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A definition of a finite partition function for bound electronic states is presented for a hydrogenic ion,
with the associated problems of the fall in intensity of spectral lines and the lowering of the effective ioniza-
tion potential. The partition function is partly based on numerical solutions of the Schrodinger equation
(SE) with the complete screened Coulomb potential (CSCP), where the 1s, 2s, 2p, 3s, 3p, and 3d states are
considered. The CSCP is given by
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where D is the screening radius and 4 is the mean minimum radius of the ion atmosphere. The standard
transformations ¥=2Zr/ a0 and Ex= —Z%e'/2%2\2, where A is the CSCP quantum number, yield the
standard form of the SE equation with X in place of #. The numerical solutions are obtained with a nonlinear
method that is both accurate and stable. Since the accurate numerical solutions do not yield an explicit
maximum-bound principal quantum number, another property of the screened solutions is used to define a
decreasing probability of an electron occupying a particular Coulomb eigenstate. The quantity derived is
the relative probability of the screened to the unscreened Coulomb state, given by *
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where the N’s are the normalizations in x space, calculated with variations of D and 4 only. This relative
occupation probability of the bound state is used to modify the Boltzmann factor in the standard expression
for the electronic partition function. Correlations with observations are discussed : there is excellent agree-
ment with the fall in intensity of hydrogen lines in the solar atmosphere and good agreement with lines from
laboratory hydrogen at 21°K. The effective ionization potential of hydrogen is calculated using the maxi-
mum detected level of hydrogen observed in the solar chromosphere. A simple analytical fit to the ® function
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and a useful approximate analytical expression for the screened Coulomb partition function are given.

1. INTRODUCTION
HE standard electronic partition function for
bound states is given by
Qa=2 exp[—E;;/kT],

4,7

where the E;; are the energies of the bound states.
From Coulomb interactions for a hydrogenic ion (neu-
tral hydrogen will be an “ion” with zero charge),

Qa=2_ 2n? exp[—E.//kT], (1.1)

where 7 is the principal quantum number (q.n.); 2#?
represents the degeneracies of the states; and E,’ is the
energy of the state relative to the ground-state energy
taken as zero, i.e., E,'~1— (1/#2).

Unfortunately, (1.1) diverges as #» — . Relative to
using screened Coulomb (SC) interactions of the bound
electron to define a finite electronic partition function,
the pioneering work of Ecker and Weizel! has been
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followed by others*? where a maximum bound principal
quantum number, referred to as g*, was the quantity
sought. However, accurate numerical solutions of the
Schrodinger equation (SE)* with the complete screened
Coulomb (or attractive Yukawa) potential (CSCP)®
show that, with a finite screening radius, D>0, SC
interactions do nof yield a finite number of bound states.

The quantity that does decrease as D — 0 is the
magnitude of the normalization integral when calcu-
lated with all other initial values remaining constant,
except those depending on the quantum number itself.
With this in mind, we will derive a quantity called the
relative occupation probability of a bound electronic
state, that will be equal to the ratio of the relative total
probability of a state with finite screening radius, to
that with an infinite screening radius (the standard
Coulomb interaction). This will be used to modify the

2 H. Margenau and M. Lewis, Rev. Mod. Phys. 31, 569 (1959);
G. M. Harris, Phys. Rev. 125, 1131 (1962); G. Ecker and W.
Kroll, Phys. Fluids 6, 62 (1963); C. R. Smith, Phys. Rev. 134,
A1235 (1964).

3 C. A. Rouse, in Proceedings of the Sixth International Conference
on Ionization Phenomena in Gases, Paris, 1963 (SERMA, Paris,
1964), Vol. 1.

4C. A. Rouse, Bull. Am. Phys. Soc. 11, 356 (1966); J. Math.

Phys. 46, 63 (1967).
8 C. A. Rouse, Phys. Rev. 159, 41 (1967).
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Boltzmann factor—as is one of the common practices’—
in the definition of a finite electronic partition function.

A recent survey of the problems of the partition
function cutoff and the lowering of the ionization po-
tential in plasmas—with a brief bibliography—are
given in the appendix of the paper by Armstrong et al.”
The reader is referred to this report (and its references)
for discussions of other approaches to the problem of a
finite electronic partition function (p.f.).

Section II of this report will discuss the definition of
a finite electronic p.f. based upon the changes in the
relative charge probability densities and the resulting
changes in the relative normalizations of the screened,
bound-state wave functions. Expressions for the effective
maximum bound state and the maximum detected level
will be derived. Section ITI will discuss correlations of
the present solutions with observations of the fall in
intensity of hydrogen lines (an unsolved problem), and
the effective ionization potential of hydrogen. Finally,
the Summary and Conclusions are given in Sec. IV.

II. A FINITE SCREENED COULOMB ELEC-
TRONIC PARTITION FUNCTION

It has been shown that the CSCP and Coulomb po-
tential yield the same number of bound states.® How-
ever, what the CSCP solutions do yield that will be
useful is the relative total probability of the state
which varies with changes in D and 4. In what follows,
spin degeneracy will be omitted since it is well known
to be 2.

A. Brief Review of the Numerical Solutions

The complete screened Coulomb potential is given
by8—10

V@-(r)=—§e—2(3—p—1j>, 0<r<4

V(r) Zmz rD + ’ . (2.1)
V0(7)=__e_ exp[(4—7r)/D]

no D44 r

y =

where D is the screening length, A is the mean minimum
radius of the ion atmosphere®® and 7o is the dielectric
constant of the medium.*—10

After the standard transformations!

x=2Zr/ao\ (2.2)

8 R. H. Fowler, Statistical Mechanics (Cambridge University
Press, Cambridge, England, 1936).

7 B. H. Armstrong, R. R. Johnston, P. S. Kelly, H. E. DeWitt,
and S. G. Brush, in Progress in High Temperature Physics and
Chemistry, edited by C. A. Rouse (Pergamon Press, Inc., New
York, 1967), Vol. 1.

