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We have measured the transverse magnetoresistance of a c-axis crystal of pure thallium at liquid-helium
temperatures and in magnetic fields up to 150 kG (at the National Magnet Laboratory). At 1.2°K the
resistance has saturated at this field for all directions in the basal plane. The field dependence of the re-
sistance is correctly simulated by a simple model of orbits which become coupled by magnetic breakdown.
By fitting the experimental results with the predictions of the model, we are able to estimate values of the
breakdown field Ho, the largest value encountered being 220 kG. The model also correctly predicts the change
of resistance with mean free path between 4.2 and 1.2°K.

I. INTRODUCTION

N large magnetic fields and at low temperatures, the
magnetoresistance of a pure metal reflects the to-
pology of the orbits described by electrons on the
Fermi surface.! For the pure metals now available, the
necessary criterion that w.m>>1, (where w, is the cyclo-
tron frequency of closed orbits and = is the relaxation
time for electron scattering) for all closed orbits is
readily achieved in fields of 10 kG. But in some metals,
such as thallium, the energy gap A across one of the
Brillouin-zone faces is quite small and some electrons
are able to tunnel through the energy gap, this process
being known as magnetic breakdown.? An electron now
has a probability P[=exp(—Ho/H)] of tunneling to
another orbit on the Fermi surface and the result-
ant change of topology will be reflected in the
magnetoresistance.
For nearly free electrons with an energy gap A, and
H in the z direction

Hy=mA%/4hev,0y, 1)

where v, and V, are components, respectively parallel
and perpendicular to the zone boundary, of the ‘“free-
electron velocity” at the zone boundary, i.e., the
velocity which the electron would have in the absence
of the energy gap.® In the special case where v,=v, and
there is no component of v parallel to the field, Eq. (1)
for Hy reduces to

Ho=mwAm/4heEr )

where m is the electronic mass and Ep is the Fermi

energy. )
In the presence of magnetic breakdown, there is con-
siderable variation of the resistance with field even at
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fields well above Ho, and a field of at least this magni-
tude is required. Our previous studies of the magneto-
resistance of thallium? (hereafter referred to as I) were
mainly in fields below 55 kG, and it was clear from
them that some values of Hy on the Fermi surface of
thallium were considerably larger than this, In the
present work we report measurements of the magneto-
resistance up to 150 kG which show that the effects of
magnetic breakdown are becoming complete at this
magnitude of field for all field directions in the basal
plane of thallium. We calculate the detailed behavior of
a simple model to simulate the effect of magnetic
breakdown on the magnetoresistance and by fitting
the experimental results to the calculated behavior we
are able to estimate values of H, for thallium, the
largest being 220 kG.

In Sec. II we briefly describe the Fermi surface of
thallium and calculate the magnetoresistance of a spe-
cial model of coupled orbits. In Sec. III we mention the
experimental technique and present the experimental
results which will then be analyzed in the light of our
calculations of Sec. II.

II. THEORY
A. Fermi Surface of Thallium

Thallium is a hexagonal close-packed metal with a
hexagonal reciprocal lattice. In the absence of spin-orbit
coupling, the energy gap across the (0001) face (4AHL
in Fig. 1) between the third and fourth Brillouin zones
would be zero. This degeneracy is lifted by the spin-
orbit coupling except along the lines AL, the energy
gap varying from zero on a line 4L to a maximum value
at a corner H.

The Fermi surface of thallium has been studied ex-
perimentally by magnetoresistance,*% the de Haas-van

*J. C. Milliken and R. C. Young, Phys. Rev. 148, 558 (1966),
hereafter referred to as I.

8 A. R. Mackintosh, L. E. Spanel, and R. C. Young, Phys. Rev.
Letters 10, 434 (1963).

8 N. E. Alekseevski and Yu. P. Gaidukov, Zh. Eksperim. i Teor.
Fiz. 43, 2097 (1962) [English transl.: Soviet Phys.—JETP 16,
1484 (1963)].
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Alphen effect,” and the magnetoacoustic effect.?® All
of these measurements show the Fermi surface to be in
good agreement with that of the relativistic orthogonal-
ized plane-wave calculation by Soven!®!! (the ROPW
model). They indicate that magnetic breakdown occurs
across the zone face A HL between the third and fourth
Brillouin zones.

