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The screening of a generalized Heine-Abarenkov model potential is systematically reformulated. The
electron density in a metal is calculated in terms of model-potential parameters. Qne contribution to this
charge is a depletion hole, analogous to the orthogonalization hole in pseudopotential theory. A general
expression for the depletion hole is derived. The screened form factor for the model potential is calculated,
taking into account the nonlocality and energy dependence of the model potential. The long-wavelength
limit of the form factor is evaluated and found to be —-3Eg at the Fermi surface, as for local potentials. It
is found that the depletion-hole contribution cancels a term arising from the energy dependence of the
potential at long wavelengths. Consequently, it is unnecessary to renormalize the dielectric constant as
done by Heine and Animalu. The magnitude of the depletion hole is evaluated for several elements using the
Heine-Abarenkov model potential. The expression for the depletion hole is also shown to be valid for a certain
class of pseudopotentials.

1. INTRODUCTION

'HE "model potential" was introduced by Abaren-
kov and Heine' ' in order to overcome the

complexity of pseudopotential calculations from erst
principles. A simpli6cation was achieved by calculating
the model-potential parameters directly from atomic
term values. It was hoped that by using experimental

input it would be possible to account more accurately
for the interaction of conduction electrons with the core.
Animalu' erst calculated the screening of the Heine-
Abarenkov (HA) model potential, taking into account
its nonlocality, but not its energy dependence. In a
later paper, Animalu and Heine4 introduced an orthog-
onalization hole from pseudopotential theory. The
contribution of this additional charge in the screened
form factor was eliminated by renormalizing the di-

electric function.
The purpose of this paper is to reformulate the

general model-potential problem in an internally
consistent manner. We will show that the electron

density can be computed exactly, and that a contribu-
tion to this density is a depletion hole at ion sites. We
obtain an expression for this depletion hole in terms of
experimentally determined model-potential parameters.
In calculating the self-consistent screening of the model

potential, we take account of both the nonlocality and

the energy dependence of the model potential. An

important feature of our reformulated theory is that it
is no longer necessary to renormalize the dielectric
function to obtain the correct long-wavelength limit for
the model-potential form factor. Finally, we apply our

general formulation to the HA model potential, calcu-
late the size of the depletion hole for various elements,

and compare the results to the orthogonalization hole

of pseudopotential theory. We also note that our
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general expression for the depletion hole yields the
correct orthogonalization hole for a certain class of
pseudopotentials.

2. THE MODEL POTENTIAL

We will consider a model potential which is suIIIi-

ciently general to include both the HA model potential
and a limited class of pseudopotentials. We take the
model-potential operator for an isolated atom to have
the form

B„=s—g At(E) I
l&&l I, (2.1)

where the
I l& are a set of angular-momentum eigen-

states and E is the energy of the state under considera-
tion. The label / serves only to designate the total
angular-momentum quantum number but does not
preclude the use of other quantum numbers (rrt for
instance) in the sum.

The r representation of (2.1) is

&rl B-Ir'&=B(r)~(r—r') —r. At (r,~) (r li&(ilr') (2 2)
l

We have taken the potential B(r) to be local (diagonal)
in the r representation. It is clear, however, that the
second term in (2.2) is not diagonal in the r representa-
tion and is consequently referred to as a nonlocal
contribution.

To obtain the HA model potential for a single atom
from (2.2) we simply set

s(r) = —(Ze'/r) O~(r —Ass),
At(r, E)=At(E) O~(Esr —r),

where
e(r)=O, r&O

r&0

and let the set
I l& be the spherical harmonics so that

&rl»«lr'&=&&If ~&«~lo'»(lrl —lr'I).

