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Excitons in Metals: In6nite Hole Mass
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The optical conductivity is evaluated for interband transitions between a Qat valence band and a parabolic
conduction band. The conduction band is filled with electrons to a Fermi energy pg. The conductivity is
calculated assuming that the electron-hole interaction is attractive, static, and short range. The final-state
interactions between the electron and hole cause a divergence in the conductivity at the interband threshold.
This divergence appears to go as a power law. For this case of an infinite hole mass, the exciton binding
energy vanishes, since the singularity in the scattering amplitude occurs just at threshold.

I. INTRODUCTION

'QREVlOUS calculations~ ' have discussed the im-
portant contribution of 6nal-state interactions to

the interband optical transition in metals or heavily
doped semiconductors. The electron-hole interactions
can, in some cases, signi6cantly alter the shape and
strength of the interband absorption threshold. Virtual
plasmon excitations, introduced by the dynamic
screening, are also an important source of 6nal-state
interactions. '

The present calculation is concerned with the 6nal-
state interactions which contribute to a specific and
simple type of interband transition. This has the
valence band Rat and infinitely narrow —i.e., the hole
mass is infinite. This band is separated from the con-
duction band by a gap E&. The conduction band is
parabolic, and is ulled up to a Fermi energy py. The
electron-hole interaction is assumed to be attractive,
static, and short-range. Our neglect of plasmon eGects
arising from dynamic screening means that the model
does not describe a real metal. Yet the calculations may
still have applications in interpreting the soft x-ray
spectra of metals. These considerations are discussed
in Sec. IV.

The present model is interesting because the exciton
problem is directly related to the donor problem for
an ionized impurity. In the conventional calculation
of the electron's self-energy from ionized impurity scat-
tering, ' the exclusion-principle factors all cancel out.
Any bound state, if one exists, must occur beneath the
bottom of the conduction band. Yet in the exciton case,
exclusion-principle eGects do limit the final-state scat-
tering. ' This causes logarithmic singularities in the
electron-hole scattering amplitude, which suggests the
existence of a bound exciton state just below the inter-
band threshold. The present calculation investigates in
detail this disparity between the exciton- and donor-
state calculations.
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Ke have found that the exciton binding energy is
zero when the hole mass is infinite. That is, the singu-
larity in scattering amplitude occurs right at the inter-
band threshold. The interband oscillator strength
diverges as an inverse power law at threshold. The
strength of this power-law divergence is determined
by the strength of the coupling constant for electron-
hole interactions. These results appear to be the exact,
indnite order, solution which is deduced from our re-
sults, which extend to third order.

Since we are primarily concerned with the analytical
properties of the various logarithmic divergences, it was
decided to use the contact model for the electron-hole
interaction. This enormously simplifies the investiga-
tion of the singular characteristics of the anal-state
interactions. The attractive electron-hole interaction
is characterized by a constant & [6 1Vr

I VOI] up to a
cutoff energy $o. In terms of these constants, the solu-
tion to the optical conductivity has the form

y
26

e(co—(u,),
N 07—Cd ~]

where co,=Eg+JJJ is the threshold frequency. This
result has the power-law divergence discussed above.
Our solution is just valid to "logarithmic accuracy. "
This means that only the important powers of the
parameter

(1.2)

are retained when investigating the logarithmic diverg-
ences of the electron-hole scattering function.

In the solutions to the Kondo problem, the phrase
"logarithmic accuracy" also implies that one does not
keep track of the phases of the logarithmic singularity.
This has led to a controversy' over the position and
nature of the Kondo bound-state pole. This does not
happen in the present calculation. By using a linear
vertex equation, it is quite easy to keep track of the
phases. A bound state, if any existed, would have the
pole falling on the real co axis at co &co,. In fact, it appears
that one can similarly 6nd the phase of the scattering
integral in the Kondo problem by using a linear vertex
equation. This possibility is discussed in Sec. IV.
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The optical properties of a metal are determined by
the dielectric function"

e(co) = 1+4sricr(co)/co. (2.1)
0

The Kubo formula, is used to evalua, te the conductlvlty
o(co) For an isotropic system at zero temperature, ' "J ~

(2.2)o(~)=-
3k)

F ' t band transitions, mc assume that the y opera-
tol ln j opclR cs b t%'ccn Bloch functions. This matrix

1 t is taken to be independent of energy, as ls
done in Inost calculations. The correlation fun Ctlon
(2.2) is most easily evaluated in the Matsubara for-
malism. "This mill be discussed Grst for an arbitrary
set of bands, Rnd then for the particular example o
interest.