8 H. Margenau and M. Lewis, Ref. 2; T. L. Hill, A Iniroduction
To Statistical T hermodynamics (Addison-Welsey Publishing Com-
pany, Reading, Massachusetts, 1960).

9 C. A. Rouse, Bull. Am. Phys. Soc. 9, 731 (1964).

10 C. A. Rouse, University of California Radiation Laboratory
Report No. UCRL-12461, 1965 (unpublished).

U L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
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and
Zuet 1
Ey=— -, (2.3)
2% A\

the radial SE for a hydrogenic ion with the CSCP (with
70=1.0) becomes

@?R 2dR 1(+1)
—t- ———l:kv(x)+b2+ ]R= 0, (2.4)
dx* x dx x?
with
1 1
v:(x) = —<—~——>, 0<x<a
x d+a
v(x) (2.5)
d exp[(a—=)/d]
Yo (x) = y, X¥2a,
d+a x

where d and ¢ are the values of D and 4 in « space, and
5% is a constant to be designated. In the standard
analytic Coulomb solutions, #?=1%.

The numerical method of solution to (2.4) is that
developed by the author.* The wave function R(x) and
slope of the wave function, m(x)=dR/dx, are simul-
taneously expanded in a Taylor series between space
steps, to the cubic terms, with the first and higher de-
rivatives of the slope defined by the SE. Exact initial
values are obtained from a series solution of the SE
without exp(—=/2) factored out. We write the series
solution in the form

R(x)=x'p(x), (2.6)

¢(x)=2 ax®, 0. (2.7)

Letting (¢) indicate the ith derivative, the initial values
are given by

with

R, P 0)=iloi i, (2.8)

where a; ;=0 for i<l. From the series solution, the
o’s are equal to
A

— a0
2(4+-1)
bzou_l— 7\0!:

T D@2+

and

[ 7A%] i>1

with

A
P=14+—-.
d+a

In the present work, all numerical results are carried
out with ap=1.0 for i=1I. Other values of ag will be
considered below through physical considerations.

As described in Refs. 4, 5, and 9, solutions were

pany, Inc., New York, 1949); H. A. Bethe and E. E. Salpeter,
Handbuch der Physik, edited by S. Fliigge (Springer-Verlag,
Berlin, 1957), Vol. 33; C. W. Sherwin, Iniroduction_to Quantum
Mechanics (Holt, Rinehart, and Winston, Inc., New York, 1960);
R. B. Leighton, Principles of Modern Physics (McGraw-Hill Book
Company, Inc., New York, 1959).
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sought for wave functions with the same shapes as the
Coulomb wave functions; i.e., the same number of
nodes. Consequently, we will use the standard Coulomb
designations, R,,;, for the corresponding CSCP wave
functions with # and /, the standard Coulomb principal
quantum number (q.n.) and angular momentum q.n.,
respectively. The CSCP q.n. N will be a function of 4
and ¢ as well as » and /. Consequently, whenever we
write \ alone, the dependence on d and ¢ are implied,
or, A=X\y,1=M\n,1(d,a). We will refer to the 1s, 2s, 2p,
etc., states and/or wave functions with screening dis-
tance d(D) and minimum ion atmosphere radius a(4).
The eigenvalues will all be given in units of rydbergs
divided by Z2, or from (2.3)

HE=E—TTTT=——,. (29)

From Eq. (2.2),

ZD/ae=\d/2, (2.10)

as the transformation to r space of the values of d
assumed in Eq. (2.5).

B. Derivation of the Relative Occupation Probability of
a Screened Coulomb Bound State

Normalization of Bound-State W ave Functions

We will first derive the necessary transformation of
the radial normalization integral from x space to 7
space. The desired 7-space normalization integral—the
total probability of the state—is given by

0

/ 72(Ry,i(r))2dr=1,

for the normalized radial wave functions, R, ;(r). But
what is usually evaluated is!!

)

/ 2(Ro 1 () dz=N (,0). (2.11)

Then N(n,}) is multiplied by (an/27Z)? in order to
obtain this value for the unnormalized wave function
in 7 space, or,

® 2Z\ 1 agm\3
/ r2|:Rn,z<—>:l dr= <—> N ).
0 nag 27
However, for any radial wave function of the form

x°¢ (x), we substitute R, ;(x)=x¢a,:(x) into (2.11) and
obtain

0

/ 22 (b, 1 (2))2dx=N(n,l), (2.12)

where s=I. From Eq. (2.2), x=2Zr/na, and dx
= (2Zdr/nao) ; hence, the transformation of the left side
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of (2.12) yields

. 22N\ A
[ r2l+2l:¢n.l<___>J dr= <——) N(n’l) s (2.13)
0 na, 2Z

as the desired transformation, with A=# as the screened
Coulomb quantum number.

However, the magnitude of N()\,J) calculated with
ap=1.0 gives this value a significance that is partly
mathematical. Consequently, a physical argument is
needed to fix a value to ay, the second constant in the
general solution. This evaluation will now be presented
in the next part of this section and observational corre-
lations discussed in Sec. III.

Evaluation of the Second Constant in the Solution

The evaluation of the second constant in the solution
of the radial SE that is required to give a quantitative
usefulness to the normalization integral is based on the
requirement—as @ basic assumption—that the relative
charge probability density in 7 space, 72(Rn(7))? be
proportional to the relative charge probability density
calculated in x space, ¥?(Rn(x))? for s states.® Write
the s-state wave function in x space that has initial
value, R, ;(0)=h, as R, s(x; k). Then for 2=1.0,

2

W R (5 1.o>]2~%uen,s(x; LO)T

or (2.14)
Na2[Ry s (x; 1.0) P~72[ Ry s (x; 1.0) 1.

