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Magnetoresistance of Thallium in Large Magnetic Fields*
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%e have measured the transverse magnetoresistance of a v-axis crystal of pure thallium at liquid-helium
temperatures and in magnetic tields up to 130 kG (at the National Magnet Laboratory). At 1.2'K the
resistance has saturated at this Geld for all directions in the basal plane. The Geld dependence of the re-
sistance is correctly simulated by a simple model of orbits which become coupled by magnetic breakdown.
By Qtting the experimental results with the predictions of the model, we are able to estimate values of the
breakdown Geld H0, the largest value encountered being 220 ko. The model also correctly predicts the change
of resistance with mean free path between 4.2 and I.2'K.

I. DTTRODUCTION
' 'N large magnetic 6elds and at low temperatures, the
~ ~ magnetoresistance of a pure metal reQects the to-
pology of the orbits described by electrons on the
Fermi surface. ' For the pure metals now available, the
necessary criterion that eo.r&)1, (where a&, is the cyclo-
tron frequency of closed orbits and r is the relaxation
time for electron scattering) for all closed orbits is
readily achieved in Gelds of 10 kG. But in some metals,
such as thallium, the energy gap 6 across one of the
Brillouin-zone faces is quite smaH and some electrons
are able to tunnel through the energy gap, this process
being known as magnetic breakdown. ' An electron now
has a probability PL=exp( —Be/H) j of tunneling to
another orbit on the Fermi surface and the result-
ant change of topo1ogy will be reQcctcd in the
magnetoresistance.

For nearly free electrons with an energy gap 8, ard
8 ln thc 8 direction

Hs= srI3' j4hee, e„,

where s, and V„are components, respectively parallel
and perpendicular to the zone boundary, of thc "free-
electron velocity" at the zone boundary, i.e., the
velocity which the electron would have in the absence
of the energy gap. ' In the special case where e =e~ and
there is no component of v parallel to the 6eld, Eq. (1)
foI' Ho I"cduces to

where m is the electronic mass and Ep is the Fermi
CQCl gy.

In the presence of magnetic breakdown, there is con-
siderable variation of the resistance with Geld even Rt
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6elds well above Ho) and a 6eld of at )cast this magni-
tude ls lccjuiI'cd. Our plcvloUS studies of thc magncto-
resistance of thalliume (hereafter referred to as I) were
mainly in 6elds below 55 kG, and it was clear from
them that some values of Bo on the Fermi surface of
thallium were considerably larger than this. In the
present work we report measuremcnts of thc magneto-
resistance up to I50 kG which show that the CBects of
Inagnetic breakdown are becoming complete at this
magnitude of 6cld for all held directions in the basal
plane of thallium. Kc calculate the detailed behavior of
a simple model to simulate the CBect of magnetic
breakdown on the magnetorcsistance and by fitting
thc experimental results to thc CRlculRtcd behavior wc
are able to estimate values of Ho for thallium, the
largest being 220 kG.

In Sec. II we brieQy describe the Fermi surface of
thallium Rnd CRlcUlRtc thc magnctorcslstancc of R spe-
cial model of coupled orbits. In Sec. III we mention the
experimental technique and present the experimental
results which will then be analyzed in the light of ouI
calculations of Sec. G.

IL THEORY

A. Fermi Surface of ThalHum

ThRHium is a hexagonal close-packed metal with a
hexagonal reciprocal lattice. In the absence of spin-orbit
coupling, the energy gap across the (0001) face (ABI.
in Fig. 1) between the third and fourth 3rillouin zones
would be zero. This degeneracy is lifted by the spin-
orbit coupling except along the lines AI., the energy
gRp varying from zcI'o on a linc AI to R maximum VRhlc
Rt R corncx' B.

The FcrIQi sulfRcc of thallium has bccn studied ex-
perimentally by magnetoresistancc, ~' the de Haas-van
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Alphen effect, ' and the magnetoacoustic effect."All
of these measurements show the Fermi surface to be in
good agreement with that of the relativistic orthogonal-
ized plane-wave calculation by Soven"" (the ROPW
model). They indicate that magnetic breakdown occurs
across the zone face ABL between the third and fourth
Srillouin zones.