Denote C~q~ Rs the clcatlon oper'Rtol fol an clcctI'on
ln Band g vrlt momen u

'
h mentum k. We define the correlation

function

«o*"'(Li (o),i (&)j).

P

II(ico) =— P dr o'"C
P' 1t,1r. ,sy'nm,

y(T,C;i,(r)C;g'(r)C i, (r')C.i, t(r')). (23)

The retarded form of this correlation function II,.c(co)
*

bt d by setting ico~co+ib In. ter.ms of this re-
tarded function, the interband conductivity is

o'(P)'
Reo (co)= A (co),

BN5$2

A (co) = —2 ImII„c(co) .
The function A (co) has a simple physical interpretation.
The correlation function (2.3) can be evaluated by a

t' xpansion as in Fig. 1, where dotted lines
th 1 t -h 1 t ti . If ign th

ln erac.ion, ' " lven
' t t'ons then the correla, tion function is just given
by the first term LFig. 1(a)j.Call this function II (ico),
and

A c'&(co) =- —2 ImlI„ccoi(co),

{2.4)2 c'&(co) = 23. Q
~,.(„,,sr,.)„s {2sr)'

X8(Ec(k)+co—E;(k)) .
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I Io. 1. Some types of correlation functions rvhich contr1bute to
the 6nal-state interactions. The dashed lines represent the static,
attractive, electron-hole interactions.

The function A c@(co) is proportional to the joint density
of states, Specihcally,

~"'(~)=~i(~)

Previous calculations~' of the optical properties of
metals have RssuIQcd that thc tI'RllsltloIl pl obabjLtlty

proportlor al to the joint density of states. This is no18 PX'O 0
longer adequate when 6nal-state Interactions a
important, ' since then A(co) is quite different than

Thcsc equations simplify %'hcn Rppllcd to thc p cr sent
problcIQ. Fol a contact 1Dtclactlonq thc retarded cor"
relation fuDctloD 18

(2.5)

where $ is the conduction electron's energy as measured
from its Fermi surface. The vertex function I'(&,co) is
generated by the diagrammatic expansion of I'ig. i.
This procedure is discussed in the next section. Thc poles
and structure of I'($,co) determine the nature of the
lnteI'bRnd Rbsolptlon. This 18 the lntcrestlng Rspcct of
optical experiments, since one directly measures t e
SCRttCI'lng funCtlOD.

A. Perturb@, tion Exyansion

%'e begin the discussion of higher-order interactions
b examining their contribution to a perturbation ex-
pansion for the corrclatio11 function. A solution to the
correlation function is given in the folio@ring sections.
The perturbation-series result is useful for providing a
qualitative introduction to the cGccts of these higher
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interaction terms. It also provides an expansion against
which to check the exact result after it is obtained.

As discussed above, the perturbation-series results
will only be evaluated to logarithmic a,ccuracy. The re-
sult is a power series in L(oo) given in (1.2). When the
electron-hole potential is an attractive Coulomb poten-
tial vQth Felmi Thomas scrccnlng, then the coupling
parameter is

I1=(r,/»)»(1+6/r. ),
where r, is the standard density parameter. It was
shown in Ref. 1 that the contribution of theladdcr
diagrams to the interband absorption may be ex-
plcsscd Rs

h.s(to)
2 I,(to) =A &o& (to) 1—

1+At(oo) I

Ar(&o) = As(to) = L(oo) —i'd, 8(to —s&,),
A tol(oo) =2rrg(re —to„) . (3 2)

Expanding (3.1), and ignoring the terms ImA. , gives

Al, (to) =2 &o&(ro) {1—2L(to)+3I.(oo)' —4L(oo)' }.
The terms in the expansion origina, te from the ladder
diagrams in Figs. 1(a), 1(b), 1(c), and 1(e). The term
—2L(to) corresponds to Fig. 1(b). Since it is the only
vertex term of order 6, this logarithmic singularity can-
not be canceled by any other diagram. The 6rst im-
portRnt hlghcr-ordci lntcrRctlon 18 the cross diagram
Fig. 1(d). When the hole mass is infinite, this contributes
to the absorption an a,mount

A rs ———A &o&(oo)L(a&)'.

