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Low-energy electron-scattering phase shifts and bound-state energies of neutral atomic potentials are
computed using the Predholm method. The relativistic and nonrelativistic results are compared. It is con,-
cluded that relativistic corrections to the phase shifts are unimportant for the potentials considered here.

I. INTRODUCTION

ECENTI.Y,'' it has been pointed, out that rel-
ativistic eRects in the scattering of low-energy

electrons from heavy atoms can be significant. The
reason for this seems to stem from the fact that for some
atomic models the electron can penetrate far enough
into the atom to be accelerated by the nuclear charge to
a high speed. Under such circumstances, one might
expect classically some modi6cation of the elastic
differential scattering cross section. That such reasoning
also applies to a quantum-mechanical treatment has
been d,emonstrated. by Browne and, Bauer, ' who have
numerically computed phase shifts and differential
cross sections for several atomic-potential models, using
Schrodinger's equation and the second, -order relativistic
wave equation.

It was later d,iscovered, ' that for potentials represent-
ing singly charged. atoms, the binding energy of the

*Research supported by the U. S. Army Research Ofhce
(I!urham) .

' H. N. Browne and E.Bauer, Phys. Rev. Letters 16, 495 (1966).' L. Spruch, Phys. Rev. Letters 16, 1137 (1966).
' M. Rotenberg, Phys. Rev. Letters 16, 9&9 (19&6},

valence electron was different for the relativistic and,
nonrelativistic equations. Thus, when the potential was
adjusted, so as to obtain the same values of the binding
energy, the relativistic corrections to the low-energy
scattering phase shifts were found to be unimportant.
Qualitative arguments' based on effective-range theory
tend. to support the view that for neutral atoms regions
of strong interaction need not lead to significant
relativistic effects, provided only that there exist an
ionic bound state of small binding energy.

In the present work, scattering amplitud, es are
computed for the Schrodinger and Dirac equations for
the case of a netural atomic potential, using the
Fredholm method. These amplitudes are used to find
both the phase shifts and bound states, and. are of the
form predicted by effective-range theory. The results
(Sec. II) indicate that for a wide range of potentials,
relativistic corrections to the phase shifts are unimport-
ant for low-energy scattering; however, the binding
energies, which were large compared. to scattering
kinetic energies, were significantly different in the
relativistic and nonrelativistic treatments.
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II. CALCULATION'S AND RESULTS

A. Schrodinger's Equation

The Fredholm solution of the radial Schrodinger
equation has been studied by many authors, 4 so we

only give here a brief summary of the results. As is well

known, phase shifts and bound-state energies may be
computed from the Fredholm denominator function.
This function may be given explicitly by a power-series
expansion of the potential strength:

«/—rstt (
dr us k1—W+XV(r)

1+W—XV(r)) Ni
, (5)) I,«/r

B. Dirac Equation

The Fredholm solution of Dirac's equation for
potential scattering is a simple two-dimensional exten-
sion of the results of Sec. II A. For the Dirac case, we
shall be interested in solutions of the coupled pair of
equations~

n, (x,k)=1+ g-
-r mt

where

XV(~,)."V(t.)d~, . d~. , (1)

Gi(x, ,yt) Gi(xt, y„)

which are regular at the origin and have the asymptotic
form

Qy sin (kr —lsr/2+ 8)

te P(W —1)/(W+1)]'t' cos(kr —l /2+i)))

at in6nity. Here

for j=)——,',
for j=l+-,',

G, (x,y) = 2ikxyj, (kot&)kt(kr&)

and k= (W' —1)'" (nt.=c=k=1).
These wave functions (which we shaH call the

"physical" solutions) are given by the solutions of

Here j and h are the usual spherical Bessel functions,
and k is the particle momentum.

For k real and positive, the scattering phase shifts

are obtained from the formula, ' where

u(r) = v(r) —l[ G[")(r,r') V(r')u(r')dr', (6)

e" sinS= —[fmnt P.,k)]/nt P, ,k) . (2) «(~)=( ),
In addition, solutions of the equation

Z, (X,ix) =0

for X real and positive give the bound-state eigenvalues

g,= —-';x2.

In this example, a potential representing a neutral
atom,

kryo, (kr)
v(r) =!

)s.[[s'—1)l (w+1)]'&'krj) sr))
'

krnt(kr)
u(r) =!

V[[tr—1)/or+1)]"'krmi[kr))'

V (r) = —(Zne
—e'/r) (1+-,'Pr), and w(r)= v(r)+i;(nr). The Green's function is given

by
was chosen because of its simplicity. Such a potential
represents a positive point charge of magnitude Z at
the origin and an equal negative charge distributed
exponentially about it, with range 1/P. Here cr is the
fine-structure constant. Substitution of Eq. (3) into
Eq. (1) yields the first-order s-wave S function

t'W+1) "' v, (r)tt), (r') for r(r'
G;, [")(r,r') = i (g)

kW —1J tv;(r)v;(r') for r )r'.

H«e S.=«/! «! and l= l S„The scat—terin. g amplitude
is given by

(W+1q'ts s

f= —e"sin8= X! ! Q v;(r) V(r)u, (r)dr. (9)
&W—1)i ln(1 —2ik/P) 1

k p —2ik
Sp(Za, k) = 1—Ztr (4)

u(r)=v(r) —D" (rr l) W)
X)„(l[,W) p

Application of the Fredholm theory" to Fq. (6) leads

For the case of hydrogen (Z=1, p=2n), Eq. (4) agrees to the solution

with the results of Nutt. '

4T. Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc. , Englewood Cli6s, New Jersey, 1962), p. 43;
M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).' R. G. Newton, Scattering Theory of 8'aves and Particles
(McGraw-Hill Book Company, Inc. , New York, 1966), p. 343.