A restricted class of pseudopotentials can also be
written in the form (2.2) if we let e(r) be the self-
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consistent Hartree core potential and let

where (rIa& is a core state of the free atom.
In the pseudopotential method, the pseudopotential

is constructed such that the energy eigenvalue of the
pseudowave equation for the metal is the same as that
of the exact wave equation. However, the model
potential is chosen to yield the correct energy eigen-
values of the free atom. Consequently, the A~(E) are
known explicitly only at free-atom eigenvalues and
must be extended to arbitrary energies by interpolation.
Heine and Animalu4 have given an approximate pro-
cedure for determining the energy at which A &(E) is to
be evaluated when the model atoms are combined to
form a metal.

We should point out that the metallic eigenvalues for
the exact and model problems are the same only in the
small-core approximation, that is when the sum of the
valence-electron potential V„and the neighboring core
potentials P;» w(r r;),—is nearly constant over the
jth core. Then these simply shift the energy at which

A~(E) is evaluated. The model potential then leads to
correct energies and the unnormalized model wave
function is equal to the exact wave function in the
intercore region.

To summarize, we have constructed a model for a
metal in which the Hartree wave equation

L2'+ ~g I P~& =E~
I P~& (2.3)

with U the self-consistent core potential plus the
valence-electron potential, is replaced by a model wave
equation

P'+if (E~)jlx~)=E~Ix~& (2 4)

where the total model potential 8' is the sum of ionic-
model potentials plus the same valence-electron
potential V, as in U. In the region between cores,
(rIpq&=—(rIxL&. However, inside the core the behavior
of (rIQ&&=/&(r) and (rIx&&=x&(r) is quite different.
The exact wave function oscillates as a result of the
deep-core potential, whereas the model wave function
is fairly smooth over the core region. Consequently, if
we require that the P~(r) be orthonormal, then it is
clear that the x„(r) can be neither normalized nor
orthogonal. The situation is shown schematically in
Flg. 1.

3. THE DEPLETION HOLE

We wish to compute the exact electron density in the
metal, P~~(r)QI, (r). However, we have replaced the
exact problem by a model wave equation, (2.4), which
we solve for xq(r), the model wave function. Referring
to Fig. 1, we see that the actual electron density can be
regarded as the sum of two terms, a term x,*(r)x~(r)

ACT .
ENTIAL

I'zo. i. Schematic drawing of the un-normalized model wave
function xy, (r) and the exact wave function Pq(r). The wave
functions are shown superimposed on a plot of the model and
exact potentials.

from the model wave function, and a contribution from
the oscillating part of the real wave function localized
in the core region. The total charge due to the core
oscillations of the real wave function we de6ne as the
depletion ho1.e p by analogy with the orthogonalization
hole of pseudopotential theory:

d'r Q~*(r) p~(r) —xI,*(r)xq(r)). (3.1)

The integral is over a single core volume Q~, so that p
represents the depletion hole at a single ion site.

To evaluate p in terms of model-potential parameters
we use a method similar to the one used in deriving the
Friedel sum rule. We use the wave equations for fz(r)
and xg(r),

Vg~(r) = (2 /mh') U(r)PI, (r) (2m/h—')Eggs'(r),
%xi, (r) = (2 /mh') W (E„)xl,(r) (2m/—h')E~x, (r),

(3 2)

to write

A*(r)~V~ (r)—A (r)~V~*(r)
= (2m/&')(A*(r) &4 (r)—f (r) ~A*(r)

LEa —E1,1|t&*(r)|4.(r)}, (3.3)

and

xg*(r)Px, .(r) —xp. (r)V'xp*(r)
= (2m/A')(x„*(r) W(E„,)xs, (r) —xs (r)g *(E )x *(r)

—
I Ev —Esjxs*(r)xg (r)}. (3.4)

Now we let k' —k=q and take q to be small. Then
expanding the functions of k' around h and keeping only
lowest-order terms in q, we obtain

4 (r)|7V.*(r)—A*(r)~V (r)

O'I
+q (r)Vgg~(r) —iP„'(r)P (r)

Bh

25$
q A*(r)ip~(r), (3.5)h' ak
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Rnd

xs (r)%exes*(r)—Xs"'(r) 'AXED (r)