Figure 1(a) is a drawing of the Fermi surface of
thallium. This is in fact the nearly-free-electron model
modified to be topologically similar to the ROP%
model, but this will be adequate for our purposes.
Soven" suggested that the arms of the fourth-zone
surface which extend in the [0001]dir ection are pinched
oE before the top of the zone is reached, which was con-
6rmed in I. There are other fragments of the Fermi
surface in the fifth and sixth zones.

The important characteristic of the ROPW model
from the point of view of magnetoresistance is that
open orbits are able to propagate in directions parallel
to the (0001) plane if they are able to tunnel through
the face ABL between the third and fourth zones. A
typical open orbit is shown in Fig. 1(a). When break-
down is complete, the surface becomes a pair of open
sheets in the (0001) plane, and open orbits in directions
parallel to this plane will exist for all field directions
(except those exactly parallel to the c axis). For a c-axis
specimen with the magnetic 6eld in the basal plane,
breakdown changes the magnetoresistance from the B'
behavior of a compensated metal to the saturation ex-
pected for open orbits perpendicular (in k space) to
the current. In the next section we discuss the expected
behavior in detail.
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FIG. 1. (a} Third and fourth zones of the free-electron model
for thallium. The typical open orbit is able to propagate parallel
to a direction in the basal plane if breakdown allows it to cross
the zone face AHI between the third and fourth zones. (b) A
(0001) section of the fourth-zone surface on the plane AHI.
showing the free-electron model section on the left and the
ROPW model section on the right. The optimum orbits in the
I 1010j and $2110) directions are indicated.
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Pro. 2. (a) The network of third-zone hole orbits and fourth-
zone electron orbits which become coupled by magnetic breakdown
to form an open orbit parallel to I 1010); (b) a simple model of
coupled orbits formed from circular electron and hole orbits.

B. Exyected. Magnetoresistance of Thallium

In this section we set out to calculate the field de-
pendence we expect in the resistance of a [0001]speci-
men when the magnetic 6eld is in the (0001) plane. We
6rst examine some of the systems of coupled orbits pro-
duced by breakdown. Figure 2(a) shows the open orbit
in the [1010]direction, which passes through the sym-
metry point A of the plane ABL. It opens by coupling
hole orbits on the third-zone surface with electron orbits
on the fourth-zone surface. The example we have shown
runs along the line AL and so actually encounters no
energy gap. Neighboring orbits will be very similar, but
they will encounter a progressively larger energy gap as
they pass nearer to the point Bof largest energy gap.

The coupled-orbit system in the [2110] direction,
which crosses the lowest energy gap while still having
equal gaps at "a" and "b" is similar to Fig. 2(a), but
the value of the gap is not zero as it was for [1010].
This orbit passes through point L in the ABL plane.
Neighboring orbits will have a larger gap at a and a
smaller gap at b (or vice versa). For other rational
directions, and for nonrational directions in the basal
plane, the open orbits will still be formed by coupling
third-zone hole orbits and fourth-zone electron orbits,
but the loss of symmetry means that the orbit will
repeat itself only over a very large number of reciprocal
lattice vectors, in contrast to the cases of Fig. 2(a)
which are periodic in the zone separation, while the
value of the energy gap will not be the same at each
junction.

Qn the actual Fermi surface there will be a number of
coupled orbits for diferent values of k~, and these will
break down at diferent 6elds. Some "optimum orbits"
(this concept is also used in I) will be the 6rst to open,
and as the 6eld is increased orbits for nearby k~ values
will open until finally all orbits are open. Clearly, the
resistance will be dominated by the open orbits long
before all orbits are actually open, and so we will assume
that a suitable model for simulating the resistance can
be made if a certain fraction of the electrons lie on
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where o „=BP/2QH+K/rdsr, C and K being constants.
This is readily inverted to give p„=1/o„.

Examining the field dependence of p, at low and
high delds, we find that when H&(Hp, p, =~2m while at
high fields, where Q=Hp/H and P=1, we find that
p„=[2Hp+Hrr/rdr j/B. Thus at low 6elds the resist-
ance follows an H' dependence as expected for a com-

where 2 and 8 are constants which will depend on the
number and velocity of the electrons on the chain of
coupled orbits. If Q»rr/2cdr, we may simplify o„to give

p „=BP/2QH+B/2Hrdr. (4)

Since Q=Hp/H at high fields, the condition Q»rr/2&sr
may be written rprp»7r2/, where &pp ——eHp/m. Equation
(4) is thus valid for all fields, independent of H, as long
as Hp is sufFiciently large and cur))1.

