

This quantity is evaluated in Appendix A. It is shown
there that one cannot make the usual high-temperature
approximation for an acoustic mode (htoa/keT=O), but
that the first nonvanishing contribution to I~&'& occurs
to first order in (Itte,/keT). The result is

p = —e[n(x) —np(x) j,
with ne(x) the positive background charge, one obtains

BJ 6 8 8

Bx 4m Bt 8
(2.24)

Also, "
(2.25)

2~k O' Bej, & gTf

XC,'{ve(x,t) cos8,—s}$,(x,t) . (2.20)

The calculation of the second term of (2.18) is
straightforward. Substituting this result and (2.20) into
(2.18), one obtains, after some algebra,

gas 30=- —+ qCa $a{vd(x&t) cos8a —sj
v kitT 2(2m)' 'e'"

8ve(x, t) 8 inn(x)—
+ +vd(x,t), (2.21)

BX BX

where the quantity in the square brackets of the first
term is identical, except for the absence of a factor cosa„
with the corresponding term in the first-moment calcu-
lation /see (2.13)j.The thermal average of (2.21) is then
taken with the result

Bx 47re Bx'

Substituting (2.23) and (2.24) into (2.22) and (2.25)
into (2.14), we get our final set of coupled equations.
They read

Bva(x)t) va(x, t) —vs(x)

2v i'tsn(x)

XP qC, 'f'(e, ) cos8, {vz(x,t) cos8,—s) $,(x,t)

e ) 1 O'F (x,t)
~-D —, (2.26)

4trn(x) e& r 8x'

t9 VC2m2—+s cos8 $ (x,t) = f (e )
8t Bx 2' A2

;",(x,t)
X(vd(x, t) cos8, s)$,(x,t—) —, (2.27)

1 ms f m
Z qCs'f'(ea)

eT (2trhsn(x)

X {ve(x,t) cos8,—s) $a(x, t)

Bve(x, t) 8 inn(x)-
+ +vg(x, t)

Bx Bx
(2.22)

qC' 'e

X {vg(x,t) cos8,—s) $,(x,t)

The physical significance of (2.22) will be discussed in
a later section of the paper in connection with the time-
dependent solution.

Finally, it is desirable to express the diffusion term
of (2.14) and the last term of (2.22) in terms of the elec-
tric field and its gradients. The current density is"

j= —neve(x, t) .

By differentiation, one obtains

III. APPLICATIONS

Before applying the basic equations (2.26), (2.27),
and (2.28) of the previous section, it is convenient to
rewrite them in terms of dimensionless va, riables. Fol-
lowing the nota. tion of Ref. 4, we

(1) replace the space variable x by s,
(2) let x be the wave number in units of the thermal

De Broglie wave number:

i Bm 1 Bj
&sr

n Bx neBx
(2.23) (2mteeT)'"

But from the equation of continuity

8j /Bx+Bp/8t= 0,
"This is the current density due to the combined effects of the

applied field, the stimulated phonons, and diffusion. As is well
known, this, in general, will result in ng &pP'.

"It is assumed that the internal fields required to ofFset the
difFusion currents due to a possible inhomogeneous doping
~8eo(x)/8x, being of the order of the thermal voltage (k~T/e),
are negligible in comparison with the 8n/Bx associated with the
macroscopic field distribution. However, the explicit dependence
of I on x is, in general, retainers in the coefficients of (2.26), (2.27),
anti (2,2t8).
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FIG. 1. Calculated potential
distribution.
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(3) let y= cos8, .

Vfe then obtain the coupled equations:

ava(z, t) =3 Lvp(z, t) —vg(z, t)j—8 dx x'
Bt p

dy y[npy sjP(x,y,z,t)—

where P is the piezoelectric constant, eo is the static
dielectric constant, Ã is the number of ions per unit
volume, and M is the ionic mass; S is the di6usion
constant,

(4xeP '( It ) (2x)'t'
rt(z)

4 eg (2M1V~(k T)'t'

and x~ is the value of x corresponding to the Debye
wave vector, qn = (4xne'/egsT)'". In addition,

e ) a'J
+ iaA (z,t), (3.1)

4v e(z) e& Bz'

( g g z
—x~t4( xz

~

—+sy—P(x,y,z, t) = Co
Eat az

' ' '
x kcz+x~&

where

s~ (x +xn )——= X+Dx
(

—
[

e*'&',
s k x'

DpTs' 2mkgT
[I/7 q= DOTG/q j

Cp h'

(3 4)

represents the effective sound velocity for a given mode,
vg(z, t) $,*)

z ) ' '
tairing into account linear phonon losses.