Figure 1(a) is a drawing of the Fermi surface of
thallium. This is in fact the nearly-free-electron model
modified to be topologically similar to the ROPW
model, but this will be adequate for our purposes.
Soven!! suggested that the arms of the fourth-zone
surface which extend in the [00017] direction are pinched
off before the top of the zone is reached, which was con-
firmed in I. There are other fragments of the Fermi
surface in the fifth and sixth zones.

The important characteristic of the ROPW model
from the point of view of magnetoresistance is that
open orbits are able to propagate in directions parallel
to the (0001) plane if they are able to tunnel through
the face AHL between the third and fourth zones. A
typical open orbit is shown in Fig. 1(a). When break-
down is complete, the surface becomes a pair of open
sheets in the (0001) plane, and open orbits in directions
parallel to this plane will exist for all field directions
(except those exactly parallel to the ¢ axis). For a ¢c-axis
specimen with the magnetic field in the basal plane,
breakdown changes the magnetoresistance from the H?
behavior of a compensated metal to the saturation ex-
pected for open orbits perpendicular (in % space) to
the current. In the next section we discuss the expected
behavior in detail.
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F16. 1. (a) Third and fourth zones of the free-electron model
for thallium. The typical open orbit is able to propagate parallel
to a direction in the basal plane if breakdown allows it to cross
the zone face AHL between the third and fourth zones. (b) A
(0001) section of the fourth-zone surface on the plane AHL
showing the free-electron model section on the left and the
ROPW model section on the right. The optimum orbits in the
[1010] and [2110] directions are indicated.
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Fic. 2. (a) The network of third-zone hole orbits and fourth-
zone electron orbits which become coupled by magnetic breakdown
to form an open orbit parallel to [10107; (b) a simple model of
coupled orbits formed from circular electron and hole orbits.

B. Expected Magnetoresistance of Thallium

In this section we set out to calculate the field de-
pendence we expect in the resistance of a [0001] speci-
men when the magnetic field is in the (0001) plane. We
first examine some of the systems of coupled orbits pro-
duced by breakdown. Figure 2(a) shows the open orbit
in the [1010] direction, which passes through the sym-
metry point 4 of the plane AHL. It opens by coupling
hole orbits on the third-zone surface with electron orbits
on the fourth-zone surface. The example we have shown
runs along the line AL and so actually encounters no
energy gap. Neighboring orbits will be very similar, but
they will encounter a progressively larger energy gap as
they pass nearer to the point H of largest energy gap.

The coupled-orbit system in the [2110] direction,
which crosses the lowest energy gap while still having
equal gaps at “e” and “b” is similar to Fig. 2(a), but
the value of the gap is not zero as it was for [1010].
This orbit passes through point L in the AHL plane.
Neighboring orbits will have a larger gap at @ and a
smaller gap at & (or vice versa). For other rational
directions, and for nonrational directions in the basal
plane, the open orbits will still be formed by coupling
third-zone hole orbits and fourth-zone electron orbits,
but the loss of symmetry means that the orbit will
repeat itself only over a very large number of reciprocal
lattice vectors, in contrast to the cases of Fig. 2(a)
which are periodic in the zone separation, while the
value of the energy gap will not be the same at each
junction.

On the actual Fermi surface there will be a number of
coupled orbits for different values of £z, and these will
break down at different fields. Some “optimum orbits”
(this concept is also used in I) will be the first to open,
and as the field is increased orbits for nearby kg values
will open until finally all orbits are open. Clearly, the
resistance will be dominated by the open orbits long
before all orbits are actually open, and so we will assume
that a suitable model for simulating the resistance can
be made if a certain fraction of the electrons lie on
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F16. 3. Curves of X versus o for vari-
ous values of # [from Eq. (5)].

orbits which are coupled by breakdown while the rest
do not.

Away from the main symmetry directions, the sys-
tems of coupled orbits are clearly too complicated for
their properties to be calculated analytically. We will
therefore consider a simple model of circular electron
and hole orbits coupled by breakdown with probability
P(Q=1—P). We will then use the behavior of this
model as a guide in discussing the experimental results,
even for field directions for which the orbits are more
complicated. Figure 2(b) shows this coupled-orbit sys-
tem. At low fields (H<Hy), it consists of an equal
number of electron and hole orbits to simulate the

(X-§)
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)
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Fic. 4. A model of coupled circular electron and hole orbits
with different breakdown probabilities P; and P, at alternate
coupling points.

compensation of thallium in the absence of breakdown.
At high fields (H> H,), the orbits are linked to form an
open orbit.