-BXs(r) Bxs (r)-
+tl PXs*(r)—Xs*(r)'P

Bk Bk

2m BEI, Bxh(r)
xs*(r)xs(r)+ W(Es)xy, *(r)

&9k Bk

Bxs (r) BEs BW (Es)—Xs*(r)W*(Es) Xs—'(r) Xh(r)
Bk Bk BEs

(3.6)

We subtract (3.6) from (3.5) and integrate over the
volume Q~ around one ion site. If we apply Green's
theorem to the terms on the left-hand side of the result-
ing equation, we see that they sum to zero since
Xh(r)=—P&(r) on the core boundary. Consequently the
equation v e obtain is simply

d"8 s*(r)4~(*)—Xs*(r)Xs(r)J

BW(Es)
d'r xs*(r) xs(r) (3 7)

~~a

The depletion hole can now be expressed in terms of the
model potential and model wave functions'.

BW(Es)
p = —p d'r xs*(r) xs (r) . (3.8)

k& kJ' g~ ~~1

The density is nonzero only within the core volumes,
since Xs(r)=—Ps(r) outside. The last term in (4.1) is the
sum of depletion-hole densities at all the ion sites in the
cI'ystRl.

To evaluate (4.1) we solve the model wave equation
for xs(r) by perturbation theory. For most applications
of the model potential it is sufficient to know the energy
eigenvalues to second order in 8'. Therefore, we obtain
the wave function to 6rst order. %C expand the model
wave function ln plRne waves,

I xs}= I k}+p tt, (k) I k+ri), (4.3)

(r I k) =Q-'tse'"'

From the perturbation calculation we obtain'

(k+ql W(E.) Ik}
tt, (k) = tlWO. (4.4)

(6'/2m)gP —Ik+tf I'j

The coeflicient tto(k) cannot be obtained by perturbation
tlleoiy. Howevel; if we substitute (4.3) 111'to (4.1) siid.
require that the exact wave function g h(r) be normalized
then, by equating 6rst-order coefrlcients, we 6nd that

tto(te) = isa (k I BV(Es)/BEs Ik}n~, (4.5)

where the integral is over a single core.
These lcsults cnablc us to wlltc R 6rst-order cxpI'cs-

sion for the electron density. Since BW/BE is manifestly
6rst order, the depletion hole becomes

This exact expression for the depletion hole is valid
for any model potential of the form given by Eq. (2.1).
It is clear that for a general structure, the depletion hole
need not be the same at every ion site. However, we
will show LEq. (4.6)j that to lowest order in perturba-
tlon theory» p ls the sRmc Rt evcI'y sltc lndepcndcnt of
ion con6guratlon.

BW(Es)
p= —2 (kI- Ik}n,

lt, &ky'

to erst order, The electron density is then

(b ft'f BW(Es)()=Z I
—I+2 —( I-

k&kr (Qf k(sip Q

(4.6)

where p, (r) is the depletion-hole density at the ith ion
Site)

tPfpe(r rt) . —(4.2)
Q~s'

~ In Sec. 7 we discuss the application of this result to pseudo-
potentials whiqh have the form of Eq. (2.1).

a. PERTURBATIOÃ THEORY AND SCREENDIG
OF T'HE MODEL POTENTIAL

In order to calculate the self-consistent screening of
the model potential, we must evaluate the electron
potential, which is determined from the e1ectron density
by Poisson's equation. The total electron density can
be written as the sum of two parts,

~(r) = 2 A'(r)A (r)

= 'Z x.*(r)x.(r)+Z p (r—r') (4 1)

+2 & &'ate(&)e"'+Z p(r —r;) (4.&)

where p(r) is the first-order depletion-hole density and
is the same at every site, since the 6rst-order depletion
hole (4.6) is independent of which Qsr we choose. The
first term in (4.7) is the uniform plane-wave density;
the second is a uniform density, which, when integrated
over the crystal, exactly cancels the integrated de-
pletion hole (Fig. 2); the third term is the screening
charge density.