3 s
0=— 8

~ &ta

dyLvg(z, t)y sjP(x,y,z,t)—

Stationary Domains

In this subsection, we calculate the stationary do-
mains observed in CdS by Many and Balberg, 5 and the
results are compared with their data. Under stationary
conditions, all time derivatives are set equal to zero.
Then, integrating (3.2), we obtain"

q a aa(z, t)q
(3.3) $(x,y,z) = $(x,y,o)

(47rN(z)e1 Bt Bz
Coe—*'t4 x' '1 vg s,*)

Xexp — — ——y —
~z . (3.5)

s x x'+xnz y s s/where vo(s, t)= tJF(s, t) is the Ohm—ic drift velocity,
A = r is the reciprocal electron collision time,

4n.e'P' 3 m

esz n't' MXsh'

'3 Equation (3.2},being of first order, requires a single boundary
condition; namely, the Rux at the z=O bounding plane ((x,y,O},
As in Ref. 4, @re later take g(x,y,O}=1, on account of the insensi-
tivit7 of the amplified Qgx to thLe choice of its initial valise,
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In obtaining this result, we assume that vq is spatially
constant. The validity of this assumption is important
and will be examined later.

Equation (3.5) is next substituted into (3.1). In the
latter equation, the diffusion term is neglected. This will

be justified self-consistently later by estimating the dif-
fusion term from the calculated I'(s) and verifying that
it is indeed small with respect to the terms retained.
With this assumption, the Geld distribution may be
solved for ex licitly. Finally, on. account of the narrow-
ness of the erenkov-like cone, it is assumed that the
factor (1/y) in the argument of the exponent of (3.5)
may be replaced by unity. ~ Thus, one obtains

ve 1 8 " ( x'
(.

p I A p Exp+xgpl

-500
FILAMENT LENGTH 3.6mm

-400

& -300

I-

-200
I
K

-Ioo

Xe "I dy y(vey —s)

Cp e *'~4/ x' ) '(ve s,*
Xexp —

~ ~ (

—
y — s, (36)

s x Ex'+xmas& ~, s s

0 I.O 2.0 3.0 3.6
PROBE DISTANCE x FROM CATHODE (mm)

FIG. 2. Experimental potentia1 distribution
(Many and Balberg, Ref. 5).

where v& is simply given by

vg=
coed'

where A' is the sample cross-sectional area.
The values of the parameters used in the calculation

are25 ~

0&~s&L=0.36 cm,

All quantities are in cgs units except p, , which is in
cm'V 'sec 'inorder toobtainF in&em-', and oisin
volts.

(3 7) With the above values of the parameters, (3.6) was
numerically integrated on a digital computer. Results
are presented on a mesh

2 =10",
8= 10"X(0.356),

Co= 8X10PX (0 356),
s= 1.8X10~,

xD ——10-',
D= 10',
p= 290,
$=33
eo= 8X 10'5.

~ The reason is entirely a technical consideration which facili-
tates the computer solution. A sample check for the case @~=1.91
X10' cm sec ' showed, for example, that the potential at z =0.357
cm was altered by 3 V out of 80 V by the inclusion of the (1/y)
factor. The reason for the small change is, of course, the narrow-
ness of the Cerenkov-like cone. Moreover, the inclusion of this
factor can clearly only increase the calculated Ii (z) and V(z). As
will be seen later, the deviation from experiment, where it exists,
is already in the direction of being too large.

"The numerical values are scaled to those of Ref. 4, except for
8 and C0. On account of the extreme sensitivity of the exponent
to the numerical value of its argument, it was found necessary to
adjust C0, in particular. The fit was made so as to get V (0) = —37S
V for the case I=2.67 A. The required multiplication is by the
factor (0.356) indicated. However, this corresponds to an adjust-
ment in P of (0.356)'/', and is well within the uncertainties in the
original estimate of Ref. 4.

and for the values of total current,

I=2.31 A

=2.50 A

=2.67 A

=2.72 A

(tp= 1.8X 10')

(vs=1 95X10')

(vs=2 08X10')

(ve =2.12X10'),

corresponding to the experimental conditions of Many
and Balberg. '

The calculated potential distributions are shown in
Fig. 1.These are to be compared with the experimental
results shown in Fig. 2, obtained by potential probe
measurements. ' The following features are noted:

(1) The distributions for I= 2.31 A, 2.50 A are quite
linear, corresponding to Ohmic conditions. The steady
phonon Qux is negligible for these cases.