Now, for any value of % different from 1.0, Ras(x; %)
=hR,s(x; 1.0). Hence, for h=1/\, AR (x; 1/N)=
R, .(x;1.0). Substituting this into the right side of Eq.
(2.14), there obtains

B[ Raus(x; 1.0) P~r[ Ry s (x; 1/N) 2.

Hence, the relative charge probability densities for
bound states in 7 space will be proportional to those
calculated in x space if we choose the initial magnitudes
of the Coulomb-type wave functions in 7 space to be
equal to 1/\. Or, more specifically, we choose the second
constant in the series x-space solutions to be ag=1.0 and
then the desired 7-space solutions have ag=1/\ for all
n and /.

Definition of the Relative Occupation Probability of a
Screened Coulomb Bound State

With ag=1/X, the net effect on the magnitude of the
normalization, Eq. (2.13), would be to divide the right
side by A2. Therefore, the presently desired transforma-
tion of N()\,l,d,a) calculated in x space leads to

/ a3 /N

ao 2043
- (——) NN (\Ld,a), (2.15)
2Z



163

where the square root of the right side is the standard
normalization factor. In the CSCP solutions, for a given
! and a, as d — 0, N2 1N ()\) also — 0.

Consequently, we define the relative total occupation
probability of a screened Coulomb state, using (2.15), as

NHIN (A ],d,)

P, (\DA) =
i ) N (n,l)

(2.16)

In the next part of this section, we will use this as a
factor in the definition of an electronic p.f. But first
we will discuss the numerical values of the charge
probability densities, normalization integrals, and the
above relative screened probability of a state being
occupied.

Discussion of Numerical Results

We consider the 1s, 2s, 2p, 3s, 3p, and 3d states with
a=d, a=0, and a=d/2. (The d in 3d will be unambigu-
ous.) We use space steps Ax=10"2 and Ax=10"3 in
order to obtain four or more significant figure accuracy
as was obtained in the linear study® with Ax=10"4
With a=0, it was found necessary to use Ax=10"3 in
order to obtain this desired accuracy. The maximum
values of x used ranged from 10 to 25 as discussed in
Ref. 4. All calculations were done on a CDC-3800
computer. With the linear system of equations,® the
previous automatic search for one q.n. took about 12-15
min on a CDC-3600 computer using Ax=10—% With
the present cubic system of equations,*® twelve q.n.’s
can be calculated in about 4-5 min—including printer
time—using Ax=10"2,

In Ref. 9 are shown plots of x?(Ra,s(x))? versus 7/ao
for the 1s and 2s states. They show very clearly the
changes in the values of the charge probability density
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as the screening distance changes—when initial values
of the wave functions are equal. Table I of the present
report presents detailed information for the six states
considered here from solutions in which ZD=3an?/2
=fn, the mean position of the electron in the Coulomb
s states. First note that for s states with a=d, the
values of & (see below) are approximately equal to
1/e (=0.3679). In addition, the magnitudes of their
corresponding eigenvalues (~1/)\?) are also decreased
approximately by a factor of e.

Tables II, III, and IV give values of ®,,;(\) for the
cases A=D, A=0, and 4=D/2, respectively. Some of
these values are plotted in Figs. 1 and 2 as a function of
u=(ZD/awm?). With the equivalence of ag=1.0 in the
series solutions, Eq. (2.7), for the Coulomb wave func-
tions, the exact normalization integrals for said wave
functions, N (n,l), are equal to 2, 2, 2, 24, 9, and 720 for
the 1s, 2s, 3s, 2p, 3p, and 3d states, respectively. The
approximate values obtained numerically for these
Coulomb wave function normalizations* by the trape-
zoidal rule, integrating to Xmax=20 are 1.9¢®08;
1.9®1664; 1.99726920; 23.9995932; 8.99242730; and
719.816311, respectively.

The general property of interest concerning ®,, is
that for a given relationship between ¢ and d, the func-
tion ®,,; is essentially independent of # and ! for
u=(ZD/awm?)>2. Furthermore, at #=1.5, the spread
in values of ®,,; for the states considered is only four
units in the second significant figure, as is shown in
Table I, last column. However, for larger values of #,
this spread at #=1.5 may increase. But since the low-
lying states are the most important for most applica-
tions, this relatively small spread is very convenient: It
suggests the possibility of simple analytic fits. For ex-
ample, for #>1.5, exp[—1.5/«] falls in the upper part
of the “® band”; and for #< 1.5, exp[ — (1.5/%)™], with

TasLE 1. Details of CSCP solutions where ZD~3an?/2. CP stands for Coulomb potential.
The relative occupation probability ®,,:(A) is discussed in Sec. II.

State 4 d a An,t (*R)max? (%R)za? ZD/ao B, 1(N)
1s CP R ‘.o 1.0000 0.54134 0.44808= oo 1.0000
CSCP 1.802 1.802 1.6648 0.1979v 0.1681 1.5000 0.3933

CSCP 1.214 0 2.4676 0.1063 0.1016 1.4978 0.2764

2s CP oo oo 2.0000 0.38187 0.35694 N 1.0000
CSCP 3.55 3.55 3.3819 0.1360 0.1289 6.0030 0.3772

CSCp 2.483 0 4.8332 0.08221 0.08217 6.0004 0.2866

2p CP e e 2.0000 4.68880 3.21246 e 1.0000
CSCP 3.55 3.55 3.4014 0.5670 0.3946 6.0374 0.3630

CSCp 3.509 3.509 3.4200 0.5551 0.3911 6.0004 0.3597

3s Cp e oee 3.0000 0.30460 0.30238 oo 1.000
CSCp 5.3 5.3 5.0974 0.1079 0.1076 13.508 0.3728

3p Cp see cee 3.0000 1.37405 1.26514 v 1.0000
CSCP 53 5.3 5.1114 0.1658 0.1543 13.545 0.3650

3d CP o e 3.0000 115.649 65.5850 s 1.0000
CSCP 5.3 5.3 5.13175 4.657 2.654 13.599 0.3526

& CP results at 3n2/2(=Z7x/a0).

b Maximum value printed out.
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TasiLE II. Relative occupation probabilities ®,,;(A) from CSCP solutions with e¢=d, for 1s, 2s, 2p, 3s, 3p, and 34 states.
[(ZD/ao) = (Ad/2), with An,; from Ref. 5.]