%ccarl now proceed with the self-consistent screening
calculation using the standard procedure. 6 Since each
Fourier component (off-diagonal plane-wave matrix
element in the case of a nonlocal potential) of the model
potential is screened independently, we carry out the
calculation in k space rather than in r space. The

W. A. Harrison, Psecukpoteltiols ie the Theory of 3fetots
(W. A. Benjamin, Inc., ¹wYork, 1966).
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Fourier transform of the electron charge density, o (g) (ELECTRON DENSITY ]

e =— d'r e '&'e(r)
0

(4.8)

can be obtained directly from Eq. (4.7). The result is

N, =2 Q a, (k)+S(q)p„

~+ +MODEL
POTENTIAL

Fze. 2. A schematic plot of the uniform electron-depletion
densitywhere p, is the Fourier transform of the depletion-hole

density at a single ion,

d' e "'«{r),
00 g~

QO=Q/1V= volume per ion,
the structure factor explicitly. Consequently, the form
factor m, (k) can be writtenand S(q) is the structure factor for the system heing

considered, ~.(k) = ("+v")/~(q)+f(k, «)+g(q), (41&)1
S(q)=—Z e "". (4,11) with ve, =%re'p~/q«and all the other lower-case func-

tions defined as in (4.16).
Equation (4.17) is a key result. It is valid for any

potential of the form given in Eq. (2.1). In terms of that
equation we have

We substitute {4.9) 1Ilto Poisson s equation and solve
self-consistently for the electron potential. Since 8'
contains a nonlocal, energy-dependent term, the screen-
ing is not entirely local. %e find that the screened form
factor can be written v, =S(k+«Ivlk),

BW(Z«)
e« ——g —(k~ [h)

kgb' 0 Mp

and the depletion hole density p(x) at a single model ion.
~4.&0~

IV, (k) = (k+« I
IV

I k)= (V,+Veg)/e (q)+F (k,«)+G(q)
(4.12)

f{k,«)= —& 2 (k+«l~~(&«r)&~lk), (4.»)

In this expression, «(q) is the Hartree dielectric function,

me' 1—vP 1+g
e(q) =1+ — ln +1 I, (4.13)

2s.k'pk'g' 2g 1—g )
g= q/2k«

V, and F(k,«) are, respectively, the matrix elements of
the local and nonlocal parts of the unscreened model
potential, G(q) is given by

2/2 Fk

F~= l~){fl.

Consequently, all the terms in (4.1'«) except se„ the
depletion-hole contribution, can be evaluated explicitly
for a given model potential.

To obtain v@, wc must know the distribution of the
depletion hole in addition to its magnitude. %'e could
in principle evaluate the Fourier transform

d'«-"'9«*(r)A(r) —x«'(r)&«(r) j
(4.19)

( ,«) p«= —Z
G(q) = d'k- {414) Qo «&««

~'q'e(q) «&«~ (&'/2~)l k' —Ik+«I'3

(we have converted the sum over occupied k into an
integral), and. Ve, is the depletion potential,

Ve, = (4xe'/q')p, S(q). (4.15)

+c can separate thc lnfoI'DlatloD about thc stlucturc
of the lattice out of Eq. (4.12) by noting that IV can be
written as a sum of potentials centered about individual
ion sites,

so that we can write'

W, (k) =XS(«)(k+« I
w

I k) =S(q)w, (k) . (4.16)

The terms V, and F(k,«) are obtained directly from the
bare inodel potential which is a sum of individual ion
contributions. The depletion potential (4.15) contains

by analytically continuing the @rave functions into the
model volume uslDg thc known Dlagnitude aDd dcrlva"
tives of these functions on the surface of 0~. However,
such a computation turns out to be analytically
intractable. The procedure used in Sec. 3 to evaluate
similar integrals also breaks down since additional
terms, which cannot be evaluated explicitly, enter due
to the exponential in (4.19).