Note that this only partiaHy cancels the 31.'(co) con-
ti'lblltloll fl'OII1 Flg. 1(c). Tile third-order diagrams (e)
to (j) in Fig. 1 contribute in units of L'. —4, + 4„—ss,

—,', —,'. A consideration of all terms in Fig. 1 from (a) to
(j) gives

A(oo) =A "&(oo){1—2L+2L' —-', L' }. (3.3)

It is evident that these logarithmic singularities
remain in the conductivity even when higher-order
interactions are included. When the hole mass is 6nitc,
the nonladder diagrams do not contribute logarithmic
singularities of the sa,me order as the ladder terms. This
is what makes the infinite hole mass an interesting
special case of study, since here all of the diagrams of
the kind in Fig. 1 from (a) to (j) contribute significant
logarithmic singularities. In the impurity scattering
calculation, the logarithmic singularities from the
nonladder diagrams exactly cancel those from the
ladder terms. This obviously does not occur in the
present exciton calculation.

Vertex corrections such as Fig. 1(k) have not been
included in this analysis. In this exciton problem, they

To logarithmic accuracy, the terms appearing in (3.1)
Rrc

do not contribute logarithmic singularities of the type
in (3.3). This diagram was important in the recent
analysis by t.uttinger and Kohn'i of a superconductive
instability in low-temperature electron gases. The
present ca,lculation divers from theirs in several re-
spects. Since both of their partide propagators are elec-
trons in the Fermi sea, they have a symmetry which is
lacking in the electron-hole problem. Also, they only
found lnstRbllltics ln states of odd angular momentum)
while we are explicitly concerned with relative s states.

The series in (3.3) appears to be

s '~= 1—2L+2L' —-', L'+ (3.4)

Of course, one cannot guarantee that the series (33)
is an exponential without evaluating the series to RH

orders. However, the solution of the scattering integral,
which ls glvcn below, Rlso suggests that this ls thc col-
rect series limit, . Thus we proceed on the assumption
that the series (3.3) is just an exponential. Since the
correlation function is an analytic function of M, the
real and imaginary parts are related. Using the defini-
tion of L(ro), this further suggests that our result is

A(oo)=h 'Im

The distressing observation tha, t this is negative for
6&-', appears to be an artifact of our approximation,
as is discussed below. Note that the result does become
A to&(co) as 6~0. The divergence at the critical fre-
quency is a power law, rather than logarithmic. This
result could only be obtained from an infinite-order
solution, which in this case has only been guessed. It
also showers that there is no bound. state in the infinite
hole mass case. Essentially, the binding energy has be-
come zero since the singularity occurs precisely at

3. Solution to the Vertex Equation

%C now proceed to solve for the correlation function
(2.5). For the irreducible interactions of interest, it is
easy to show tha, t one can write a, linear vertex equation

F(&,&o) = 1+

The potential V is the sum of all irreducible interactions.
For the present calculation, we have retained contribu-

"J.M. Lutttuger, Phys. Rev. 150, 202 (1966); W. Kohu sud
J. M. Luttiuger, Phys. Rev. Letters 15, 524 (1966).

+26%10(M—M~)

ko (3.5)

8(&o—&o ) l

~ (ro) =- — — - sin(2hrr) .
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ti.ons to V Up to third order in 6

5+5 &—+&c'l
V($, f',&o) = —6+6' ln

Evaluating (3.10) and. (3.11) up to order 0 ' gives

f(),a))=1—iV L2 — —L2(—1) (3.13)

6'Lg— —LPL2 — !,(3.7)
5+8 ~+~. 5+8 &—+~.& A(~) =L(~)+ L{~—)'+ L(~—)'+o(~'). (3.14)

where L2(s) is the Euler dilogarithmic function

(3.8)I'(& ~)= &(~)f(&,~),
with the additional normalization requirement that

f(b,~)=1, (3.9)

for some value of $= $1. Then these equations can be
manipulated to give

r(~) = I/II+A(~)3

The imaginary parts of V are found by the condition,
dctcrmlncd by causRllty thRt the iIQaginarf pRlt of co

be in6nitesinlally real in the region of branch cuts. The
first term 6 is the direct interaction LFig. 1(b)). The
second term is the exchange interaction LFig. 1(d)j.The
terms of order 63 are the sum of the three interactions
h, i, and j in Fig. 1. The result (3.7) is derived in the
Appendix.

The vertex equation (3.6) is solved by a slight modi-
fication of Noyes's" method. Define two functions ](r0)
and f(g,&o) by

The denominator series appears to be exp(L), while
the numerator we take to be sinh(L). Assuming that
we have correctly guessed the result, we get

II(i0)=—L1—exp( —2L)j,
2A

(3.16a)

2d-

II(s)) =—1——
(v —ape

(3.16b)

The singularity occurs at co=co.. There is no bound-
state pole, but just R cut which starts at ~=+,.