We will, of course, first calculate the components of
the conductivity tensor and obtain the resistivity from
it by inversion. We will assume that the magnetic field
is in the z direction and that the coupled-orbit system
is in the x direction in real space. For our system of
orbits we may readily write ¢,.=0..=0y.=0,,=0 and
o..= const. We will in fact assume that these simplifica-
tions apply to the complete Fermi surface. The remain-
ing components are calculated for the network of Fig.
2(b) using the effective-path method developed by
Pippard.’2:® This calculation is carried out in Appendix
A and shows that the field and relaxation time (7)
dependence of these conductivity components is given,
to lowest order in H! by

oyy=A /T,
04y = —0y,=0 [actually of order H27], (3)
sz=B(P+Q/wT)/H(2Q+7r/wT) )

12 A, B. Pippard, Proc. Roy. Soc. (London) A282, 464 E1964)‘
13 A. B. Pippard, Proc. Roy. Soc. (London) A287, 165 (1965).
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Fic. 5. Curves of P/Qa, 0.73 P'/Q'a, 0.5
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where 4 and B are constants which will depend on the
number and velocity of the electrons on the chain of
coupled orbits. If O>>7/2wr, we may simplify o, to give

04s=BP/2QH~+B/2Hor. 4)

Since Q=H,y/H at high fields, the condition Q>>n/2wr
may be written wor>>7/2, where wo=eHo/m. Equation
(4) is thus valid for all fields, independent of H, as long
as H, is sufficiently large and w7>>1.

We must take account of other parts of the Fermi
surface not on the chain of coupled orbits, and this will
add terms proportional to 1/w?r, to ¢,,, and oy,. Com-
pensation ensures that o,, is still zero. It should be
noted that for the coupled-orbit system of Fig. 2(a),
¢y 1s not in fact zero because there is not an equal
number of electrons and holes on this system. However,
as discussed in Appendix B, ¢,y for a linear chain of
coupled orbits is not altered by breakdown, so that if
7,;=0 for the whole Fermi surface before breakdown,
g,,=0 after breakdown. The complete conductivity
tensor is thus

Oz 0 0
o= 0 C/o*r 0 |,
0 0 const

where o,,= BP/2QH-+K /w?r, C and K being constants.
This is readily inverted to give p,,=1/04s.

Examining the field dependence of p.. at low and
high fields, we find that when H<KHy, p,,~w?r while at
high fields, where Q=~Ho/H and P~1, we find that
022~ [2Ho+Hr/wr]/B. Thus at low fields the resist-
ance follows an H? dependence as expected for a com-

pensated metal with no open orbits, while at high fields
it saturates as expected for open orbits in the direction
in reciprocal space at right angles to the current. In the
absence of breakdown, the resistance due to an open
orbit is proportional to 1/7, and for our example with
breakdown we could follow Falicov and Sievert" in
writing the resistance as proportional to 1/, where

1/11=1/7+2Qw=1/7+2Hse/mn
=1/742wo/7.

Writing a=H/H, and Y=B/2H,, we exhibit the
resistance as a function of field and H, in the form of
universal curves of X versus a for various values of a
parameter », where

1/X=1/Ypre=[P/Qatn/e?], ©®)

and n= (2K/HB1)(m/e)?. These curves are shown in
Fig. 3. It is of interest to note that a peak in resistance
versus field occurs for small values of #, always at a<1,
while for large values of # no peak occurs but the re-
sistance increases monotonically.

For a network as simple as that of Fig. 2(b), the
values of Hy may be found from an experimental curve
of p versus H merely by selecting that curve from the
family which gives the best fit to the shape, H, being
the scaling factor between H and «. This means that
H, can be found from the shape without knowing the
relative number of electrons on the open orbit or 7. In
thallium, 7 may be varied by an order of magnitude
over the temperature range 4.2 to 1°K, and this will

4T, M. Falicov and P. R. Sievert, Phys. Rev. 138, A22 (1965).
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change the appropriate value of #» and, hence, the
shape of p versus H.