1s 2s 2p 3s 3p 3d
p ZD zZD ZD ZD ZD ZD
(a =d) ay Py, 400 Doy 4(10 ‘I)zp 900 Pgs 9(10 ‘1)3;0 900 P3q
103 500 0.998 250 0.996 250 0.996 167 0.993 167 0.993 167 0.994
10% 50.50  0.980 25.5 0.961 25.50  0.961 1717 0.943 17.17  0.941 1717 0942
48 e e e e s e 8.515 0.884 8.515 0.882 8.515 0.882
30 15.15  0.935 8.016 0.875 8.017 0.875 o oo e e e e
24 e e e oo o e 4.531 0.781 4.531 0.779 4.531 0.779
16 8.516 0.882 4.531 0.779 4.531 0.778 s e e e e e
12 6.521 0.847 3.541 0.718 3.541 0.718 2.561 0.611 2.561 0.610 2.561 0.610
9 e e .o e ‘e .. 2.080 0.524 2.080 0.522 2.081 0.521
8 4.531 0.779 2.561 0.608 2.561 0.611 oo e v e e e
6 3.541 0.718 2.079 0.526 2.080 0.523 1.609 0.405 1.612 0.399 1.616 0.390
4 2.559 0.615 1.606 0.409 1.611 0.398 e e .- e o e
3 2.074 0.534 1.373 0.335 ‘e v 1.147 0.253 1.163 0.236 1.188 0.206
2 1.594 0.421 1.143  0.250 1.172  0.219 e e oo e s e
1 1.122  0.257 0911 0.147 0.980 0.104
0.5 0.889 0.146 e e e cee

m=~2 or 3, falls nicely in the lower part of the ® band.
If, now, we substitute for #, the mean ® function from
solutions with A=D/2 can be approximated by

&,,,(\,D,A)~®,(D)= exp[— (LZZ"ZY] ., (2.17)

with m=1 for DZ#,, and 1<m<3 for D<F,. Note
that the relative occupation probability of the state
represented by ®,,;is generally decreased approximately
by a factor of ¢ for that state for which ZD=3am?/2,
i.e., when the screening distance is nearly equal to the
mean position of the electron in the corresponding
Coulomb s state. For the case a=d, this is almost
exactly true. See Table I.

This latter observation suggests the CSCP inter-
actions with e¢=d yields the quantum analog of the
semiclassical statistical mechanical “excluded volume”
of Urey and Fermi.® As derived by Fowler, the equiva-

lent of ®, call it p, is written as

re{ ()]

where 7, is the radius of a mean volume for interactions
associated with all the free charged particles. Note here
that the e-fold reduction in p occurs when 7o=a?, the
classical Bohr radius.

Effective M aximum Bound State n* and the
M aximum Detected State 1,

Since the CSCP, like the Coulomb potential, yields
an infinite number of bound states, and since the ob-
served number of emission and/or absorption lines is
finite, it will be necessary to define quantities com-
parable to the “maximum bound principal quantum”
(g*) through the & function and search for correlations
with observations.

Tasre III. Relative occupation probabilities ®,,;(A) from CSCP solutions with a=0, for 1s, 2s, 2p, 3s, 3p, and 3d states.
[(ZD/ao) = (\d/2), with \,,; from Ref. 5.]

1s 2s 2p 3s 3p 3d
i ZD ZD ZD ZD zZD ZD
(a = 0) Qg Dy, 4ay Do, 4ay P2p 9ao Py, 9ay P3p 9ag [:29]
103 501 0.998 251 0.995 251 0.993 168 0.992 168 0.989 168 0.989
10? 51.00 0.963 26.00 0.930 25.99 0.928 17.66  0.891 17.66  0.891 17.66  0.899
48 cee .o .o cee ce oo 8.976 0.809 8.979 0.813 8.992 0.814
30 15.99 0.901 8.488 0.800 eee cee cee o cee cee
24 ce ce cee .. cee oo 4955 0.690 4.967 0.689 4.990 0.669
16 8.975 0.804 4.956 0.689 4981 0.690 cee oo oo oo cee s
12 oo cee ce cee cee cee 2.929 0.531 2.949 0.539 2.990 0.561
9 oo ce ce cee oo “ee 2417 0473 2.442 0473 2.493 0.501
8 4,957 0.687 2.930 0.537 2976 0.541 oo eee oee ce cee oo
6 e oo oe cee oe oo 1.898 0.384 1.932 0.383 2.001 0.415
4 2.934 0.534 1.900 0.382 1.976 0.384 ce .. cee ce cee E
3 cee oo ... cee ce ce 1.368 0.251 1.421 0.245 1.529 0.268
2 1.908 0.377 1.370 0.248 1.490 0.2395 <o X [ ve see
1 1.385 0.242 1.096 0.150 1.268 0.1235
0.5 1.117 0.143 cee ces oo ees
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The value of ZD/am? where ®=1/¢ (above) certainly
suggests the definition of an effective maximum bound
state—we will call it »*. From Fig. 1, the expression
for #n* can be written

w*=CZD/ay, (2.18)

where C=0.67 from solutions with 4 =D; C=0.54 from
solutions with 4=0; and C=0.59 from solutions with
A=D/2.

