PHYSICAL REVIEW

VOLUME 163,

NUMBER 3 15 NOVEMBER 1967

Reformulation of the Screened Heine-Abarenkov Model Potential*

RoBeErT W. SHAW, JR.,} AND WALTER A. HARRISON
Division of Applied Physics, Stanford University, Stanford, California
(Received 28 December 1966; revised manuscript received 9 June 1967)

The screening of a generalized Heine-Abarenkov model potential is systematically reformulated. The
electron density in a metal is calculated in terms of model-potential parameters. One contribution to this
charge is a depletion hole, analogous to the orthogonalization hole in pseudopotential theory. A general
expression for the depletion hole is derived. The screened form factor for the model potential is calculated,
taking into account the nonlocality and energy dependence of the model potential. The long-wavelength
limit of the form factor is evaluated and found to be —%Ep at the Fermi surface, as for local potentials. It
is found that the depletion-hole contribution cancels a term arising from the energy dependence of the
potential at long wavelengths. Consequently, it is unnecessary to renormalize the dielectric constant as
done by Heine and Animalu. The magnitude of the depletion hole is evaluated for several elements using the
Heine-Abarenkov model potential. The expression for the depletion hole is also shown to be valid for a certain

class of pseudopotentials.

1. INTRODUCTION

HE “model potential” was introduced by Abaren-
kov and Heinel? in order to overcome the
complexity of pseudopotential calculations from first
principles. A simplification was achieved by calculating
the model-potential parameters directly from atomic
term values. It was hoped that by using experimental
input it would be possible to account more accurately
for the interaction of conduction electrons with the core.
Animalu® first calculated the screening of the Heine-
Abarenkov (HA) model potential, taking into account
its nonlocality, but not its energy dependence. In a
later paper, Animalu and Heine? introduced an orthog-
onalization hole from pseudopotential theory. The
contribution of this additional charge in the screened
form factor was eliminated by renormalizing the di-
electric function.

The purpose of this paper is to reformulate the
general model-potential problem in an internally
consistent manner. We will show that the electron
density can be computed exactly, and that a contribu-
tion to this density is a depletion hole at ion sites. We
obtain an expression for this depletion hole in terms of
experimentally determined model-potential parameters.
In calculating the self-consistent screening of the model
potential, we take account of both the nonlocality and
the energy dependence of the model potential. An
important feature of our reformulated theory is that it
is no longer necessary to renormalize the dielectric
function to obtain the correct long-wavelength limit for
the model-potential form factor. Finally, we apply our
general formulation to the HA model potential, calcu-
late the size of the depletion hole for various elements,
and compare the results to the orthogonalization hole
of pseudopotential theory. We also note that our
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general expression for the depletion hole yields the
correct orthogonalization hole for a certain class of
pseudopotentials.

2. THE MODEL POTENTIAL

We will consider a model potential which is suffi-
ciently general to include both the HA model potential
and a limited class of pseudopotentials. We take the
model-potential operator for an isolated atom to have
the form

vm=v—Zl A(BE) D, 2.1)
where the |J) are a set of angular-momentum eigen-
states and E is the energy of the state under considera-
tion. The label ! serves only to designate the total
angular-momentum quantum number but does not
preclude the use of other quantum numbers (m for
instance) in the sum.
The r representation of (2.1) is

(rlvmlr’>=v(r)3(r—r’)—fllAz(r,E)<r|l>(l|r’>- (2.2)

We have taken the potential »(r) to be local (diagonal)
in the r representation. It is clear, however, that the
second term in (2.2) is not diagonal in the r representa-
tion and is consequently referred to as a nonlocal
contribution.

To obtain the HA model potential for a single atom
from (2.2) we simply set

v(r)=—(Ze*/r) O(r—Ru),
Ay(r,E)=Au(E) O(Ry—7),
where
O()=0, <0
=1, >0

and let the set |/) be the spherical harmonics so that
(x| D)= (@l Lm)Lm|2)([x]| —|r']).