As a erst approximation we ignore the exponential
term in the integral and write

se, = (4n e'/q'Q«) p, (4.20)

which is equivalent to assuming that the depletion hole
is a point charge at the ion position. Any spreading of
the depletion hole will require that (4.20) be multiplied
by a modulating function M(q, E«r). It is probably
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reasonable to assume that M(q, R~~) does not deviate
much from unity over the range 0&a&2k p.

S. LONG-WAVELENGTH LIMIT OF THE
FORM FACTOR

From Eq. (5.3) we can write -', Ep(p/Z) in the form

p X 'p BA((EI,)
', Ep-— ———g dk k(ki Eg )k). (5.2)

Z kp Bk

Consequently, the limit of g(q) as q approaches zero isIt is of particular interest to determine the behavior
of the model-potential form factors in the long-wave-
length»mit. We consider erst the local terms in (4.12).
From (4.10) it is clear that

g{q) ~, f(k—p) lEp—( P'), (5.8)

ue ~ u/0~.
Q~

and, the nonlocal contribution to the long-wavelength
(5.1) limit of the form factor is simply

Using this result and the well known long-wavelength
limit of the Hartree dielectric function we obtain

immediately

»m (~.+~«)/~(q) = 3'(1—~/~)
/~0

li, t f(k,e)+g(q)j=f(k) —f(k )—lE ( /~) (5 9)

When we combine Eqs. (5.2) and (5.9), we obtain

wo(k) =lim m, (k) = ',Ep+—f-(k) f(kp)—. (5.10)
q~o

where p is calculated in terms of the model potenti o

factor, evaluated at the Fermi surface, is

Since

f(k) =lim f(k,q).

(k+q)
f{k,q)=y k, [k+q~, k.

Ik+ql
EQ (k+q—~A){Eg)P)~k),

we can, after some computation, rewrite the expansion
as

f(k,q) = f(k)—
k

8
-(k'~Ag(Eg)E(~k)~g g+0(q'). (54)

Bk'

2Q Bu {Eg)
p= — — — d'k(k

i i
k). (5.3)

(2~)' ~(ap

Next we consider the nonlocal terms in the form
factor. For small q we shall expand the function

f(k,a) as

f(k,q) =f(k)+q ~f(k,q)/~el, =o+o(q'),

wo(kp) = —SEp.

This is a well-known result for local potentials.
Previously it had been assumed to hold for nonlocal
potentials as well. We have now demonstrated. that in
fact it does. It should be emphasized, however, that
(5.10) is a erst-order result. Additional terms enter in
higher order. Also, it is important to note that —~3Ep

obtains only at the Fermi surface. For arbitrary k&k p
we have the result given by (5.9).

We should point out the diGerence between our
results and those obtained by Heine and Animalu. 4

Instead of calculating the true electron density, they
introduced an orthogonalization hole of magnitude
determined from orthogonalized-plane-wave (OPW)
theory. In evaluating the long-wavelength limit they
overlooked the energy dependence of the model-
potential coeKcients A ((E) and found that

lim ff(kq)+g, (q)] 0=

Therefore they obtained

—3Ep{1—u" /~)

for the long-wavelength limit of the form factor, In
order to reduce this to the local limit, 3JEp they
rcnormalized the dielectric function with a constant
factor (1—popw/Z}.

%e have shown that their renormalization procedure
was not correct, that the depletion hole combines with
the nonlocal contribution to the form factor to give

I f(k) —f(k p) $ in the long-wavelength limit.