We must take account of other parts of the Fermi
surface not on the chain of coupled orbits, and this will
add terms proportional to 1/rpsr, to o„,and o». Com-
pensation ensures that a,„ is still zero. It should be
noted that for the coupled-orbit system of Fig. 2(a),
o,„ is not in fact zero because there is not an equal
number of electrons and holes on this system. However,
as discussed in Appendix 3, r,„ for a linear chain of
coupled orbits is not altered by breakdown, so that if
o. „=0for the whole Fermi surface before breakdown,
o. „=0 after breakdown. The complete conductivity
tensor is thus

pensated metal with no open orbits, while at high Gelds
it saturates as expected for open orbits in the direction
in reciprocal space at right angles to the current. In the
absence of breakdown, the resistance due to an open
orbit is proportional to 1/r, and for our example with
breakdown we could follow Falicov and Sievert" in
writing the resistance as proportional to 1//v~, where

1/rr = 1/r+ 2Qrp= 1/r+ 2H pe/mrr

= 1/r+ 2' p/rr.

Writing n=H/Hp and Y=B/2Hp, we exhibit the
resistance as a function of field and Hp in the form of
universal curves of X versus e for various values of a
parameter e, where

1/X= 1/Yp, .= $P/Q +rs/ 'j,
and I= (2K/HpBr)(rn/e)' These c.urves are shown in
Fig. 3. It is of interest to note that a peak in resistance
versus field occurs for small values of rs, always at o.& 1,
while for large values of e no peak occurs but the re-
sistance increases monotonically.

For a network as simple as that of Fig. 2(b), the
values of Hp may be found from an experimental curve
of p versus H merely by selecting that curve from the
family which gives the best fit to the shape, Hp being
the scaling factor between H and n. This means that
Hp can be found from the shape without knowing the
relative number of electrons on the open orbit or r. In
thallium, r may be varied by an order of magnitude
over the temperature range 4.2 to 1'K, and this will

"L.M. Falicov and P. R. Sievert, Phys. Rev. 138, A22 (1965).
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mental curve is being Gttcd, giving an error in the esti-
mated value of H~ of only a few percent. Thus, in this
simple example, the value of Ho to be obtained by Gtting
an experimental curve to Eq. (5) will be close to Hi,
the largest of the two values encountered by the open
orbit. We will assume that we can apply this result to
more comphcated cases.

To summarize, the calculations of this section suggest
that the shape of an experimental curve of resistance
versus H may be fitted to Eq. (5) to give a value of E4,
and this will be a good approximation to the largest
value of Ho encountered by the open orbit. The value
of s w10 dcpcnd on T Rnd Ho Rs well Rs on thc frRctlon
of the carriers which are on the coupled-orbit system.
The value of the resistance at ve1y high Gelds will bc
proportional to the average value of Ho along the orbit
rather than the maximum value.

QI. EXPERIMENTAL RESULTS
AND MSCUSSION

A. E&xyerimenta1 Technique

The experimental technique is the same as that
described in I.The measurements werc carried out both
at 4.2 and 1.2'K in a conventional copper solenoid at
the National Magnet Laboratory, the maximum 6cM.
reached being 150 ko.

The specimen was prepared as described in I from
pure thallium supplied by Cominco, Inc. The resistance
ratio between the room temperature and 4.2'K was
11 000, and this improved to approximately 100 000 as
the temperature was lowered to 1.2'K."At this low

'5 I am grateful to R. C. 3arklie for carrying out this
plasgrgxQ@n $,

temperature the specimen was, of course, supercon-
ducting, and the resistance had to be determined by
extrapolating measurements at Gelds sufficiently large
to destroy the superconductivity.

TABI,E I. Values of H0, e, nH0, E,„,and (R„/NB0) for the plots of
resistance versus Geld at 1.2'K of Fig. 6.

Angle of 6eld
from L10f.O)

0' (b)
9.5' (c)
5 (d)

18' (e)

HQ

(ko}
10.3
33
93

220

1
0.3
0.1
0.02

NB0

10.2
9.9
9.3

R„/ H

280 274
410 415
680 730
518 1180

a R(P)/R4. a(O) as H -+ ~, the extrapolation being made using Hq. {5).