Equations {3.8) to (3.10) have also been solved for
m&ao, . Here one must keep track of both the real and
lIQaglnary pRl'ts of thc various functions. It ls con-
venient to set $1=~—at.+h in {3.9). The calculation is
tedious, but the result, correct to logarithmic accuracy,
ls fOr MQ(Ac

I+L'/3!—im b,(1+L'/2!)
II(c0)=—

8, 1+I.+L'/2!+L'/3! i'd (1+L+L'/—2!)

With the knowledge of f(p, i0), the full correlation
function in (2.5) can be evaluated for a &co.,

L+L'/3!+0(h')
II((u) =— (3.15)

b, 1+L+L'/2!+L'/3!+0(h')

A(i0) = f(F ~)V(F,6,~)
cv,+$'—jib

This gives for A(~)

3 (o))= 2s.0(co—(u ){{1+I+L'/2!+L'/3!) '
+A'm'(1+L+L'/2!)'} '.

Eqllatioil (3.10) provides a iile'tliod of systematlca!!y
evaluating f{$,~) as a power series in h. Then one
evaluates h.(ro) and II(~). The poles of II(&o) specify
the nature of the bound state.

The potentials in (3.7) have the property

If we assume that the series is exponential, then

2s'0(co —M~).4(a) =
1+62m 2 co—(u,

(3.17)

Im V(f, $', tu) =0, $,$')0, a&&co, . (3.12)

Although this MRS bccn cxpllcltly veli6ed only Up to Rnd
including third-order interactions, it seems reasonable
to conclude that it is generally true. This makes
f(P,a&) entirely real for ~&co. and $)0. This means that
a bound-state pole, if one exists for co&au„ falls on the
real axis.

Equations (3.8) to (3.10) are first solved for &a&a&,.
The normalizing condition (2.9) is chosen at $1 a.—&o.

"H. P. Noyes, Phys. Rev. Letters lS, 538 (1965)„K. L.
Kowalski, ibid 1S, 798 (1965). .

This result appears slightly different from (3.5). Both
equations contain the same (&o

—~,) '~ divergence. The
other constant terms differ because we have not prop-
erly kept track of them in deriving either (3.5) or (3.17).
For instance, consider the integral

ro d$ $ GD
—

4&

- ln —=~~ ln'--
(o—ca.+ $
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In solving the problem to logarithmic accuracy, we
have been ignoring the constant terms such as s'/6 and
s'/4. The existence of such terms explains the differ-
ences between (3.17) and (3.5). The difhculty with
including such constant terms is that the problem has
two singular regions, one at $ 0 and one at $
The unphysical singularity at $ b is an artifact of the
contact model. Vet, the constant terms cannot be cal-
culated accurately without treating the singularities at

(s in some arbitrary fashion. The fact that these
constant terms may be appreciable when 6 is not small
may explain the disturbing observation that (3.5) is
negative for 6&-,'.

IV. DISCUSSION

A solution has been obtained to the correlation func-
tion specifying interband optical absorption for the
case of an in6nite hole mass. The analytic structure of
the divergences near the absorption threshold has been
investigated using a contact model for the attractive
Coulomb interaction. We found that both the perturba-
tion-series result, and the solution to the scattering
integral, suggest that the divergence is a power law.
If ~ is the photon frequency, then

where ar, is the threshold frequency, $s is a cutoff energy,
and 6 is the strength of the attractive electron-hole
interaction.

The absorption and emission spectra of soft x rays
constitute a physical system which approximates the
present model. The emission spectra should have a
similar divergence since, as discussed by Suna, " the
emission and absorption diBer only by factors relating
to the occupation factors. Some x-rays data"" do
show structure at threshold. Some of these cases, such
as magnesium, a,re satisfactorily explained in terms of
density-of-states effects. But the L, and 3E absorption
edges of'4 "Ni, Cu, and Zn do show peaks at threshold
which apparently are not caused by the density of
states. Although this feature could be caused by ex-
citon processes, it is sobering to note that the spectra
also have much other unexplained structure, such as
the high-energy tail in E emission.