(2) The case I=2.62 A barely shows a departure
from linearity near the anode. This is more clearly seen
in Fig. 3.

(3) The case I=2.67 A, for which the fit was made,
compares closely with the experimental results, except
that (a) V„~,(0)=375V(/V.„,(0)/&400 V; Cp could
not be so 6nely adjusted to obtain a precise ftt. ss (b)
The calculated break point from linearity occurs nearer
the anode by about 0.02 cm out of a sample length of
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'5
Io

0 0.02 QI0

=2,67 A

J&2.50 A

E=23I A

I I

OP0 026 0,S0 0.M

Instead of all expl1clt sohltlon) (3.8) alld (3.9) colTe-
spond to two coupled equations for fig(s) and F(s); the
solution has not at present been carried out for this case.
Both the occurrence of the break point too near t e
anode and the oversaturated current-voltage character-

(easily inferred from Figs. 1 and 2) are manifesta-
0tions of not allowing for such a space-varying vq an

amplification factor.
dI" ally 't is verified that the diBusion term is indee

l' 'bl '
ll cases Estimating the second derivative

by finite differences, it is found that

e O'F(s=0.35 cm)
-S — --- ——I.2X10 2, I=

4xvzog Bs

y=2.72 A.

Both estimates are negligible with respect to v~ s
=&.8X&0' cm sec '.

I'io. 3. Calculated Geld distribution.

0.36 cm. (c) JVIost important, the potential distribution
for the case I=2.72 A rises precipitously from the ano e
as indicated, and lies far above the experimental points,

To understand the source of this latter difhculty, the
l lated electric field distributions are shown in ig.cacua e ee

3. These are qu~te Ohmic from the cathode o
anode, where they rise rapidly because of the large con-
centration of phonon Aux bordering the anode. The

f fi ld suggests that the concomitant space
charge be estimated and compared with the equilibrium
concentration No.

Estimating P' ~ b 'ts finite difference, it is found
that

F'(a=0.35 cm)—2&&1012, E=2.67 A
4~8

I 2 72 A

IV. FUTURE APPLICATIONS
4In addition to the stationary domain solutions tn-

t d
'

the preceding section, there are two other
areas of application of the basic equations ( . )—( . }
which merit discussion.

Propagating Domains

The work of Bray, ~ litany and Balberg, '" and others
suggests the existence of fully formed domains which
propagate without change of shape. One may seek solu-
tions of this kind by transforming to a coordinate sys-
tem moving with the domain velocity c, and requiring
that there be no explicit time dependence in the moving
system. Thus, making the transformation to moving
coordinates (s', f'),

F(s)=—

-~~/4o&
dy yff a(s)y —s] exp)—

to be compared with no=8X10" cmm '. In the latter
case, the space charge amounts to I,~80 of eo. In view of
the sersitivi y ot t of the exponent to adjustment o o by

th' small amount, it is suggested that, instea oeven t is sma
roblem is(3.6) and (3."/), the correct formulation of the prob

"„'-„'-,";""(.."...)'
8 f()j

= —C
--

)
R Bs

where variations wi'th respect to t' are taken to be zero.
Then (2.26)—(2.28) become

/ oo

—c =A Ll 0(s') —vd(s'}]—8 Ch f(x)
Bs 0

ds' — y — 3.8 &y yLe~(s')y —s]$(x,y,s')
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8&(x,y,z') (zs(z') s.*
(—e+sy) =g(*)I y — &(x,y,z'), (4 2)

88 s s

3 $0=-
& &~@ 0

where

dx f(x) ifyLv&(z')y —sj

)O'E(z')
~ &(x y,z') —e I, , (4.3)

4qrn(z') ef Bz"

x2 q2
f(x)=x' —

~
e *'",

x'+xn')

Evidently, using (4.3), one can eliminate the Geld
derivative in (4.1) in favor of the phonon number. Then
integrating (4.1), zq can be found in terms of $. This
result may then be substituted into (4.2), giving an in-
tegrodifferential equation in ] alone. To obtain a local-
ized domain, it remains to demonstrate that a localized
phonon packet is a solution of this equation. This
problem is under investigation.