What one means by the maximum detected level
depends on two important experimental conditions,
viz., the ability to resolve closely spaced spectral lines
and the composition of the sample observed. With the
present state of the art, we will note that if #~0.1, we
obtain an expression given by

nnt=ZD/ay, (2.19)

which corresponds to the upper limit of the expression
obtained by Ecker and Weizel' for the maximum bound

TaBrLE IV. Relative occupation probabilities ®,,;(\) from
CSCP solutions with a=d/2, for 1s and 2s states. [ (ZD/ao)
= (Ad/2), with \,,; from Ref. 5.]

d 1s 2s
( d) ZD ZD
2 o Py 4ao Do
108 501 0.997 251 0.995
102 50.67 0.974 25.67 0.948
32 cee cee 8.694 0.847
30 15.68 0.915 cee cee
16 8.694 0.847 4.721 0.719
8 4.719 0.721 2.759 0.545
4 2.749 0.551 1.782 0.381
3 2.259 0.478 oo oo
2 1.769 0.379 1.283 0.248
1 1.276 0.238 1.024 0.149
0.5 1.026 0.138 (X oo

principal quantum number. We will also test this ex-
pression with observations.

Next, however, we will discuss the basic quantity
sought in this investigation, namely, a definition of a
finite electronic partition function based upon the
screened Coulomb interaction of the bound electron
with the nucleus.

C. Definition of a Finite Electronic
Partition Function

The right side of Eq. (2.15) describes the total
probability of an hydrogenic state that has the second
arbitrary constant of the solution set equal to 1/A,
where N is the CSCP quantum number for the state.
And since the change from a Coulomb state to a screened
Coulomb state reflects the interaction of a bound elec-
tron with the external particles of the ion atmosphere,
the relative normalization of the screened Coulomb state
will be of interest in expressing the relative probability
that the bound electron in the %,/ state will interact
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1.0
L ZD IS 9=d
0.8@”:10\) Vs ge 2s
| for n=land 2
0.6_o=d,%,and 0]
IRy
~ 04—'2‘5}(J 4 4
= e
|
< 03—
o4
o2l [l
7= 3007/22
0.1 IR Bl 1
"0 | 2 3 4 5 6
u=-28
a, n?

Fic. 1. Logio ®,,1(\) versus ZD/am? from CSCP solutions with
a=d, d/2, and 0, for 1s, 25, and 2p states. The case a=d/2 is
shown only for 1s and 2s states. Note 1/¢~0.368. The mean posi-
tion of an electron in a Coulomb s state is 3apn?/2Z. Hence, #=1.5
is the mean position for all s states. Note the small deviations of
the p and d states at #=1.5.

with a neighboring particle or particles—or, a relative
probability of finding an electron occupying that state.
And since the screening of interest depends on the time-
averaged positions of the neighboring particles, the
mean effect on a system of particles will be expressed
by a modification of the Boltzmann factor; or we de-
fine—for a given D and A—,

QaoSCP=23 ®,:(\,D,4) exp[—Ex'/kT], (2.20)
n,l

where ®,; is the above function of the relative occupa-

1.0
0.8~

0.6

F16. 2. Logio ®n,1(A) versus ZD/am? from CSCP solutions with
a=d and 0 for 3s, 3p and 3d states. The 3s solutions are near the
1s and 2s solutions shown in Fig. 1 for #<1.5. The 3d curve with
a=0 was tested with more accurate calculations using Ax=10"%,
but the 3%, difference between #=2 and 3 was not altered.
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tion of the CSCP state to the corresponding Coulomb
state, and where the eigenvalues E,’ are given relative
to the ground-state energy taken as zero. From the
results in Ref. 5, the standard Boltzmann factors will
essentially remain unchanged except for states near the
continuum, where the ®,,; decreases very rapidly.

Magnitude of the CSCP Partition Function

With a given screening distance, we consider the
approximate analytic ® function. We can obtain a
value for a hydrogenic p.f. by either of three approaches,
similar to those discussed by Fowler®:

(1) Sum the terms in the p.f. until the value of the
terms fall outside the accuracy desired.

(2) Approximate the sum with an integration over
the range #=0 to n= o, using m=1 between #=0 and
n=n*; and using m=2 or 3 from n* to ; or

(3) If »* is equal to or less than, say, 10, sum from
n=1 to n=n* and integrate the rest of the way.

The approximate integral form of the p.f. can be
derived for the very useful hydrogenic approximation to
the many-electron atom—analogous to that obtained by
Fowler—by using the analysis of the gamma function
given by Copson.!* There results

0;¢'=w;+5.531X 10,1 (Z' D)3 exp[ —I;/kT7], (2.21)

where w; is the ground-state degeneracy of ion 7, with
charge 7 and with ionization potential I;; and Z’ is the
net core charge where Z'=j+41. In this derivation, 1.7
was used instead of 1.5 in the exponential term of Eq.
(2.17) in order to obtain better agreement with solu-
tions with 4 =D/2 in the region where ®=1/e.

Discussion

In any system where the total sum over states—the
complete partition function—can be separated into
translational, electronic, vibrational, etc., states, the
above definition of Q.,CSCP the bound electronic con-
tribution, is a natural generalization that reflects the
first-order interaction of the bound electron with the
surrounding particles. Tolman,'® in discussing the long-
time behavior of nonisolated systems, derives an ex-
pression for the equilibrium probability P, of finding
any given state » with energy E,, that is given by

Po=ppi=CleFEn (2.22)

where pay, is the density matrix; C’ and B are parameters
having values independent of the state 7; and the
quantities E, are the true energies for the various energy
eigenstates #. Of course in equilibrium, 3=1/kT. Now,
however, in the CSCP interactions of bound states, the
relative occupation ® represents a quantum analog of
2 E. T. Copson, Introduction to the Theory of Functions of a
Complex Variable (Oxford University Press, London, 1935).