A restricted class of pseudopotentials can also be
written in the form (2.2) if we let v(r) be the self-
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163 REFORMULATION OF

consistent Hartree core potential and let

El: Az(r,E)<rll>(l|t')=—‘§ fe(E){r|a)|r),

where (r|a) is a core state of the free atom.

In the pseudopotential method, the pseudopotential
is constructed such that the energy eigenvalue of the
pseudowave equation for the metal is the same as that
of the exact wave equation. However, the model
potential is chosen to yield the correct energy eigen-
values of the free atom. Consequently, the 4,(E) are
known explicitly only at free-atom eigenvalues and
must be extended to arbitrary energies by interpolation.
Heine and Animalu? have given an approximate pro-
cedure for determining the energy at which 4,(E) is to
be evaluated when the model atoms are combined to
form a metal.

We should point out that the metallic eigenvalues for
the exact and model problems are the same only in the
small-core approximation, that is when the sum of the
valence-electron potential V,, and the neighboring core
potentials Y ..;v(r—r;), is nearly constant over the
jth core. Then these simply shift the energy at which
Ai(E) is evaluated. The model potential then leads to
correct energies and the unnormalized model wave
function is equal to the exact wave function in the
intercore region.

To summarize, we have constructed a model for a
metal in which the Hartree wave equation

[T+ U] |¥e)=Exl¢r),

with U the self-consistent core potential plus the
valence-electron potential, is replaced by a model wave
equation

(2.3)

[T+W (Ex)]|Xi)=Ex|X),

where the total model potential W is the sum of ionic-
model potentials plus the same valence-electron
potential V, as in U. In the region between cores,
(r|¢x)y=(r|Xz). However, inside the core the behavior
of (r|¢x)=vu(r) and (r|Xp)=Xx(r) is quite different.
The exact wave function oscillates as a result of the
deep-core potential, whereas the model wave function
is fairly smooth over the core region. Consequently, if
we require that the y,(r) be orthonormal, then it is
clear that the X,(r) can be neither normalized nor
orthogonal. The situation is shown schematically in
Fig. 1.

(2.4)

3. THE DEPLETION HOLE

We wish to compute the exact electron density in the
metal, ¥i*(r)¢r(r). However, we have replaced the
exact problem by a model wave equation, (2.4), which
we solve for X;(r), the model wave function. Referring
to Fig. 1, we see that the actual electron density can be
regarded as the sum of two terms, a term X;*(r)X:(r)
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Fi16. 1. Schematic drawing of the un-normalized model wave
function Xxx(r) and the exact wave function ¢i(r). The wave
functions are shown superimposed on a plot of the model and
exact potentials.

from the model wave function, and a contribution from
the oscillating part of the real wave function localized
in the core region. The total charge due to the core
oscillations of the real wave function we define as the
depletion hole p by analogy with the orthogonalization
hole of pseudopotential theory:

p= 2.

k<kr J Qp

&r [¥* (1) ()= 2> )X ()], (3.1)

The integral is over a single core volume Qy, so that p
represents the depletion hole at a single ion site.

To evaluate p in terms of model-potential parameters
we use a method similar to the one used in deriving the
Friedel sum rule. We use the wave equations for y(r)
and X, (r),

VR (r) = (2m/ 1)U (r)i(r) — (2m/B?) Expic (1) ,

V2Xy, (x) = (2m/2)W (E) Xy, () — (2m/H2) EpXi(x) , (32)
to write ‘
¥ (1) Vi (1) — e (1) VAR (1)
= (2m/ 1) {Yi* (t) Udrs (1) — Y1 (1) Ui* (1)
—[Ew—Ecr* () ()}, (3.3)

and

X},* (l') szk’ (l‘) — X (l’) V2Xk* (l')
= (2m/B){Xi* ()W (Ep )X (1) =X (1) W* (Ex)X* (r)
-—[Ek:—E;,]Xk*(r)Xk,(r)}. (3.4)
Now we let k’—k=q and take q to be small. Then

expanding the functions of k’ around k and keeping only
lowest-order terms in q, we obtain

i (1) V¥ () — i * (1) VA (1)
o Wy
+q-[a—f‘mvwm—wmw—a‘%(r)]