When the field is in an arbitrary direction in the
basal plane, it is not obvious that the results of our
simple model can be applied. Even a typical optimum
orbit will break through at various values of P for its
various intersections with the plane A HL. We will show
later that the experimental results for arbitrary direc-
tions are in fact well simulated by Eq. (5), and we
must ask what the H, values obtained from curve
fitting actually refer to. It might be expected that the
resistance due to a particular open orbit would reflect
the largest H, value encountered by that orbit. We will
consider a simple example to show that this is a reason-
able conclusion.

Let us consider the network shown in Fig. 4. This
still consists of identical circular electron and hole
orbits, but the breakdown probability will be given the
values P; and P, at alternate coupling points along the
network. We will again use the effective-path method'
to calculate the conductivity. We have already shown
that as long as wom>3m, the only effect of introducing a
finite relaxation time is to add a term proportional to
1/w?r to the conductivity calculated for r — 0. We will
therefore calculate the conductivity in this limit.

The network now has less symmetry than that of
Fig. 2(b) and the center of symmetry we will use is
point 0. X and ¥ are the mean terminal points of the
arcs, referred to their own centers, while the values of
mean terminal points such as (X —3%a) are referred to
the center 0 and so make use of the symmetry about
this point. The equations linking X and ¥ are

(X—30)=P1(Y+30)—Q:1(T+30),

(V+30)= Py (X+30)+QuGa—X), O

and these may be solved to give
dl:2P1P2+P1'—" Pz:l d[2P1P2+P2—P1]

- ) - . (7)
2[ P+ Py—4P,Py] 2[Py+Py]—4P:P,

The conductivity due to the network may now be
written
04z=B[X+Y]
=ZBdP1P2/[(P1+P2)—2P1P2]
=BaP'/Q'+K /T,

®)

WhereP'=2P1P2/(P1+P2), i.e., 2/P’= 1/P1+1/P2 and
Q'=1—P’. This is exactly the same form as Eq. (5) if
we consider a P’ which is the harmonic mean of P; and
P,, where Pi=exp(—Hi/H), Py=exp(—Hy/H). At
fields H>>H,, H, we note that p,.~3[Hi+H,], and
thus the value of the resistivity at very high fields is
proportional to the mean of the two breakdown fields
encountered on the coupled-orbit system.

When H is of the same order as H; or Hs, the form of
P suggests that the shape of the curve of p versus H
will be dominated by the largest value of H, (say Hy).
We illustrate this by a numerical example for Hy=2H,.
In Fig. 5 we show a curve of P/Qa versus a. This is to
be compared to the curves for 0.66 P'/Q'a and 0.73
P'/Q'a, where a=H;/H. It can be seen that although
neither curve fits over all the range shown, both are
quite similar in shape. In particular, it can be seen that
it is possible to get a good agreement over a limited
range of o merely by varying the scaling factor. Since
the shape of curves for resistance versus a depend only
on the shape of P/Qa versus , any scaling factor being
taken up by varying #, the P’/Q’a curve can be made
to simulate P/Qa over that range of « where an experi-
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mental curve is being fitted, giving an error in the esti-
mated value of H; of only a few percent. Thus, in this
simple example, the value of H, to be obtained by fitting
an experimental curve to Eq. (5) will be close to H,,
the largest of the two values encountered by the open
orbit. We will assume that we can apply this result to
more complicated cases.

To summarize, the calculations of this section suggest
that the shape of an experimental curve of resistance
versus H may be fitted to Eq. (5) to give a value of Hy,
and this will be a good approximation to the largest
value of Hy encountered by the open orbit. The value
of # will depend on 7 and H, as well as on the fraction
of the carriers which are on the coupled-orbit system.
The value of the resistance at very high fields will be
proportional to the average value of Ho along the orbit
rather than the maximum value.

III. EXPERIMENTAL RESULTS
AND DISCUSSION

A. Experimental Technique

The experimental technique is the same as that
described in I. The measurements were carried out both
at 4.2 and 1.2°K in a conventional copper solenoid at
the National Magnet Laboratory, the maximum field
reached being 150 kG.