18 R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, London, 1938).

163

C’ in (2.22). Note that with a given 4, for bound states
where D> 7,,® is functionally independent of the state,
n, I, but the magnitude of ® lies between 1 and about
1/e for a finite screening distance D. Further, the ®’s
cannot generally be normalized by setting Q.= 1.0.
With systems of bound and free electrons in ionization
equilibrium, normalization, if desired, for all the pos-
sible electronic states would have to be relative to

QC8CP+4 (0, FD=1

where Q.,FP is the p.f. for free and/or “mobile” elec-
trons satisfying Fermi-Dirac statistics. At high densities,
“mobile” electrons behaving as ‘““free” particles have a
classical analog in that a particle acted upon by no
external forces and a particle upon which the sum of the
external forces is zero, behave in the same manner.

Clearly, the partition function for bound electronic
states given by Eq. (2.20) does not contradict any basic
statistical mechanics—it generalizes the previous defini-
tion to ome that reflects the mean interaction of bound
electrons with neighboring particles. And the present
modification is based on solutions of the SE. We can
summarize by saying that ®,,;(\,D,4) represents the
probability relative to that of an isolated atom (ion),
for an electron to occupy the (n,) bound electronic
state with energy E, when the bound electron interacts
with the nucleus and neighboring particles via a screcned
Coulomb potential, the screened Coulomb potential
being characterized by an effective screening distance
D; by an effective mean minimum ion atmosphere
radius 4 for the neighboring particles; and by a di-
electric constant n for the first-order effect of neutral
atoms or molecules. Here, of course, we have as:umed
7=1.0.

In the next section we discuss observational correla-
tions with the relative cccupation probability of a
screened Coulomb bound state.

III. CORRELATION OF SOLUTIONS
WITH OBSERVATIONS

A direct test of screened Coulomb effects is in the
observations of relative line intensities such as those
reported by Ivanov-Kholodni and Nikol’skii,'**5 who
report ‘. . . In prominence and chromospheric spectra,
it has been found that near the series limit the lines do
not merge because of broadening and convergence, but
instead they disappear because of a rapid fall in in-
tensity. As a result, we fail to observe the last few lines
of the series, even though their half-widths are smaller
than the separation between them.” It has been shown!®
that this “rapid fall in intensity” is indeed compatible

14 G. S. Ivanov-Kholodyni, G. M. Nikol’skii, and R. A. Gulyaev,
Astron. Zh. 37, 799 (1960) [English transl.: Soviet Astron.—
A. J. 4, 754 (1961)].

15 G. S. Ivanov-Kholodyni and G. M. Nikol’skii, Astron. Zh.
38, 4§§ (1961) [English transl.: Soviet Astron.—A. J. 5, 339
(1961)7.

18 C, A, Rouse, Nature 212, 803 (1966).



163

Tasie V. The effective maximum bound state »* and the
last discrete level #, at three points in the solar photosphere and
one point in the chromosphere. The photospheric points are from
a solar model (R) and are compared with the Utrecht (1964) model
of the photosphere (U). The radius of the mean atomic volume is
70, with #*2=0.59Z70/ao, and #m2=Zro/ .

k T P, p 70

(km) (°K) (dyn/cm?) (g/cm®) (cm) #*(r0) #m(ro)
R --- 5775 13.2 26677 1.28°% 12 16
U 46 5735 13.3
R .- 5177 3.65 22477 1.35°% 12 16
U 104 5100 3.36
R --- 4577 1.05 1.8577 1446 13 16.5
U 173 4590 1.18
R ... 5150 0.11 1.0® 8226 30 39
U 635 5125 0.14

a Note: The minimum temperature in the Utrecht model is 4500 £50°K
at £ =197 km.

b Model predicts H1z as the maximum Balmer line in absorption. C. E.
Moore, M. G. J. Minnaert, and J. Houtgast [Natl. Bur. Std. (U. S.)
Monograph 61, (1966) ], conclude that of the Balmer lines of hydrogen,
‘. . . His, His, and Hu are measurable. The line His is certainly not
seen; . . ..

with the present relative occupation probabilities when
applied to the disappearance of hydrogen lines in the
solar photosphere as well as the chromosphere—pro-
vided that at low densities also, the effective screening
distance is correlated with 7o and with the present
CSCP solutions with 4=D/2. The correlation of 7,
with D at liquid or higher densities was expected,!™%
but this is the first known evidence for this correlation
at low densities.

Tables V and VI are the updated versions of Tables 1
and 2 in Ref. 16, that are based on the most recent
solar model and ionization equilibrium equation of
state (IEEOS) calculations.? In particular, the ap-
proximate analytical CSCP p.f. given in Eq. (2.28)
was used in the IEEOS for the mixture. The tables are
self-explanatory. The solar model was calculated as re-
ported in Ref. 19 but with several recent improvements.

The references of Ref. 16 show that #*=12 and
nn=16 are in agreement with these defined quantities
in the solar photosphere; and #»*=230 and 7,=39 are
the corresponding quantities in the chromosphere. Note
in Table VI that the present screened Coulomb result
for #,, in the chromosphere is in exact agreement with
the value obtained with Mohler’s empirical formula;
and all formulas for #, yield good agreement with
Mitchell’s chromospheric observations.?

17 D. J. Thouless, The Quantum Mechanics of Many-Body Sys-
tems (Academic Press Inc., New York, 1961).

18 C. A. Rouse, Astrophys. J. 139, 339 (1964).

1 C. A. Rouse, (a) University of California Laboratory Report
No. UCRL-7820, Rev. 1, 1964 (unpublished); (b) Rev. 1, Supple-
ment, 1955 (unpublished) ; Bull. Am. Phys. Soc. 10, 1 (1965).

20 1. Pines and P. Nozieres, The Theory of Quantum Liquids
(W. A. Benjamin, Inc., New York, 1966).