2m OEy .
’—““;l;(l'—ak—l//k (i (r), (3.5)
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and
X (r)VZXk* (l‘) - Xk* (I‘) V2Xk (I')

axk(l’) - * 26)(1,(1')
-Hl'l: ok VX3 (1) — X, (1) V ok :l

2m oE
[ W (% (e)

k 6Xk (l‘)
=—q" ‘—l?xk* (X5 (r)+

h2 0 ok
X, oL, oW (E
k(r)—xk*(r)——f (Ex)

ok dk O0E;:

X, (r)} .
(3.6)

We subtract (3.6) from (3.5) and integrate over the
volume ), around one ion site. If we apply Green’s
theorem to the terms on the left-hand side of the result-
ing equation, we see that they sum to zero since
X (r)=yx(r) on the core boundary. Consequently the
equation we obtain is simply

—Xi* () W*(Ex)

f T (00 () — Xi* (1)Xe (1) ]
o oW (Ex)
ou Oy,

The depletion hole can now be expressed in terms of the
model potential and model wave functions®:

oW (Ex)

X:(0). (3.7)

p=— 3 | drxi@) (3.8)

k<kr J Qar Tk

X (l’) .

This exact expression for the depletion hole is valid
for any model potential of the form given by Eq. (2.1).
It is clear that for a general structure, the depletion hole
need not be the same at every ion site. However, we
will show [Eq. (4.6)] that to lowest order in perturba-
tion theory, p is the same at every site independent of
ion configuration.

4. PERTURBATION THEORY AND SCREENING
OF THE MODEL POTENTIAL

In order to calculate the self-consistent screening of
the model potential, we must evaluate the electron
potential, which is determined from the electron density
by Poisson’s equation. The total electron density can
be written as the sum of two parts,

n(r)= ’;;k Y™ (D¢ (1)
- =3 XF@Xe(@®)+2 pi(r—rs),

k<kr i

(4.1)

where p;(r) is the depletion-hole density at the ith ion

site,
pi= f &rpi(r—r.).
()78

5Tn Sec. 7 we discuss the application of this result to pseudo-
potentials which have the form of Eq. (2.1).

(4.2)
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The density is nonzero only within the core volumes,
since X;(r)=y4(r) outside. The last term in (4.1) is the
sum of depletion-hole densities at all the ion sites in the
crystal.

To evaluate (4.1) we solve the model wave equation
for X, (r) by perturbation theory. For most applications
of the model potential it is sufficient to know the energy
eigenvalues to second order in . Therefore, we obtain
the wave function to first order. We expand the model
wave function in plane waves,

[Xi)=k)+ X aq(k) | k+q), 4.3)
q
where
(r| k)= 12k s,
From the perturbation calculation we obtain®
(kt+q| W (E:) | k)
a, #0. (44)

/2 [ktqlr]”

The coefficient ao(k) cannot be obtained by perturbation
theory. However, if we substitute (4.3) into (4.1) and
require that the exact wave function ¥, (r) be normalized
then, by equating first-order coefficients, we find that

ao(k)=3N (k| 0OW (Ex)/dEx| K)oy, (4.5)

where the integral is over a single core.

These results enable us to write a first-order expres-
sion for the electron density. Since 0W/JE is manifestly
first order, the depletion hole becomes

W (Ex)
p=—2 (k| [k)ax, (4.6)
k<kr d k
to first order. The electron density is then
1 N oW (Ex)
w= % (S} 5 = 6 ko
k<kr \Q)/  k<kr AE;
+22 Y a(k)evt+L p(r—r), (4.7)
k<kr q i

where p(r) is the first-order depletion-hole density and
is the same at every site, since the first-order depletion
hole (4.6) is independent of which Q;; we choose. The
first term in (4.7) is the uniform plane-wave density;
the second is a uniform density, which, when integrated
over the crystal, exactly cancels the integrated de-
pletion hole (Fig. 2); the third term is the screening
charge density.