B. Exyerimental Results and Comyarison
with the Calculation of Sec. IIC

The experimental results for a specimen oriented
paraOcl to the c axis are shown in Pigs. 6-9. In all cases
we show the resistance divided by E4,2(0), the resistance
at 4.2'K and in zero Geld. The graphs thus reQect the
actual resistance of the specimen rather than the con-
ventional p(H)/p(0). The graphs of resistance versus
angle at constant Geld are for the magnetic Geld in the
basal plane, so that only 30' of angle is required, 0'
being when H is parallel to $1010] and. 30' when H is
parallel to [2110$. Field sweeps were taken at the
selected f'ield directions marked as (a)-(e) on the rota-
tion graphs.

Ke will 6rst concentrate the discussion on the Geld
sweeps because these are readily compared to the
calculations of Sec. II. The set of experimental curves
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Fn. 9. Experimental plot of resistance versus 6eld at 4,2'K
for direction (a} of Fig. 8 I this is the same direction as (e} of
Figs. 6 and 7g.

of Fig. 7, taken at 1.2'K, are clearly similar to some of
the curves of Fig. 3, and we have marked on them the
values of Hp and e which give the best simulation of
each experimental curve. YVe wi11 consider the Hp
values later. It will be noticed that the curves of larger
Hp are fitted by the smaller ii values. Since ri= (2/Hpfr)
X (Ni/e)', eHp will depend, at constant r, on f(=8/E),
a number proportional to the ratio of the number of
carriers on the coupled-orbit system to the total number
of carriers. The values of nHp are displayed in Table I,
and it can be seen that f is thus of about the same value
for curves (b), (c), and (d) and approximately twice
as large for (e).

A dramatic test of our calculation is provided by
comparing the results at 4.2 and 1,2'K since v changes

by approximately a factor of 10 between these tem-
peratures. Thus, since m=0.02 is appropriate for curve

(e) at 1.2'K, n=0.2 should be correct for the same
field direction at 4.2'K (Hp remains the same). At 150
kG, ~ only reaches a value of 0.57 for this direction.
The field sweep for direction (e) at 4.2'K is shown in

Fig. 9 where it is labeled (a). It reproduces well the
shape of Fig. 3 for the curve m=0.2, and not only is

the shape correct but in fact the magnitude agrees
well, the value of E at 150 kG from Fig. 9 being 500,
compared to the value of 515 predicted from our theory
and our results at 1.2'K.

The anisotropy curves of Figs. 6 and 8 are not very
susceptible to interpretation since the limit H))HD is
clearly not reached by 150 kG for all directions. A close
examination of these curves, and those of I at lower
6elds, shows that the various maxima and minima occur
at angles which depend on the held and temperature.
This is not surprising when it is realized that the re-
sistance at different angles is accounted for by different
values of Hp and e, but it means that little can be done
with these curves except to compare them with an
ab initio calculation if one were available. It shouM be
noted, however, that the anisotropy is reduced at higher
fields and that at 150 kG and 1.2'K there is clearly
much less anisotropy in the resistance than in the values
of Bp. This ls ln line with. our conclusion of Sec. II that
the high-6eld resistance should reQect the average value
of Hp, not the maximum value. Ke examine this in
detail for the directions of (b)—(e). In Table I we show

R„[=R(H—+~)/E(0)] obtained by extrapolating the
experimental curves of 8 versus H using Eq. (5).
Notice that R„at (e) is less than R„at (d) even though
Hp is much larger for (e) than for (d). This occurs be-
cause E„r fleetcsf, the fraction of carriers on the
coupled orbit system, as well as Hp. In fact, Hp fR„,
a,nd so is proportional to R„/NHp. This is also shown in
Table I, and it can be seen that the values of R /mHp

now reQect the 6tted values of Hp but with the reduced
anisotropy to be expected for Irp.