2 C, A. Rouse, (a) Astrophys. J. 134, 435 (1961); (b) 135, 599
(1962); (c) 136, 636 (1962); (d) 136, 665 (1962); (e) 137, 1286
(1963). See also Ref. 18.

2 S, A. Mitchell, Astrophys. J. 105, 1 (1947).
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TasLe VL The effective maximum bound state calculated with
the Debye radius DR, and the last discrete level #m, calculated
with the Inglis-Teller formula, 7, (I—7), and with Mohler’s em-
pirical formula 7, (M). Three points of Table I are shown here,
where #* (ro) is repeated.

DRP N,
n*(ro) (cm) n*(DR) (electrons/cc) m (I —T)® nm (M)
12 9.04-5 101 1.6518 22 20
12 1.50~ 130 5.112 26 24
30 9.03 318 1.511 41 39

a Note: Inglis-Teller formula (Astrophys. J. 90, 439 (1939)]:
7.5 lognm =23.26 —logNe
Mohler's formula [Astrophys. J. 90, 429 (1939)1:
7.5 lognm =23.06 —logN..
b DR taken from Nature 212, 803 (1966).

Finally, note that if the Debye radius is replaced by
7o, the upper limit of Ecker and Weizel’s g* would be in
agreement with #,, in the present solar observations, but
not with the same interpretation.

Further evidence of the effect of screening on the
disappearance of the Balmer lines of hydrogen even at
very low temperatures—demonstrating a dominate
density dependence—is in the experimental results of
Shrum.2? With an electric discharge through nearly
pure hydrogen at 7=21°K and a pressure of 5 mm Hg,
Shrum was just able to detect the H. s line in the
Balmer series. Assuming that the pressure is given by
P=NEkT, N, and 7, can be determined. With this 7o, the
maximum detected level is given by #.’=ro/ao and
yields #,29.4 or 9. Considering that the electric field
acts as an additional perturbation and multipole inter-
actions have not been included in the present calcula-
tions, this value represents a good agreement with
observation.

This latter agreement points up the fact that the
derivation of the present ® function was not based upon
the assumption of local thermal equilibrium. (The
present screened Coulomb potential implies only a time-
averaged effect of the neighboring particles.) One
should also note that Berg, Ali, Lincke, and Griem? in
their study of Stark profiles of hydrogen and helium
lines from shock-heated plasmas, state that in dense
plasmas with temperatures in the 1-10-eV range, “. . .
Stark profiles depend almost exclusively on the elec-
tron density, and are only weak functions of the
temperature.”

Consequently, the fall in intensity of spectral lines
and their Stark profiles give us probes for ion densities
and electron densities, respectively—both essentially
independent of an assumption of thermodynamic
equilibrium.

As a final application, we consider the calculation of
the observed ionization potential of hydrogen as an
illustration of the lowering of the ionization potential

23 G. M. Shrum, Proc. Royal Soc. (London) A105, 259 (1924).
Also note the observations of R. W. Wood [Proc. Roy. Soc.
(London) 97, 455 (1920)] who wrote “If the pressure is gradually
raised, the higher (Balmer) members disappear in succession. ...”

% H. F. Berg, A. W. Ali, R. Lincke, and H. R. Griem, Phys.
Rev. 125, 199 (1962).
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of an atom due to screening. Since a depression of the
continuum is equivalent to an increase in the energy of
the ground state, let us consider the change in the
ground-state energy. In the Appendix of Ref. 5, it is
shown that for #n<d, the energies of the low-lying levels
of a hydrogenic atom (ion) are given by

Z2uet 1J Zuet  ap

2w w2 @ (DA n

=
n,s

3.1

Hence, the increase in the ground-state energy is given
by

AE, ,~Z¢&/(D+A), (3.2)

since N/n=1 and 7#*=aue®. Consequently, for large
screening distances, the energies of all states with small
» are increased by Ze?/ (D4 A), approximately.

We now consider explicitly the energy change for the
1s state. The maximum detected levels of hydrogen in
the solar chromosphere? are about #,=38 to 40; or,
this indicates that for 7, =38, ro="%.n2ao=1444a,. Sub-
stituting D=7, and 4 =7¢/2 into Eq. (3.2) one obtains

AE1,=¢*/1.570=1.256"2 eV.
Then from Eq. (3.1),
4 82

ue
Eis(0,=38)~ ——+ =—13.592 V.
272 1.57,

For 7,,=40, similar calculations lead to a ground-state
energy of
Eis(n,=40)=—13.594 eV.

The accepted ionization potential for hydrogen is 13.595
eV. The reader is also referred to the recent calculations
of Garcia and Mack?® of the limiting hydrogen level
using Dirac energies and a quantum-electrodynamical
correction.

Another effect that would decrease the ionization
potential is line broadening.’? However, the only
quantitative change in Eq. (3.1) would occur relative
to states near the continuum where the energy added
during a perturbation would free the electron, i.e.,
perturb it to a positive energy state. Otherwise, broaden-
ing of states near the continuum limit—particularly for
states with #,>>D—can only lead to merging of states.
These merged bound states still contribute to the p.f.
even if only with diminishing effect because of the
“guillotining” due to ®,,; in screened Coulomb inter-
actions. Note that line broadening is completely con-
sistent with the present results since the neighboring
particles that produce line broadening are the same
particles whose time-averaged effect lead to a screened

2% J. D. Garcia and J. E. Mack, J. Opt. Soc. Am. 55, 654 (1965).

26 M. Baranger, in Atomic and Molecular Processes, edited by
D. R. Bates (Academic Press Inc., New York, 1962); H. R. Griem,
A. C. Kolb, and K. Y. Shen, Phys. Rev. 116, 4 (1959); H. R.
Griem, ibid. 128, 515 (1962).
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potential. This includes neutral particles through multi-
pole interactions as well as charged particles.