We can now proceed with the self-consistent screening
calculation using the standard procedure.® Since each
Fourier component (off-diagonal plane-wave matrix
element in the case of a nonlocal potential) of the model
potential is screened independently, we carry out the
calculation in k space rather than in r space. The

SW. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966).
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Fourier transform of the electron charge density,

1
nq=§ / d*r et (r), (4.8)

can be obtained directly from Eq. (4.7). The result is
ng=2 2 a,(k)+S(9)pa, (4.9)
k<kr

where p, is the Fourier transform of the depletion-hole
density at a single ion,

dre~itp(r), (4.10)

Pg="
0J QOm

Qo=0/N=volume per ion,

and S(g) is the structure factor for the system being
considered,

1
S(q)r——]\;zi g, (4.11)

We substitute (4.9) into Poisson’s equation and solve
self-consistently for the electron potential. Since W
contains a nonlocal, energy-dependent term, the screen-
ing is not entirely local. We find that the screened form
factor can be written

W (k)= (k+q| W k)= (Vo +Va,)/e(g)+F (k,q)+G(g).
(4.12)

In this expression, €(¢) is the Hartree dielectric function,
149
n

1—19

me? /1—172

elg)=14
? [ 27rkph27)2\ 2

n=q/2kr

V. and F(k,q) are, respectively, the matrix elements of
the local and nonlocal parts of the unscreened model
potential, G(g) is given by

20 du F(k,q)
w'e(q) Jusir  (#/2m)[K— |k+q|?]’

(we have converted the sum over occupied k into an
integral), and Vg4, is the depletion potential,

Vag= (4m€¢*/¢)psS(q) - (4.15)

We can separate the information about the structure
of the lattice out of Eq. (4.12) by noting that W can be
written as a sum of potentials centered about individual

ion sites,
W= Z Wi,
i

+1> , (4.13)

Glg= (4.14)

so that we can write®
Wo(k)=NS(q)(k+q|w|k)=S(Qw,(k). (4.16)

The terms V', and F (k,q) are obtained directly from the
bare model potential which is a sum of individual ion
contributions. The depletion potential (4.15) contains
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the structure factor explicitly. Consequently, the form
factor w,(k) can be written

wy (k)= (vg+va0)/e(@)+ fk,)+g(), (4.17)

with vg,=4me%0,/¢* and all the other lower-case func-
tions defined as in (4.16).

Equation (4.17) is a key result. It is valid for any
potential of the form given in Eq. (2.1). In terms of that
equation we have

v,=N{k-+q|o|k),

and

flg)=—N Zl (k+q|4:(Err)Pi|k), (4.18)

Pi=11)(.

Consequently, all the terms in (4.17) except 244, the
depletion-hole contribution, can be evaluated explicitly
for a given model potential.

To obtain v4, we must know the distribution of the
depletion hole in addition to its magnitude. We could
in principle evaluate the Fourier transform

1
pe=— 2 Ere= s Ty* (O (1) — Xi* ()X, (1) ]
Qo k<kr J oy
(4.19)

by analytically continuing the wave functions into the
model volume using the known magnitude and deriva-
tives of these functions on the surface of Q;;. However,
such a computation turns out to be analytically
intractable. The procedure used in Sec. 3 to evaluate
similar integrals also breaks down since additional
terms, which cannot be evaluated explicitly, enter due
to the exponential in (4.19).