The specimen was prepared as described in I from
pure thallium supplied by Cominco, Inc. The resistance
ratio between the room temperature and 4.2°K was
11 000, and this improved to approximately 100 000 as
the temperature was lowered to 1.2°K.15 At this low

BT am grateful to R. C. Barklie for carrying out this
measurement,

MAGNETIC FIELD (kG)

temperature the specimen was, of course, supercon-
ducting, and the resistance had to be determined by
extrapolating measurements at fields sufficiently large
to destroy the superconductivity.

B. Experimental Results and Comparison
with the Calculation of Sec. IIC

The experimental results for a specimen oriented
parallel to the ¢ axis are shown in Figs. 6-9. In all cases
we show the resistance divided by R4,2(0), the resistance
at 4.2°K and in zero field. The graphs thus reflect the
actual resistance of the specimen rather than the con-
ventional p(H)/p(0). The graphs of resistance versus
angle at constant field are for the magnetic field in the
basal plane, so that only 30° of angle is required, 0°
being when H is parallel to [1010] and 30° when H is
parallel to [21107. Field sweeps were taken at the
selected field directions marked as (a)-(e) on the rota-
tion graphs.

We will first concentrate the discussion on the field
sweeps because these are readily compared to the
calculations of Sec. II. The set of experimental curves

Tasie I. Values of Ho, #, nHo, R, and (R,/nH,) for the plots of
resistance versus field at 1.2°K of Fig. 6.

Angle of field H,

from [1010] kG) n nH, R.,* R,/nH,
0° (b) 10.3 1 10.2 280 274
9.5° (c) 33 0.3 9.9 410 415
5° (d) 93 0.1 9.3 680 730
18° (o) 220 0.02 44 518 1180

* R(H)/Rq.2(0) as H — «, the extrapolation being made using Eq. (5).
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-1 Fic. 8. Experimental plots of re-
sistance versus angle (defined as in
Fig. 6) at 4.2°K.
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of Tig. 7, taken at 1.2°K, are clearly similar to some of
the curves of Fig. 3, and we have marked on them the
values of Hy and » which give the best simulation of
each experimental curve. We will consider the Hy
values later. It will be noticed that the curves of larger
H, are fitted by the smaller # values. Since n= (2/H,f)
X (m/e)?, nH, will depend, at constant 7, on f(=B/K),
a number proportional to the ratio of the number of
carriers on the coupled-orbit system to the total number
of carriers. The values of nH, are displayed in Table I,
and it can be seen that f is thus of about the same value
for curves (b), (c), and (d) and approximately twice
as large for (e).

A dramatic test of our calculation is provided by
comparing the results at 4.2 and 1.2°K since 7 changes
by approximately a factor of 10 between these tem-
peratures. Thus, since »=0.02 is appropriate for curve
(e) at 1.2°K, #=0.2 should be correct for the same
field direction at 4.2°K (H, remains the same). At 150
kG, « only reaches a value of 0.57 for this direction.
The field sweep for direction (e) at 4.2°K is shown in
Fig. 9 where it is labeled (a). It reproduces well the
shape of Fig. 3 for the curve #=0.2, and not only is

BOO [ e
i

5001 42 °K —

400}~

R(H)

R(0) {n=0.2,H,=220kG)

200
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T'16. 9. Experimental plot of resistance versus field at 4.2°K
for direction (a) of Iig. 8 [this is the same direction as (e) of
Tigs. 6 and 7.

the shape correct but in fact the magnitude agrees
well, the value of R at 150 kG from Fig. 9 being 500,
compared to the value of 515 predicted from our theory
and our results at 1.2°K.

The anisotropy curves of Figs. 6 and 8 are not very
susceptible to interpretation since the limit H>>H, is
clearly not reached by 150 kG for all directions. A close
examination of these curves, and those of I at lower
fields, shows that the various maxima and minima occur
at angles which depend on the field and temperature.
This is not surprising when it is realized that the re-
sistance at different angles is accounted for by different
values of Hy and 7, but it means that little can be done
with these curves except to compare them with an
ab initio calculation if one were available. It should be
noted, however, that the anisotropy is reduced at higher
fields and that at 150 kG and 1.2°K there is clearly
much less anisotropy in the resistance than in the values
of Hy. This is in line with our conclusion of Sec. II that
the high-field resistance should reflect the average value
of Hy, not the maximum value. We examine this in
detail for the directions of (b)-(e). In Table I we show
R, [=R(H—»)/R(0)] obtained by extrapolating the
experimental curves of R versus H using Eq. (5).
Notice that R at (e) is less than R at (d) even though
H, is much larger for (e) than for (d). This occurs be-
cause R, reflects f, the fraction of carriers on the
coupled orbit system, as well as H,. In fact, Hy~ fR,,
and so is proportional to R /nH,. This is also shown in
Table I, and it can be seen that the values of R, /nH,
now reflect the fitted values of Hq but with the reduced
anisotropy to be expected for H,.