C. Comyarisom vrith the Fermi Surface of Thallium

So far we have analyzed the experimental results in
terms of the model of Sec. LIB, without much regard
for the Gne details of the Fermi surface of thallium. The
model in fact simulates the results well and appears to
be internally consistent. There stiB remains the problem
of relating our values of Bp to actual points of inter-
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section of the Fermi surface with the plane AHL Wc
recall that the electrons travel in planes perpendicular
to the plane AIIL between the third and fourth zones
and that an open orbit can exist if breakdown allows
an electron to tunnel through the energy gap each time
it intersects the plane AHL. The energy gap varies from
zero on the line AL to a rnaximurn on the line AH.

In I we showed that Eq. (2) becomes Ho=san'm/
4AeEp sing sin2g, where q is the angle between the
"free-electron velocity vector" and the plane ABL,
while y is the angle between I (which is parallel to the
plane AHI.) and the component of velocity in this
plane. The angle p depends on the actual 6eM direction
while all the other factors depend only on the point
where the electron tunnels. Therefore, we will rewrite
Eq. {2) as Ho Ho' si——up. Thus, H0' is a local property
of the Fermi surface.

Ho' is a complicated function of the Fermi surface
and Soven does not give sufIicient detail for it to be
evaluated for the ROPW model. We showed in I that
the term 1/sin2g could vary it by a factor of 2 for
different sections of the model and that this might cause
the maximum value of Ho to occur at a point different
from the maximum value of the energy gap A. In view
of this, it can hardly be surprising that we are unable
to relate all of our experimental Ho values to the Fermi
surface.

The four directions (b)—(e), for which we measured
the 6eld dependence, were chosen because they were
at principal maxima and minima of the curve of re-
sistance versus angle at 134 kG and 1.2'K. (b) is the
only one which is parallel to a direction of high sym-
metry, and its value of Ho=I0.3 kG can readily be
related to the Fermi surface. The optimum orbit for (b)
is the open orbit marked for the direction L2110$ in
Fig. 1(b). It breaks through at the same value of Ho
at each intersection with the plane AIIL, so that
Ho= 10.3 kG at this point. The angle p is approximately
90', so that Ho' at this point is also 10.3 kG.

Since the directions (c)—(e) are not low-order rational
directions, no such simple analysis is possible and wc
will not attempt to relate their Ho values to speci6c
points on the Fermi surface. Ke can, however, make
some useful comments. In the limit of in6nite mean
free path, an open orbit parallel to an irrational direc-
tion in the basal plane will eventually pass through all
points of intersection of the Fermi surface with the
plane AHL. This would imply that the open orbits for
(c)—(e) should each pass through the point of maximum
Ho' and that the Ho values would reQect this. The large
range of Ho from 33 to 220 ko clearly suggests that this
is improbable. However, breakdown causes the electron
to have a definite probability of leaving the open orbit
at each junction, and this situation is described by the
effective relaxation time 7» which we previously saw
was of the order of 1/Mo. This implies that, at noHIlal
fields, the electron stays on the open orbit for only R

few lattice spacings,

TAsLE II. Values of IIO and Xja for the plots of resistance
versus 6eld of Fig. 6.

Index of
plot

gb)
(c)
(d)
{e)

F504'ko)

10.3
33
93

220

10.3
15.6
27.8
44.4

7.2
4.8
2.7
1.7

D. Summary

In this work. we have studied the high-6eld magneto-
resistance of a c-axis crystal of thallium as a means of
obtaining detailed information about the eGect of mag-
netic breakdown on the Fermi surface of thallium. IIly
analysis of a simple model of coupled circular electron
and hole orbits we were able to obtain a family of
curves for the resistance versus field as a function of Ho
and one other parameter. YVC were able to 6t the
exper'imental results to these curves even for directions
where the real coupled-orbit system was clearly more
complex. We thus obtained values of Ho for several
diferent 6eld directions.

By considering a slightly more complicated model of

We can get a detailed estimate of this number of
lattice spacings from the effective path X since X/a
=P/2Q=HO/2H when H))HO. For the case when Ho
ls not thc same at Rll points Rlong thc olblt wc Rssumc
that X/a=H/2IIO. We saw that the values of R„/NHO
in Table I were proportional to Bo. Since H0 for direc-
tion (b) is the same at all breakdown points, we know
that for (b) Ho HO=10——.3 kG. This allows us to esti-
mate the values of Ho for (c)—(e), and these are shown
in Table II. From these values of Bo, the number of
lattice spacings traversed by the electron at 150 ko,
X/a, is also shown in Table II. In each case it is small,
less than 10.