As a first approximation we ignore the exponential
term in the integral and write

vag= (4m¢*/¢Q)p (4.20)

which is equivalent to assuming that the depletion hole
is a point charge at the ion position. Any spreading of
the depletion hole will require that (4.20) be multiplied
by .a modulating function M (¢,Rs). It is probably
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reasonable to assume that M (¢,Ry) does not deviate
much from unity over the range 0<¢< 2kp.

5. LONG-WAVELENGTH LIMIT OF THE
FORM FACTOR

It is of particular interest to determine the behavior
of the model-potential form factors in the long-wave-
length limit. We consider first the local terms in (4.17).
From (4.10) it is clear that

Pq ;_:)OP/QD- (6.1)

Using this result and the well known long-wavelength
limit of the Hartree dielectric function we obtain
immediately

lim (g +0va)/e(g)=—3Er(1-0/2), (5.2)

where p is calculated in terms of the model potential of

a single ion,
20 a‘w(Ek)
p=———-/ (k| IK).
@27) Je<nr OE;

Next we consider the nonlocal terms in the form
factor. For small q we shall expand the function

f(k,q) as
fk,@)=f(k)+q-0/(k,a)/ dq| ,—0+0(¢),

(5.3)

where
J®y=lim 7ka).
Since k)
+q
kq)=f( £, |k+ql, B
k)= (b ckal lkﬂl)

=_sz (k+q| 4:1(Ex)Pi| k),

we can, after some computation, rewrite the expansion
as

k-q
fka)=f (k)——;a‘N

3
X% —(.,;Kk'lx‘lz(Ek)lek)lk'=k+0(q2). (5.4)
1

Using this result we study the behavior of

2 i bl (5.5)
w'ge(q) Jiving  (#/2m) (= [k+q[?)

as ¢ approaches zero. We substitute (5.4) into (5.5),
carry out the angular integrations, and pass to the
limit. The result we obtain after considerable manipula-
tion [see the Appendix ] is

glg)=

04,(E;
5 b1k,

ok
(5.6)

N rF
g(q)—’—f(kp)——zf dk (k|
a~9 kr t Jo
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From Eq. (5.3) we can write 2Er(p/Z) in the form
94,(Ex
ok

P10, 61)

iz

p N ke
EF—‘=‘_Z/ dk k(k|
Z krtJo

Consequently, the limit of g(g) as ¢ approaches zero is

8@) = —f(k)=3Exe/2),  (58)

and the nonlocal contribution to the long-wavelength
limit of the form factor is simply

lim [ f(k,a)+g(g)]= f(k)— f(kr)—3Er(p/2). (5.9)

When we combine Egs. (5.2) and (5.9), we obtain
wolk)=lim w, (k)= —§Ep+ f(k)— f(kr). (5.10)

It is clear that the long-wavelength limit of the form
factor, evaluated at the Fermi surface, is

W()(kp)= —%Ep.

This is a well-known result for local potentials.
Previously it had been assumed to hold for nonlocal
potentials as well. We have now demonstrated that in
fact it does. It should be emphasized, however, that
(5.10) is a first-order result. Additional terms enter in
higher order. Also, it is important to note that —%Ep
obtains only at the Fermi surface. For arbitrary k#kr
we have the result given by (5.9).

We should point out the difference between our
results and those obtained by Heine and Animalu.
Instead of calculating the true electron density, they
introduced an orthogonalization hole of magnitude
determined from orthogonalized-plane-wave (OPW)
theory. In evaluating the long-wavelength limit they
overlooked the energy dependence of the model-
potential coefficients 4;(E) and found that

tim [(a)+8()]=0.

Therefore they obtained
3B (1—p%/2)

for the long-wavelength limit of the form factor. In
order to reduce this to the local limit, —%Ep, they
renormalized the dielectric function with a constant
factor (1—p°FW/2Z).

We have shown that their renormalization procedure
was not correct, that the depletion hole combines with
the nonlocal contribution to the form factor to give
[f(k)— f(kr)] in the long-wavelength limit.