' G. i. Nutt, Phys. Rev. 135, A345 (1964).

X V(r')v(r')dr', (10)

M. E. Rose, Relativistic Eleotron Theory Qohn Wiley @ Sons,
Inc. , ¹wYork, 1.961), p. 159.

s F. G. Tricomi, Integral Equations (Interscience Publishers,
Inc. , New York, 1957), p. 49.
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where

$„(X,W)
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f= LlmX). (X,W)j/$„(P,W), (14)

and that solutions of the equation

n„(~,W) =0 (15)

G;„;,~"& (x„,y&) G;„;„'"& (x,y„)

It is shown in the Appendix that, for 8'& 1. and real,

FIG. 1.S-wave phase shifts in radians as a function of P in units
of ma for kinetic energies of 2, 20, and 200 eV. Relativistic and
nonrelativistic results were identical.

(14)—(16), are shown as a function of P in Figs. 1 and 2
for the case of Cs (Z= 55). The relativistic phase shifts,
at these low values of incident energy, were within 0.1%
of the nonrelativistic values for the range of p investi-
gated; however, substantial relativistic energy shifts in
the binding energy were obtained. This is not incon-
sistent with the results of Spruch' and Rotenberg, '
since the binding energies are large compared to the
scattering kinetic energies. For large P (small binding
energy), the relativistic and nonrelativistic results are
in approximate agreement, as they must be, according
to effective-range theory.

Note that naive application of Fredholm theory to
the second-order relativistic wave equation will not
work because of the singular nature of the (energy-
dependent) "potential" at the origin. (In this connec-
tion, see Ref. 1.) If a cutoff radius on the order of the
nuclear size is employed. , then the associated X) function

noway not be well represented by the 6rst few terms in a
power-series expansion. Numerical calculations found
this to be, in fact, the case for the potential used here.
Thus, working with the coupled Dirac equation proved
to be a more reliable method of analysis.

for —1(tV(1 give the bound-state eigenvalues of
Eq. (5).

Using the potential given by Eq. (3), the first-order
z= —1 relativistic Q function may easily be computed
from Eq. (11).The result is

1.8—

1.5

1.2

S g(Zn, W)=1—Zu
iW ln(1 —2ik/P) 1

k P—2ik
(16)

w".9

Note that the only difference between the relativ-
istic and nonrelativistic X) functions is the energy
factor multiplying the logarithmic term in the above
expression.

Phase shifts for incident kinetic energies of 2, 20, and
200 eV, and binding energies, computed from Eqs. (4),

.3
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FIG. 2. Ionic binding energy Ez in MeV as a function of p for the
relativistic and nonrelativistic equations.
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(23). Then,

The author is indebted. to Z. Fried for suggesting this
problem and, for several helpful discussions. '

W 1)

APPENDIX

We show here that the Dirac partial-wave scattering
amplitude is given by

y= LImn„P, ,W)j/n„(~, W).

0

X V(r')4, (r')dr' dr . (25)

The proof essentially follows that given by Newton'
for the Schrodinger equation.

In addition to the "physical" wave functions u,
given by the solutions of Eq. (6), we introduce two
auxiliary wave functions which are solutions of Volterra
integral equations:

01

Bg(X,W) /W+1)'i' 2

BX (W—1I '=i 0

F'(r) V(r)C;(r) dr (26)

8 ingP, W)
trS(r, r; X,W) V(r)dr, (27)

Using Eqs. (17) and (18), we find after differentiation
of Kq. (25) with respect to X

%(r)= v(r)+X g(r, r') V(r')4 (r')dr', (17)
where

8;,(r,r'; X,W)

where

F(r) = iw(r)— g(r, r') V(r')F(r')dr', (18) W+ 1) ' ' C;(r)P;(r') for r&r'
(28)

W—1) F,(r)C;(r') for r) r'.

But $(r,r'; X,W) is the exact Green's functipn fpr the
physical wave functions, for if we write

u(r) = v(r) —X @(r,r'; X,W) V(r') v(r')dr', (29)

«(r) =e (r)/8 (20)

(21)

and, v, n, and w are given by Eq. (7). Here, e are the
real and regular solutions of the inhomogeneous Dirac
equation, and F are the irregular (Jost) solutions. It is
easily shown that

then u(r) has the desired boundary values and satisfies
the Dirac equation. Comparing Eq. (29) wjth
Fredholm solution fEq. (10)j, we find

$(r,r'; 'A, W) = D(r,r'; X,W)/~(g, W). (30)

From the series expansions, Eqs. (11) and (12), jt is
easily shown that

where the Jost function g is
BD(X,W)

trD(r, r; X,W) V(r)dr.

/W+1)"' ~

gP.,W) = 1+iX! ! P w;(r) V(r)C', (r)dr (22)
kW —1~ '=i 0

W+1
= 1+X v (r) V(r)F (r)dr. (23)S'—1

Substitution of Eq. (20) into Eq. (9) gives

y= I Imp(~, W)g/g(X, W). (24)

Thus, we have only to show that the Jost function is
identical to the Fredhobn determinant for the Dirac
equation.

Solve Eq. (17) for v;(r) and substitute this into Eq.

Substitution of Eqs. (30) and (31) intp Fq. (27) shpws
that g(X,W)—=SP,,W). The proof holds for all partial
waves.

Finally, we note that from Kq. (18) the limiting
values of the irregular solutions are

F(r)~iw(r) for r ~ ~,
ig(X,W)w(r) for r ~ 0.

Therefore, if we can 6nd a value of 8', —1&8 &1,
such that g P.,W) =0, then k = (W' —1)U' will be
positive and imaginary on one of the Riemann surfaces
of k. On this surface, w(r) is a decaying exponential and
thus F(r) will be a regular (and real) bound-state
solution of Dirac's equation.