C. Comparison with the Fermi Surface of Thallium

So far we have analyzed the experimental results in
terms of the model of Sec. IIB, without much regard
for the fine details of the Fermi surface of thallium. The
model in fact simulates the results well and appears to
be internally consistent. There still remains the problem
of relating our values of H, to actual points of inter-
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section of the Fermi surface with the plane AHL. We
recall that the electrons travel in planes perpendicular
to the plane AHL between the third and fourth zones
and that an open orbit can exist if breakdown allows
an electron to tunnel through the energy gap each time
it intersects the plane A HL. The energy gap varies from
zero on the line AL to a maximum on the line AH.

In I we showed that Eq. (2) becomes Ho=wA?m/
4%ieEr sing sin2y, where 5 is the angle between the
“free-electron velocity vector” and the plane AHL,
while ¢ is the angle between H (which is parallel to the
plane AHL) and the component of velocity in this
plane. The angle ¢ depends on the actual field direction
while all the other factors depend only on the point
where the electron tunnels. Therefore, we will rewrite
Eq. (2) as Hy=H{' sing. Thus, Hy is a local property
of the Fermi surface.

H{y' is a complicated function of the Fermi surface
and Soven does not give sufficient detail for it to be
evaluated for the ROPW model. We showed in I that
the term 1/sin2y could vary it by a factor of 2 for
different sections of the model and that this might cause
the maximum value of H, to occur at a point different
from the maximum value of the energy gap A. In view
of this, it can hardly be surprising that we are unable
to relate all of our experimental H, values to the Fermi
surface.

The four directions (b)—(e), for which we measured
the field dependence, were chosen because they were
at principal maxima and minima of the curve of re-
sistance versus angle at 134 kG and 1.2°K. (b) is the
only one which is parallel to a direction of high sym-
metry, and its value of Hy=10.3 kG can readily be
related to the Fermi surface. The optimum orbit for (b)
is the open orbit marked for the direction [2110] in
Tig. 1(b). It breaks through at the same value of H,
at each intersection with the plane AHL, so that
H,=10.3 kG at this point. The angle ¢ is approximately
90°, so that Hy' at this point is also 10.3 kG.

Since the directions (c)-(e) are not low-order rational
directions, no such simple analysis is possible and we
will not attempt to relate their H, values to specific
points on the Fermi surface. We can, however, make
some useful comments. In the limit of infinite mean
free path, an open orbit parallel to an irrational direc-
tion in the basal plane will eventually pass through all
points of intersection of the Fermi surface with the
plane AHL. This would imply that the open orbits for
(c)-(e) should each pass through the point of maximum
Hy' and that the H, values would reflect this. The large
range of Ho from 33 to 220 kG clearly suggests that this
is improbable. However, breakdown causes the electron
to have a definite probability of leaving the open orbit
at each junction, and this situation is described by the
effective relaxation time 7; which we previously saw
was of the order of 1/w,. This implies that, at normal
fields, the electron stays on the open orbit for only a
few lattice spacings.
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TasLE II. Values of Hy and X/a for the plots of resistance
versus field of Fig. 6.

Index of _ X/a at
plot Ho(kG) (R,/nHo) H,(kG) 150 kG
(b) 10.3 274 10.3 7.2
(©) 33 415 15.6 4.8
(d) 93 738 27.8 2.7
(e) 220 1180 4.4 1.7

We can get a detailed estimate of this number of
lattice spacings from the effective path X since X/a
=P/2Q=Ho/2H when H>>H,. For the case when H,
is not the same at all points along the orbit, we assume
that X/a=H/2H,. We saw that the values of R, /nH,
in Table I were proportional to H,. Since H, for direc-
tion (b) is the same at all breakdown points, we know
that for (b) Ho=H,=10.3 kG. This allows us to esti-
mate the values of H, for (c)-(e), and these are shown
in Table II. From these values of H, the number of
lattice spacings traversed by the electron at 150 kG,
X/a, is also shown in Table IT. In each case it is small,
less than 10.