6. THE HA MODEL POTENTIAL

In this section we apply our results to a particular
example of the general form given in Eq. (2.1), the
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HA ““model potential,”
(l'l'l)m|¢>= - (Z82/7)<1'|1l/> ’ >R

=—2 4i(E)(x]]) a' ')’ |¢),
1 =]t
M <Ry (6.1)
We compute the functions f(k,q) and g(¢) and obtain

Rir\*
flk,a)=— 3(;) zl (2141) A1 (Ex) Py(cosh)

c

1
X/ dx x2];(k’RMx)jz(kRMx) y (6.2)
0

and
12 /Ra\®
g<q>=——-——(;—>z<zz+1> &
m2a0g®e(q) \R¢ / 1 k<kp

A(E) .
X[Pz(coso)—————/ dx xzjl(k’RMx)]z(kRMx)] ,
¢+2k-q/o
(6.3)

where
ao=Bohr radius,
6=cosk-k'/kE’,
k'=k+q
Ryr=model radius, Qu=%rR:?,
Re=cell radius, Qo=%7wRc*.

The ¢=0 limit of f(k,q), which appears in the long-
wavelength form factor, is

Ry

k)= “3(}“> 51_: Q2i+1)A(Ex) / dx 2252 (kRux).
¢ ’ (6.4)

The x integrals in these expressions can be evaluated
explicitly, but we leave the results in integral form for
later convenience. These results are nearly identical to
those given by Animalu® except that they display the
energy dependence of the 4;(Ey). In Sec. 5 we showed
how this energy dependence is taken into account when
the long-wavelength limit of the form factor is evaluated.
The general first-order expression for the depletion
hole [Eqgs. (4.6) and (5.7)] applied to the HA model

potential gives
p Ar 1
3Er—=— ¥ (2+1)—
Z Q kr

kF aAl(Ek) RM
X / dk & / dr2j2(kr). (6.5)
0 ak 0

Animalu’s” results indicate that the coefficients 4,;(E)
are linear in E, so that we can write
A(E)=A(Er)+(E—Er)d4,/0E|gp.  (6.6)

"A. O. E. Animalu, Cavendish Laboratory Technical Report
No. 4, Cambridge, England (unpublished).
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TasrE 1. The depletion hole (—p/Z) for several elements. A
zero-order approximation for the depletion hole [— (84./9E)
(Ru/Rc)*] and the orthogonalization hole pOPW/Z are given for
comparison. The model radii Ry and cell radii R¢ are values given

by Animalu (Ref. 7).
940 (RM 3
dE \Re¢

Element Ry Re —p/Z —pOPV/Z
Li 28 326 0.132 0.0605  0.068
Na 2.2 3.93 0.058 0.0564 0.074
Na 3.0 3.93 0.118 0.1006
Na 34 393 0.161 0.1223
Na 40 393 0.171 0.0950
K 42 4.86 0.211 0.1699  0.144
Rb 44 520 0.224 0.1908
Cs 48 563 0.258 0.2209
Be 20 235 0.123  —0.0299  0.057
Mg 2.6 3.34 0.161 0.1082 0.079
Ba 3.4 4.66 0.183 0.1341
Zn 22 290 0.147 0.1044  0.138
Hg 26 335 0.138 0.2042
Al 20 298 0.118 0.0784  0.076
Ga 24 315 0.145 0.0869
In 24 3.47 0.149 0.1186
Tl 24 3.58 0.163 0.1459
Si 20 318 0.092 0.0487
Ge 20 333 0.090 0.0647
Sn 20 351 0.096 0.0822
Pb 21 3.65 0.111 0.1007
Bi 20 385 0.080 0.0748

The depletion charge can then be written

P Ra\* __ 04,(Er)
) Ty

el i
1 1
X / dx a? / dy yj2(krRazy).  (6.7)
0 0

We can make one further simplification. Following
Heine and Abarenkov,! we let 4;(E)=A:(E) for I>2
and write

04/dE=04,/dE+da;/dE, i=0,1.