For interband transition in real metals, 6nal-state
interactions involving the virtual excitation of plasmons
are also important. These plasmons arise from the
dynamic nature of the screening of the electron-hole
Coulomb interaction. These dynamic interactions
appear to be more important than the statically screened
interaction in interband optical transitions in real

"A. Suna, Phys. Rev. 135, A111 {1964)."I. G. Parratt, Rev. Mod. Phys. 31, 616 (1959)."D. H. Tomboulian, in Handbuch der I'hyszk, edited by S.
I"liigge (Springer-Verlag, Berlin, 1957), Vol. 30, p. 246.

metals. In these cases, however, the statically screened
Coulomb interaction does not lead to logarithmic
singularities. Nevertheless, it might be necessary to
include the plasmon processes before the present
calculations can be applied to describe real x-ray
transitions.

One can also envision processes where the hole is in a
d state, and where the important 6nal-state interactions
are caused by an s-d interaction. The nature of exciton
states in this process is related to the Kondo prob-
lem. ~"~ For this interaction, the linear vertex equation
(3.6) becomes a matrix equation because of spin.

1"=I',+e si'„,
V= V,+e sV, .

Each of the higher-order irreducible interactions, such
as Fig. 1(d), contributes both to V, and V„. Since the
analytic properties of the irreducible interactions are the
same for the exciton and Kondo problems, then (3.12)
applies. If one solves I'=N/D, then N and D are both
real for co &co,.Hence, the zeros of D for ~&co, give poles
in I" vrhich correspond to a donor state. Abrikosov'so
solution to the Kondo problem indicates that such poles
do exist.

Note added in manuscriPt. J. J. Hopfield's has sug-
gested that the ground state of an electronic system
with and without an impurity are orthogonal. P. W.
Anderson" has recently suggested a proof of this
theorem, and notes that this causes some transitions to
have divergences. His functions diverge as a power law
with an exponent

s= g (2t+1) sin'8( ——As/3.
3'' l

This exponent of A'/3 is quite different, and much
weaker, than the present result 2A. Thus, Anderson's
calculation predicts divergences which are much smaller
than those discussed here.

APPENDIX: THE IRREDUCXBLE
INTERACTIONS

Equation (3.6) indicates that the correlation function
can be evaluated using a linear integral equation. This
is only true because we have assumed that the basic
electron-hole interaction is static. That one can use a
linear integral equation of this form is deduced by
writing out explicitly the lowest six or eight terms.
Here we will elaborate on this by deriving (3.7) for the
irreducible interactions.

The two equations (3.6) and (3.7) will first be written
in terms of momentum variables. This is conventionally
the way these results are expressed, and it is instructive

"K. Yoshida, Phys. Rev. 147, 223 (1966).
1~ A. A. Abrikosov, Physics 2, 5 (1965);2, 61 (1965)."J. J. Hop6eld (private communication).
's P. W. Anderson, Phys. Rev. Letters 18, 1049 (1967).
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to see them before one invokes the coontact Inodel»

V(1s,1s',~)=Z V (1s,1s',~).

m . thus Vyistheu scn t corresponds to Flg. mm of all irreducible interactions. The ns su scrip co

V'(1ss, ass,~) =—

where

In the contact model, one replaces

d'Ps ~~(Ps) &(1ss—1ss)L(1ss—1ss)

(2m) ' (o—co.+$s—$g—$s+i&

ppsdsps 9, s—ps ps-(1s — )&( —1ss)&(1ss—1ss)N~(Ps)~~(Ps)

—.-~,-S+~+ b)(-- .-b-S+~. b
'

& ps&'ps '~(ps —ps) &(ps —ps) L(ps —pss s — & s—ys)~s(ps)(1 —~s(ps))

(2' ) ((0—co~—g
—s s—$+$+ib)((o a). $—g $—s+b—+ib)

sd Ps &(ns —1ss)&(1ss—1s4)&(1ss—1ss—s (1—ep(ps))ep(pg)

—.—S-r+&.+ b)( —.-~ -S+&.
„=(p '—pps)/2m, n= ir2, 3,4.

(2m) s

1 the irreducible interactionsS A1 1IltO (3.6). S1B1 Rl' p, ew e
' '

d A&0. This immediately takeswhere %L is attractive an
become

Vs($, $',a)) =—d,

Vg($, $',o&) =—LV

0

-= —6' ln
$+$' co+co, —ip—

ss~ ~.+-b k 5'+i~— —

Vs($, f,co) = —hs
s, e—co,+fs—$—$'+i5

, 5+V— + .—
Ã)= —6' ln'

$o

V;+ VJ= 6s
I

+
$'+sb &o &o,—$4+ $s-—$+cb—co—ra.——g s

—'+cb(0

The sum of these tern18 give s x~.~ ~