This helps to explain two features of the experimental
results. First, the Ho will reQeet the largest value of Ho
encountered over a few lattice spacings rather than the
largest Ho along an open orbit of in6nite length. These
experimental Ho's thus need no longer be the largest
value of Ho on the surface, and so the wide variation
we have actually found is allowed. Along an irrational
direction there will be some places where the electron
is able to break through at each of several consecutive
junctions, while at other places it wiH not be able to
do so. This leads to the second point, that we used a
model where only some fraction f of the electrons was
on the open orbit. This is unjusti6ed on the actual
Fermi surface, since at the highest fields all electrons
should be on open orbits except for the minute number
in zones Ave and six. However, we can now see that f
may be less than unity since the electrons which are
able to break. through at several consecutive junctions
will appear to be on open orbits, while those which
cannot will appear to be on closed orbits.
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coupled orbits, we were led to the conclusion that these
Hp values would be the largest at which an electron on
a particular orbit broke through, while the extrapolated
values of the resistance at very high Gelds would be
proportional to the average value of Hp. The experi-
mental results reQect this. The very large change of 7.

between 4.2 and 1.2'K made a substantial difference
in the form of the plots of resistance versus Geld at
these temperatures, which was correctly explained by
our analysis.

Except in one case of high symmetry it was not
possible to allocate the values of Hp, which ranged up
to 220 kG, to specific points of breakdown on the
ROPW model while the model is not detailed enough
to predict these values. We did show that for the Geld

away from directions of high symmetry an electron
travels on an open orbit for only a few lattice spacings
in the Gelds we used.
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APPEIIK A

In this Appendix we will derive expression (3), the
expression for the conductivity of the network of
coupled circular orbits of Fig. 2(b). This real space
network is shown again in Fig. 10(a). The magnetic
Geld is in the s direction while the open direction of the
network is the x direction. We follow Pippard" in as-
surning that electrons are "created" at the point Pe on
the orbit at a rate proportional to E sinpe@flp where E,
the electric field, is in the x direction, These electrons

then travel on the network under the inQuence of the
Lorentz force until scattered, the fraction which reaches

P being written f(pe, p) fw. ill refiect scattering and also
the switching allowed by magnetic breakdown.

We follow Pippard in writing the effective path in
the x direction for the arc AB as

1 "f'dx)
X=- sing od4 o

I lf (A&'f~) d~
„&@i

For our simple system the conductivity o. , may be
then written, from Pippard, "

o.,= (4/rr) (ne'/hkp) X,
where kp is the radius of the Fermi surface.

We will consider scattering with a relaxation time r
by writing f= expL —(tt —Pe)/corj, while at junctions f
will also reflect the probabilities P of transmission, a
Q(=1—P) of reflection. For this orbit system dx/~
=-r2u sing, where a is the diameter of a circular orbit
and also the separation"of the centers of adjacent circu-
lar orbits. Thus,

X= raa sin$edPe sing f($o,P)~
0 4p

Consider electrons created at Pa on the arc AB of
Fig. 10. They travel clockwise on the arc until they
reach the junction 8, where a fraction I' switches to
the arc BC while a fraction Q continues on the arc BA
P&' and go" are defined as the points reached by elec-

trons which have moved through an angle of m from pp.
W'e can thus split up our integral into the form

1r 4p'

X=4u sinqbqdqbo P singe &e &"I"'+
0 4p

Ppl I

+Q sing e &~&'&'"'dg+Pe sing

Y

X

&&f(4o'A)d4+Q '"'
el pl I

»n4' f(A' A') d4

(a)

Bearing in mind the symmetry of the orbits, the last
two terms may be identiGed as

Pe w/GI1'X Qe O'IIBTX

(b)

Fro. 10. (al Model of coupled circular electron and hole-orbits
&

(b) model of coupled circular electron orbits.

since y symb s mmetry X is the mean terminal point,
relative to the center 0 of the arc BC to which the
electron migrates by breakdown, while —~ is the mean
terminal point of the other half BA of the original orbit.
For our simple network, the Grst two terms may readi y
be integrated, so that we eventually obtain

PQ o 1 e
+(P Q)Xe '", —

1+1/r0rr' 2tor 1+1/roar'
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