Using this result we study the behavior of

28 f(k,q)
g (q) = d'k —(5.5)

~'q2e(q) gv( gp (k'/2m) (k2—
( k+q

~

')

as q approaches zero. We substitute (5.4) into (5.5),
carry out the angular integrations, and pass to the
limit. The result we obtain after considerable manipula-
tion Lsee the Appendix $ is

BA ((Eg)
g(q} ~ —f(kp)—Q dk k(k~ P)tk)

q~Q kg & Bk

6. THE HA MODEL POTENTIAL

In this section we apply our results to a particular

(S.g) example of the general form given in Eq. (2.1), the
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zero-order app
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(rle-l|l)=-r e = —(Ze'/r)(r! P), r&R„,

= —P A((E)(r!lr l) dn'(l! r')(r'!P),

r&Rsr. 6.1

and g(g) and ohtaln%e compute et the functions f(k,q) an g

=- '"'
2l 1A EEf(k,q) = —3

I&I I~'I

X x x jg
' '

x (6.2)X dx x'ji(k'Rsrx)j ((kR~x),

""'g(2l+i)a(c)=,
A g (Es)

dx x'j((k'Rsrx) j)(kR~x)

(63)

co= Bohr radius
p

B=cos 'k k'/kk',

E =model radius& Q~= 3x'Rpy,

R =cell radius, 00=43m

ears in the long-Th q
—0 limit of f(k, ti), which appears

'
The q=o lnnlt of

0

wavelength form factor, ls

Q(2l+1)Ag(Es) dx x'jP kRsrx .

he xp
'

can be evaluatedhcsc cxpI'csslons caDThe x integrals ln the
plicitly, but we leave the resu ts ln ln r

later convenience. T

energy dcpen en
taken into account vrho% this cncI'gy pdc cDdcncc ls a

C O

- rder expression oThe general 6rst-ord o n
hole [Eqs. (4.6) and (5.7)] apphe o

otential givesp

p 4''E =—P (2l+-1)—"-=Q
kpZ 0

BA ((Es)
dk k dr r'j p(kr). (6.5)X

Bk 0

a u s
' '

that the coeKcients A, (E)alu's~ results indicate t at e

) so

Ag(E) =A)(Ep)+ — rg
= (E Er)BA )/BE! ~~. 6.6—i, dish Laboratory Technica epor

o. , n land (unpublished).
in1ah1, Caven 1s

No. 4q Calxlbrldger EIlg aQ

BAs(3tjr)'

BZ t,3to/

0.132
0.058
0.118
0.161
0.171
0.211
0.224
0.258
0.123
0.161
0.183
0.147
0.138
0.118
0.145
0.149
0.163
0.092
0.090
0.096
0.111
0.080

p/—~ po—rw/~

0.0605 0.068
0 0564 0 074
0.1006
0.1223
0.0950
0.1699 0.144
0.1908
0.2209—0.0299 0.057
0.1082 0.079
0.1341
0.1044 0.138
0.2042
0.0784 0.076
0.0869
0.1186
0.1459
0.0487
0.0647
0.0822
0.1007
0.0/48

3.26
3.93
3.93
3.93
3.93
4.86
5.20
5.63
2.35
3.34
4.66
2.90
3.35
2.98
3.15
3.47
3.58
3.18
3.33
3.51
3.65
3.85

Ll
Na
Na
Na
Na
K
Rb
Cs
Be
Mg
Ba
ZD
Hg
Al
Ga
IQ
Tl
Si
Ge
Sn
Pb
Bl

2.8
2.2
3.0

4.0
4.2

4.8
2.0
2.6
3.4
2.2
2.6
2.0
2.4
2.4
2.4
2.0
2.0
2.0
2.1
2.0

e can then be smittenThe depletion charge can

p Rsr)' BA )(Er
9 /IZ BEZ

dx x dy y 3P(krRsrxy). 6.7)

li6CatiOD. FollO~lngWe can make ione further SDnp i
d Abarenkov, ' vm etclnc an

and write

BA;/BE= BAs/BJ +Bn;/BE, s=o,
Then using the result

Q(2l+1)jP(s) =1,

@re have

' BAs(Er) Bns(Ep)p R~ s E
BE

BQr (Er)
dy ysj s'(k pRsrxy)+ 27

1

6.9)dyy 31 (kpRsrxy
0 0

(-'9az)'" we find that toto lowestSince kr ——(1/Ro) a a.
order in Rsr/Ro,

p BAs(Ep) R~)s

Z BE
(6.&0)
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7. THE PSEUDOPOTENTXAL