This helps to explain two features of the experimental
results. First, the Ho will reflect the largest value of H,
encountered over a few lattice spacings rather than the
largest Hy along an open orbit of infinite length. These
experimental Hy’s thus need no longer be the largest
value of Hy on the surface, and so the wide variation
we have actually found is allowed. Along an irrational
direction there will be some places where the electron
is able to break through at each of several consecutive
junctions, while at other places it will not be able to
do so. This leads to the second point, that we used a
model where only some fraction f of the electrons was
on the open orbit. This is unjustified on the actual
Fermi surface, since at the highest fields all electrons
should be on open orbits except for the minute number
in zones five and six. However, we can now see that f
may be less than unity since the electrons which are
able to break through at several consecutive junctions
will appear to be on open orbits, while those which
cannot will appear to be on closed orbits.

D. Summary

In this work we have studied the high-field magneto-
resistance of a c-axis crystal of thallium as a means of
obtaining detailed information about the effect of mag-
netic breakdown on the Fermi surface of thallium. By
analysis of a simple model of coupled circular electron
and hole orbits we were able to obtain a family of
curves for the resistance versus field as a function of H,
and one other parameter. We were able to fit the
experimental results to these curves even for directions
where the real coupled-orbit system was clearly more
complex. We thus obtained values of H, for several
different field directions. :

By considering a slightly more complicated model of
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coupled orbits, we were led to the conclusion that these
H, values would be the largest at which an electron on
a particular orbit broke through, while the extrapolated
values of the resistance at very high fields would be
proportional to the average value of Ho. The experi-
mental results reflect this. The very large change of 7
between 4.2 and 1.2°K made a substantial difference
in the form of the plots of resistance versus field at
these temperatures, which was correctly explained by
our analysis.

Except in one case of high symmetry it was not
possible to allocate the values of Hy, which ranged up
to 220 kG, to specific points of breakdown on the
ROPW model while the model is not detailed enough
to predict these values. We did show that for the field
away from directions of high symmetry an electron
travels on an open orbit for only a few lattice spacings
in the fields we used.
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APPENDIX A

In this Appendix we will derive expression (3), the
expression for the conductivity of the network of
coupled circular orbits of Fig. 2(b). This real space
network is shown again in Fig. 10(a). The magnetic
field is in the z direction while the open direction of the
network is the x direction. We follow Pippard® in as-
suming that electrons are ““created” at the point ¢o on
the orbit at a rate proportional to E singed¢o, where E,
the electric field, is in the x direction. These electrons

T16. 10. (a) Model of coupled circular electron and hole-orbits;
(b) model of coupled circular electron orbits.
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then travel on the network under the influence of the
Lorentz force until scattered, the fraction which reaches
¢ being written f(¢o,¢). f will reflect scattering and also
the switching allowed by magnetic breakdown.

We follow Pippard in writing the effective path in
the « direction for the arc 4B as

¥ 1 i °°dx)( Y
_2,/; singy o/;g(@f%@ ®.

For our simple system the conductivity ¢,, may be
then written, from Pippard,®

050= (4/7) (né*/hko) X ,

where ko is the radius of the Fermi surface.

We will consider scattering with a relaxation time 7
by writing f=exp[— (¢—¢o)/w7], while at junctions f
will also reflect the probabilities P of transmission, a
Q(=1—P) of reflection. For this orbit system dx/d¢
=14 sing, where ¢ is the diameter of a circular orbit
and also the separation’of the centers of adjacent circu-
lar orbits. Thus,

X=ia/ Sin¢od¢o/ sing f(do,¢)ds.
0

%0

Consider electrons created at ¢o on the arc AB of
Fig. 10. They travel clockwise on the arc until they
reach the junction B, where a fraction P switches to
the arc BC while a fraction Q continues on the arc B4.
¢¢ and ¢, are defined as the points reached by elec-
trons which have moved through an angle of = from ¢,.
We can thus split up our integral into the form

T ¢0’
X=1%a / sin¢od¢o[P / sing e~ (¢—¢0)/w7dg
0 ¢

0

0

sing

$0’!