In the absence of stimulated phonons, the particle bal-
ance would. require that the above divergence in the
current vanish, insuring current continuity. However,
xn the presence of ampli6cation, the time rate of change
of particle number due to interaction of the electrons

Transient Behavior: Domain Incubation

In this subsection, a discussion of the physical signi6-
cance of the basic equations is presented for the time-
dependent case. On the basis of these equations, we

suggest a mechanism of domain generation which does
not depend on shock excitation or some unspecihed
Quctuation in the local phonon number.

The interpretation of (2.26) and (2.27) is self-evident.
On the other hand, the physical significance of (2.28)
for, equivalently, (2.22)] merits some discussion. It will

be recalled that this equation is obtained by taking the
zeroth moment of (2.10).This operation gives a relation
for the time rate of change of the total number of par-
tides. The change in particle number due to the ran-
domizing collisions, electric 6eld, diffusion, and explicit
time dependence are all zero. This follows from the fact
that all of these quantities are proportional either to
the deviation from equilibrium of the displaced Max-
wellian (2.5), or to v~ itself; hence, they are anisotropic
in k and cancel in the sum over k.

The zeroth moment of the last term of (2.10) is
essentially

8 Bj~—2 (»).f.'"=
8Ã & Bx

with the stimulated phonons is nonzero. Though small

by a factor (A~q/heT), it is nevertheless Gnite, as shown
in Appendix A. The physical explanation of this is that,
since the stimulated phonons are emitted within the
forward Cerenkov-like cone, the electron recoil is pref-
erentially in the backward direction. Hence, the sum on
k does not give cancelling contributions as is the case
with the Ohmic collisions. Hence, there is a small but
6nite divergence in the current density, or, equivalently
a local time rate of change of space charge or electric
field gradient.

The implications of this result are twofold. : First, it
correlates the presence of ampli6cation in a localized
region of the sample with a time rate of change of elec-
tric-field gradient. This is consistent with the concept
of a propagating domain (although it does not, in it-
self, necessarily imply the existence of such domains).
Secondly, it implies that during the rise time of the ap-
plied voltage pulse, a stimulated. emission of phonons
will occur at a point at which there is a 6nite field
gradient: notably, at a contact or inhomogeneity. It is
postulated that the localized phonons so generated will

then be amplihed by the Ohmic current, as will thermal
phonons throughout the sample. The phonon level in
this packet, however, because it is initially larger, should
first reach the level at which strong scattering of the
electrons by the stimulated phonons occurs. The elec-
tron drift velocity will then decrease locally, resulting
in an electron accumulation on the upstream side of the
domain and a dehciency on the downstream side, re-
sulting in a dipole domain. We suggest this as a mechan-
ism of domain generation; however, the veri6cation of
this mechanism will require detailed numerical solution
of the time-dependent equations during the initial
transient.

ACKNOWLEDGMENTS

The author would like to thank Murray Lampert for
reading the manuscript and John R. Golden for assist-
ance in the computer analysis.

APPENDIX

In this Appendix, the quantity I~(", defined by Eq.
(2.19), is evaluated. We have

2'
& "'=—,Z &,'4L(f",-f.)~(",-"-&,)

$2 x,q

+(fi q fq) &(qa q q~+ —&qi—q)]&(q—q—~)—.
As for It&'&, we set k+k+il for fixed rl in the second

suIYl) giving

2'
Iz"'=—Z Cq'4(f~+q f~)&(q+q q~ ~q)— —

A)2 j,q

X Lb(q —qi) —b(q —qi —hcoq) 7. (A1)

Substituting (2.5) and expanding, for an acoustic



mode,

we obtain

8f'(ee)
f'(e+ Aced, ) =f'(e,)+hsq

86y

We first have that

$2 q ms m
dO sinO~b —hq cosO+——

m 2k hk h'kg

RIll

XQ — — 8(eg+, »I, —her, )—
BCIc

X L6(»—»a) —8(e—ep —ho),)j.
The sum over k is first taken, with q as the polar axis.

Thus,

( &f»gS=g
~

~B(»»+e»t& kd&)
lt ( l9»» J

X L8(e—ee) —8(e—ee —hra, )j

21r ~ a
dk k' d8 Mn8 d»(— the last equality following from (2.7).

2K »~2 p 0 8EIc The result (2.20) and the preceding remarks then fol-

Xh(e»+, et,. h&u, )[—8(e —
e~,) —b(e —el,. ~—,)j low .directly.