-Ag
As we indicated in Sec. 2, a restricted class of pseudo-

potentials,
/

/
I

-Ag
l

p+0 p&o
I

~= l'+2 f.(E) I~&&~l, (7.1)

FIG. 3. Representative model potentials vphit:h lead to
pOSltiVC (a) and negathre (b) depletion holCS.

have thc same form as the general model potential we
have considered. Consequently, we can apply our
expression for the depletion hole to (7.1) and obtain

We 11ave used AnlUlalu s results fol 8A t/81' to
evaluate Kq. (6.9) to four places. The results are given
in Table I along with va1ues for the 6rst-order expres-
sion, Kq. (6.10). For comparison we list also the OPW
orthogonalization hole as given by Harrison. '

There are several results in Table I which deserve
comment. %c note that the first-order estimates for the
depletion hole are always too large. When R~/Ec can
be regarded as a small parameter, the 6rst-order ex-
pression does give reasonab1y accurate estimates. For
Na we have values of p/Z for several R1r. One might
expect an R~' variation for p. However, it is clear from
TRble I that thc varlRtlon ls consldera41y less pro-
nounced than this.

The negative depletion hole for Be given in TRMC I
is not necessari1y an incorrect result. For the HA model
potential it is possible to obtain negative depletion
holes. This becomes clear if we rewrite Kq. (3.1) for the
depletion hole using Kqs. (3.2) and the virial theorem.
Vje find

p = -g (21+1) d'k
(2~)' k&kg 0

r2«B P(k,.)—XP(k,r)~

-P (21+1)
(2~&' ~

Z8
g A((k)XP(k, r)— QP(k,r), (6.11)

2r

where wc have wllttcIl thc wRvc functions ln thc forin

X~(r)=Z "~(»r)F~-(e v).

For g~ suKcicntly 1arge, the self-consistency of Eq.
(6.11) requires that p (electron charge) be positive.
Physically, this means that the constant potential wc].1

is considerably deeper than Zp'/r over most of sphere
of radius E~, as shown in Fig. 3(a). Consequently, the
Inodcl wRvc functloIl will decrease morc 1Rpldly than
the exact wave function for. r&R~. If 3 ~ is 1arge, then
this condition will hold Qvcl most of thc interva1

(O,R~). Since we choose X~(r) without nodes, it follows
that it is possible for the 6rst expression in (6.11) to be
positive. For Be, the Ag given by AniInalu~ are 1argc
enough to glvc R negative depletion hQ1c.

V-(E.)
k&k~ n

(7.2)

Evidently, 1f f ls independent of E~, tile depletion hole
is zero. However, we know that the orthogonalization
hole in pseudopotential theory is given exactly by

p" = —2 &&~l~lx.),
Ip& ky

(7.3)

&=2 l~&(~l,

which is nonzero unless
~
x„) is orthogonal to all the

core states.
To resolve this apparent contradiction we will show

that there is only one coeflicient f (E) which yields a
pseudowave function not identically equal to the true
wave function, and that for this f (E), Kq. (7.2) is
identical to (7.3).

If we take the inner product of the pseudowave
cquRtlon,

(2'+ll')
( &~&=E~ ) &a&,

with a core state &P ~, we obtain

&P~ T'+~)xs&=E~(P(&~)

II'= l'+Q(Ea —E.) ~n&&n~. (7.7)

Hclc E@ ls thc cncI'gy of thc state k being considered.
Our general expression for the depletion hole applied to
this potential gives precisely the orthogonalization
hole, Kq. (7.3).