Then using the result

Zl @+1)52(=)=1,

(6.8)

we have
P (ﬁM)TaAz(EF) | naa()(EF)
Z \Re 9E | OE

aa1 (EF)
oE

1 1
X f d a2 / dy 32j ¢ (krRory)+27
0 0

><‘/01 dx xz'/: dyy2j12(kFRMxy):| . (6.9

Since kr=(1/R¢)(397Z)12 we find that to lowest
order in Ry/Re,

p  0Ao(Er) /Ru\®
—«g————ﬁ;—) . (6.10)
VA OE ¢
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Fic. 3. Representative model potentials which lead to
positive (a) and negative (b) depletion holes.

We have used Animalu’s” results for 94,;/9L to
evaluate Eq. (6.9) to four places. The results are given
in Table I along with values for the first-order expres-
sion, Eq. (6.10). For comparison we list also the OPW
orthogonalization hole as given by Harrison.®

There are several results in Table I which deserve
comment. We note that the first-order estimates for the
depletion hole are always too large. When R;;/R¢ can
be regarded as a small parameter, the first-order ex-
pression does give reasonably accurate estimates. For
Na we have values of p/Z for several R;,. One might
expect an R,® variation for p. However, it is clear from
Table I that the variation is considerably less pro-
nounced than this.

The negative depletion hole for Be given in Table I
is not necessarily an incorrect result. For the HA model
potential it is possible to obtain negative depletion
holes. This becomes clear if we rewrite Eq. (3.1) for the
depletion hole using Eqgs. (3.2) and the virial theorem.
We find

p= s (21+1) dak/ " Pl X2 ()]
(2n)? k<kr

0
= 3 (204+1) Pk ™ 2d
rear
(2m)* -[kssz E(k)/(;
2

X2 (k ze 2(k 6.11
X[Az( i)~ )] (6.11)

where we have written the wave functions in the form

Xk(r) = ZZ Xl(kyr)ylm(®,¢) .

For A, sufficiently large, the self-consistency of Eq.
(6.11) requires that p (electron charge) be positive.
Physically, this means that the constant potential well
is considerably deeper than Ze?/r over most of sphere
of radius Ry, as shown in Fig. 3(a). Consequently, the
model wave function will decrease more rapidly than
the exact wave function for » SRy 1f 4, is large, then
this condition will hold over most of the interval
(0,Ry). Since we choose X;(r) without nodes, it follows
that it is possible for the first expression in (6.11) to be
positive. For Be, the 4; given by Animalu” are large
enough to give a negative depletion hole.
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7. THE PSEUDOPOTENTIAL

As we indicated in Sec. 2, a restricted class of pseudo-
potentials,

W=V+L fu(E)|a)a], (7.1)

have the same form as the general model potential we
have considered. Consequently, we can apply our
expression for the depletion hole to (7.1) and obtain

9 fu(Ex
gy )

k<kr a %

K| a){a| X)), (7.2)
Evidently, if /, is independent of Ej, the depletion hole
is zero. However, we know that the orthogonalization
hole in pseudopotential theory is given exactly by

pOFW=— 3 (X|P|Xx), (7.3)
k<kr

P=3 la)(e|,

which is nonzero unless |X;) is orthogonal to all the
core states.

To resolve this apparent contradiction we will show
that there is only one coefficient f,(E) which yields a
pseudowave function not identically equal to the true
wave function, and that for this f.(E), Eq. (7.2) is
identical to (7.3).