IV. SUMMARY AND CONCLUSIONS

Some numerical solutions of the Schrédinger equa-
tion with the complete screened Coulomb potential
have been presented with tables and graphs of relative
occupation probabilities ®,,;(\,D,4). Although the SE
with a screened Coulomb potential is not analytic, ®
can be described by a simple, analytic function for a
wide range of interesting values of the screening dis-
tance D.

Since the screened Coulomb potential yields at least
as many bound states as the Coulomb potential, the
concept of a maximum bound principal quantum num-
ber is replaced by a definition of the relative occupation
probability of a screened Coulomb state ®,,; An
effective maximum bound state and a maximum de-
tectable level are defined and correlated with the
disappearance of hydrogen lines in the solar atmosphere
and in laboratory hydrogen at 21°K.

This & function is used to modify the Boltzmann
factor in the standard form of the partition function for
bound electronic states. This is analogous to the equi-
librium probability of a state derived by Tolman for
nonisolated systems.

The very good agreement with the maximum ef-
fective bound state and the maximum detected levels
in the solar atmosphere and the good agreement with
the disappearance of Balmer lines in very low tempera-
ture hydrogen support both the definition of the
relative occupation probability derived here and the
fact that the effective screening radius is correlated
with the radius of the mean atomic volume at low
densities as well as at high densities.

Furthermore, since the derivation of the screened
occupation probability of a state is independent of any
assumption of thermodynamic equilibrium, the present
CSCP partition function would be useful for calcula-
tions of phenomena that deviate from local thermal
equilibrium. The good agreements with the observed
levels in the chromosphere and in laboratory H at
21°K support this.

Finally, the effect of screening on the lowering of the
ionization potential of an atom is illustrated by the
calculation of the observed ionization potential of
hydrogen.?

27 Note added in manuscript. The reader’s attention is called to
the fact that the basic theoretical argument used to derive the
probability ®,,; is that the electron-charge probability density
should change under screening. This phenomenon—arrived at in-
dependently here for monatomic matter—appears to be measur-
able through the isomer shift (where the nucleus emits a gamma
ray) with the Mossbauer effect. Note the following published
reports:

(1) O. C. Kistner and A. W. Sunyer, Phys. Rev. Letters 4, 412
(1960).
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(2) S. DeBenedetti, G. Lang, and R. Ingalls, Phys. Rev. Letters
6, 60 (1961).

(3) L.R. Walker, G. K. Wertheim, and V. Jaccarino, Phys. Rev.
Letters 6, 98 (1961).

(4) J. H. Wood, Phys. Rev. 117, 714 (1960).

(5) D. N. Pipkorn, C. K. Edge, P. Debrunner, G. De Pasquali,
H. G. Drickamer, and H. Frauenfelder, Phys. Rev. 135,
A1604 (1964).

(6) R. Ingalls, Phys. Rev. 155, 157 (1967).

(7) R. Ingalls, H. G. Drickamer, and G. De Pasquali, Phys.
Rev. 155, 165 (1967).

(8) 1. B. Bersuker, V. I. Gol’danskii, and E. F. Makarov, Zh.
Eksperim. i Teor. Fiz. 49, 699 (1965) [English transl.:
Soviet Phys.—JETP 22, 485 (1966)].

(9) J.-P.Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and
G. T. Emery, Phys. Rev. Letters 17, 809 (1966).

(10) H. S. Moller and R. L. Mossbauer, Phys. Letters 24A, 416
(1967).

Relative to the author’s formulation to the ionization equilib-
rium equation of state at high densities [C. A. Rouse, Astrophys. J.
139, 339 (1964); Naval Research Laboratory Report No. NRL
6594 (unpublished)], the experimental results reported in above
references (5), (7), and (10) are of particular interest.
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Low-energy electron-scattering phase shifts and bound-state energies of neutral atomic potentials are
computed using the Fredholm method. The relativistic and nonrelativistic results are compared. It is con-
cluded that relativistic corrections to the phase shifts are unimportant for the potentials considered here.

I. INTRODUCTION

ECENTLY,!? it has been pointed out that rel-
ativistic effects in the scattering of low-energy
electrons from heavy atoms can be significant. The
reason for this seems to stem from the fact that for some
atomic models the electron can penetrate far enough
into the atom to be accelerated by the nuclear charge to
a high speed. Under such circumstances, one might
expect classically some modification of the elastic
differential scattering cross section. That such reasoning
also applies to a quantum-mechanical treatment has
been demonstrated by Browne and Bauer,! who have
numerically computed phase shifts and differential
cross sections for several atomic-potential models, using
Schrodinger’s equation and the second-order relativistic
wave equation.
It was later discovered? that for potentials represent-
ing singly charged atoms, the binding energy of the

* Research supported by the U. S. Army Research Office
(Durham).

1 H. N. Browne and E. Bauer, Phys. Rev. Letters 16, 495 (1966).

2 L. Spruch, Phys. Rev. Letters 16, 1137 (1966).

3 M. Rotenberg, Phys. Rev. Letters 16, 969 (1966).

valence electron was different for the relativistic and
nonrelativistic equations. Thus, when the potential was
adjusted so as to obtain the same values of the binding
energy, the relativistic corrections to the low-energy
scattering phase shifts were found to be unimportant.
Qualitative arguments? based on effective-range theory
tend to support the view that for neutral atoms regions
of strong interaction need not lead to significant
relativistic effects, provided only that there exist an
ionic bound state of small binding energy.

In the present work, scattering amplitudes are
computed for the Schrédinger and Dirac equations for
the case of a netural atomic potential, using the
Fredholm method. These amplitudes are used to find
both the phase shifts and bound states, and are of the
form predicted by effective-range theory. The results
(Sec. II) indicate that for a wide range of potentials,
relativistic corrections to the phase shifts are unimport-
ant for low-energy scattering; however, the binding
energies, which were large compared to scattering
kinetic energies, were significantly different in the
relativistic and nonrelativistic treatments.