+0

Sin¢ e~ (¢"¢0)/WTd¢+Pe—T/wT/
¢0

$0’

00

X f(po ,9)dp+Qe o7 / sing f(¢o",¢)d¢],

[

Bearing in mind the symmetry of the orbits, the last
two terms may be identified as

Pc—ar/w X — Qe—ﬂr/w-rX ,

since by symmetry X is the mean terminal point,
relative to the center 0 of the arc BC to which the
electron migrates by breakdown, while — X is the mean
terminal point of the other half B4 of the original orbit.
For our simple network, the first two terms may readily
be integrated, so that we eventually obtain

¥ Pa ; Qa [14-¢lo7]
11/ 2wr 141wt

H(P—Q)Xemler,



163

which may be solved to give
v aerlor  [P+Q(14eo7)/20r]
(14+1/w?r?)  [(ero—1)+2Q]
and further simplified if w7>>1 to
X=0a(P+Q/wr)/(20+7/wT).
Finally, if we may write >>n/2wr, i.e., wer>>3m, then

aP a 4 ne? B P 1
so that o’=—-——X=—|: -+ ],

X=—t—, ~
20 2wt whke  HL2Q 2w7

y

where B is a constant. This result for X differs from the
result obtained in the absence of scattering only by the
addition of the term a/2w7.

For the terms oy, and o,y, we need merely note that
the effective paths L,, and L,, are unchanged by
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breakdown, so that ¢,,~1/w?r while the equal number
of electrons and holes implies o,,=0 to first order in
1/H.

APPENDIX B

In this Appendix we will examine the behavior of o,
for a linear chain of orbits which are not compensated
in the absence of breakdown. We will consider the simple
system shown in Fig. 10(b) which consists of a network
of circular electron orbits with a probability P at each
junction of switching to the next orbit and Q of not
switching. The mean effective path in the y direction
for a semicircular arc may be written

1,7 ®
Y=E / singodeo / acose f(do,0)de.
0

0

This integral splits up, as in Appendix A, to give

arc L 0’
Y:E/ Sin¢0d¢0[/ C05¢ e—(¢_¢0)/w7d¢+P/ COS¢ e—(¢"¢0)lWTd¢
0

%0 0

$0’/ o ©
+0 f coss ¢~ #—o0lwr g Pa-rlor / coss 1o, 8)dd-+-Qeo" / cose f<¢o,"¢)d¢].
T -1

The last two terms may be identified as Pe~"/*7Y
—Qe~v7Y, Evaluating the other terms for our simple
example with semicircular arcs, we obtain

Y=(P—Q)Ve e
a(l_ —w/wf)
+
wr(141/w?2)? 4(14-1/w?7?)
Assuming wm>>1 and P=1—Q, then
a/wr—maQ/2(e"*—1) —%aQur 0 1)
C1420/(ee—1)  14+2Qwr/x <w'r '
At low fields (but still wm>1), Quwr>1, so that ¥V
= —1ra. At high fields, Q= Ho/H so that V= —awer/
2(142wor/7)= —3iwa if wer>>1. As in Appendix A, we

may write o,,= (4ne*/rhko)Y, so that o,,= —ne for all
fields. Thus, in this example breakdown from closed to

rag*7(14-Q—P)

0’

open orbits does not change ¢, as long as wer>>1. We
will assume that this result is true for the more com-
plicated examples appropriate to thallium, which are
not so readily calculated. If the network is part of a
Fermi surface for which o,,=0 before breakdown, then
since o, is not altered by breakdown, it is zero for all
fields.

It is to be expected that this result will be generally
true for a linear system of orbits which become coupled
by breakdown since at high fields an electron has a
finite probability Q(=~ Ho/H) of being switched at each
junction from the open orbit to a closed orbit. As long
as 75>1/wy, an electron which was “created” on the
top half of the circle network is as likely to be on the
bottom half as the top when it is finally scattered. Thus,
the mean terminal point in the y direction is the same
as in the uncoupled case and Y is unchanged by
breakdown.