If we take the inner product of the pseudowave
equation,

(T+W) | Xi)=Ex| Xz, (7.4)
with a core state (8|, we obtain
(Bl T+W |X1.)=Ex{B|X:)
or
Lfa(Ex)— (Ex—Eg)1(8]X:)=0, (7.5)

where Fj is the core-state energy. If fs(Ex)=FE;—E;s
for all k, then |X;) need not be orthogonal to the core
state |8). For all other choices of fg(%y) it follows from
(7.5) that

(B8] x)=0. (7.6)

Since |Xi)=|¢x) outside the core, the requirement of
orthogonality to the core states means that | X, )= |ys)
for all k. Then by using the definition of the depletion
hole, Eq. (3.1), or by substituting (7.6) into (7.2), we
see that p=0 for all pseudopotentials of the form (7.1),
except

W=V+Y (Ex—Ea) |a)a]. (7.7)

Here Ej is the energy of the state k being considered.
Our general expression for the depletion hole applied to
this potential gives precisely the orthogonalization
hole, Eq. (7.3).
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There is one exception to the above argument which
requires special consideration. Suppose we let fs(Ex)
= E,— Eg. Then for k=ko, Eq. (7.5) is satisfied without
requiring that |Xi,) be orthogonal to the core states. In
fact, |Xz,) is arbitrary. Then from (3.1) we see that the
k=k, component of p need not be identically zero. This
possible deviation from zero for a single state con-
stitutes a set of measure zero relative to the sum (or
integration) over all occupied states and consequently
does not alter the total depletion hole. However, we are
led to ask why it is that from (3.1) the ko component of
p is not zero, whereas from (7.2) even the k=ko com-
ponent of p is identically zero for the choice f.(Ex)
=FEy,—E,. The reason is that in deriving (7.2) we
required that the pseudowave function be a smooth
function of k in order that the expansion of |X;) in Eq.
(3.6) be valid. Now we have shown in (7.5) that for

W=V+3 (Ex,—Ea)|a)a|, (7.8)

| Xi)=|ys) for all ks2ko. For k=K, |Xs,) is arbitrary.
To insure the smoothness of |Xi) in & space, which is
required to obtain (7.2), we must set |Xi,)=|¥k,)
(which we are free to do since |Xy,) is arbitrary). With
this choice for |X;,), Eq. (3.1) gives p=0, as does (7.2).
Tf we do not choose |Xz,)=|¥s,), then we cannot use
(7.2) to compute p and we see from (3.1) that the
k=ko component of p is nonzero, though the total
depletion hole remains essentially zero.

It is possible® to obtain an expression analogous to
(3.8) for the depletion hole associated with a general
pseudopotential of the form®?®

Wk)=V[k)+% fa(k)|a){a|k). (7.9)

However, this expression yields the well-known result
(7.3) for the orthogonalization hole.
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APPENDIX

Our result for the long-wavelength limit of the form
factors depends critically on Eq. (5.6). Therefore, it is
important that we provide some details of the calcu-
lation leading to this equation, particularly since it
differs from the result obtained by Animalu.?

When we substitute Eq. (5.4) into (5.5) and do the
angle integrations we obtain

N E o |2k+g
8@) - — f ary. [— In
0 kr /o t Lg 12k—q

I<k1Al<Ek>P11k>

d
2k ;A,(zzapllknk,zk]. (A1)

The limit of the first term can be determined by writing
f(k)=d&/dk, integrating by parts, splitting the integral
into two regions around the singularity, and finally
integrating by parts once more. The result is

1 b
— / arf k), (a2)

which is precisely what is obtained by evaluating the
limit before integrating.

We can rewrite the second term in (A1) by noting
that the derivative acts only on the wave function:

9 d
Zk;k“,a‘,lAl(Ek)Pz [k)| k’=k=k-a;,'<k’ | A1(ER) Py k)| b

] a
+k5‘k;<klAl(Ek)Pllk,> | k'=k=k3k-<k|Al(Ek)Pllk>

—k(k|[94:(Ex)/9k]P: k).
Using Eq. (A2) and (A3) in (A1), we find that

0= [ a2

(A3)

N kp aAz(E
**Z/dMM
kr 1t Jo k

k)
p Pilk). (A4)

Integrating the first term in (A4) by parts leads us
directly to Eq. (5.6).