Lfp(E )-(E.-Ep)j&~lx.&=0, (7.5)

wl1ele Ep ls 'tile cole-s'tate energy. If fp(Ey)=Eg Ep-
for all lr, then

~
X~& need not be orthogonal to the core

state ~P). For all other choices of fp(E~) it follows from
(7.5) that

(7.6)

Since ~Xlt, &= ~Py) outside the core, the requirement of
orthogonality to the core states means that

~
XI,&=—~Pq)

for all k. Then by using the definition of the depletion
llole, Kq. (3.1), ol' by substituting (7.6) 111to (7.2), we
see that p

=—0 for all pseudopotentials of the form (7.1),
except
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There is one exception to the above argument which
requires special consideration. Suppose we let fs(E»)
=E», Es—.Then for k=ko, Eq. (7.5) is satisfied without
requiring that

I X», & be orthogonal to the core states. In
fact,

I X»,) is arbitrary. Then from (3.1) we see that the
k =ko component of p need not be identically zero. This
possible deviation from zero for a single state con-
stitutes a set of measure zero relative to the sum (or
integration) over all occupied states and consequently
does not alter the total depletion hole. However, we are
led to ask why it is that from (3.1}the ko component of

p is not zero, whereas from (7.2) even the k=ko com-
ponent of p is id.entically zero for the choice f (E»)
=E», L~'. The—reason is that in, deriving (7.2) we

required that the pseudowave function be a smooth
function of k in order that the expansion of

I X») in Eq.
(3.6) be valid. Now we have shown in (7.5) that for

(7.8)

x»)=—lp») for all kWk0. For k=k, , I x„,) is arbitrary.
To insure the smoothness of IX») in k space, which is
required to obtain (7.2), we must set lx», )= IP», &

(which we are free to do since
I X»,) is arbitrary). With

this choice for
I X»,), Eq. (3.1) gives p—=0, as does (7.2).

If we do not choose
I
x»,}=

I p», &, then we cannot use
(7.2) to compute p and we see from (3.1) that the
k =Lp component of p is nonzero, though the total
depletion hole remains essentially zero.

It is possibles to obtain an expression analogous to
(3.8) for the depletion hole associated with a general
pseudopotential of the form' '

However, this expression yields the well-known result
(7.3) for the orthogonalization hole.
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(j.wz).

ky'

a(v) ~—'"' kP Q

k 2k+q
dkP —ln (kIAi(E»)P, Ik)

q 2k —
q

8
+2k &k'IAi(E»)Pilk&l»» . (A1)

Bk'

The limit of the 6rst term can be determined by writing
f(k) =d$/dk, integrating by parts, splitting the integral
into two regions around the singularity, and 6nally
integrating by parts once more. The result is

kp

dk f(k), (A2)
kp Q

which is precisely what is obtained by evaluating the
limit before integrating.

We can rewrite the second term in (A1) by noting
that the derivative acts only on the wave function:

8
2k - &k'I~i(E»)Pilk}l» -»=k &k'l~i(E»)Pilk&l» =.

Bk' Bk'

8 l9

+k & l~i(E»)Pilk') I»»=k—&kl~i(E»)Pilk&
Bk' Bk

—k(kIL~Ai(E»)/BkjPilk). (A3)

Using Eq. (A2) and (A3) lil (A1) we find that

»g —
gf(k)-

g(g) ~ — dk f(k)+k
kp Bk

8Ai(E»)
dk k(kl P, Ik). (A4)

Bk

Integrating the fust term in (A4) by parts leads us
directly to Eq. (5.6).

APPENDIX

Our result for the long-wavelength limit of the form
factors depends critically on Kq. (5.6). Therefore, it is
important that we provide some details of the calcu-
lation leading to this equation, particularly since it
diBers from the result obtained by Animalu. '

When we substitute Eq. (5.4) into (5.5) and do the
angle integrations we obtain


