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by the expression

1/m. p* ———P eg/m*(k), (4.2)

Green's function

G(IS)=1/L~ E—. Z—(~,~)j, (4.5)

2h
fi a=

mQP~Ic

XI,.*VXj,d'~r (4.3)

where A~I, & is the energy di6erence between the Bloch
states Xq and X„. From the expression (2.17) which
defines gi, qoi, in the limit as Q

—+ 0, we obtain

(X'[~IX.&=~Lk'( '[~(~) [k&
—k(k i

W(k') l k')*j/A&op i„(4.4)

where A~I, I,
——el, —eI,. The present formalism can there-

fore be used to evaluate oscillator strength directly in
nearly-free-electron metals without recourse to energy-
band calculations. However, the pseudopotential needed
is diBerent from that determining, for example, electron-
phonon interaction and the energy-band structure. In
addition, (4.4) can be evaluated self-consistently by
replacing W and W,tt given by (3.18).

For the complete problem we have, in general, a

where n~ is the Fermi distribution, E is the number of
conduction electrons per unit volume, and fi, i, is the
"oscillator strength" for transitions from state k to
state k';

where g (k,E) is the self-energy, so that we can define
an eQective "electromagnetic" mass by

(1/A)BE/Bk~g t. ——Ak i/m *, (4.6)

and find, from the poles of (4.5),

m *=ms(1 B—P /BE)
~ k „~, (4.7)

where vs~ is the zero-Geld Bloch eGective mass. This is
our effective-mass theorem. This is the analog of the
so-called "thermal" mass in the electron-phonon inter-
action. "It does not seem at the present time to have
any more general meaning than the optica) effective mass
introduced above. But it is evidently the proper mass
to be used in describing the inQuence of the Geld on the
dynamical properties of the Bloch electron. No attempt
will be made here to compute this mass explicitly; in
practice, it should follow the procedure for the electron-
phonon case exactly. "
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Fermi Surface of Lead from Kohn Anomalies
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The dispersion relations for phonons in lead determined by neutron spectrometry exhibit a large number of
Kohn anomalies, which may all be related to the Fermi surface in a consistent manner by considering both
electron transitions diametrically across the Fermi surface and nondiametral transitions between points
with parallel tangent planes. Factors affecting the size and shape of anomalies are reviewed. The detailed
interpretation of anomalies leads to a mapping of the Fermi surface, and the result may be compared
with that of Anderson and Gold, who used the de Haas —van Alphen method. There is fair agreement,
with significant particular differences. The sizes of anomalies have been interpreted in terms of a screened
ion-electron interaction.

r. INTRODUCTION

INCR Kohn' pointed out that the phonon-electron
~ ~

~

interaction changes abruptly along surfaces in the
wave-vector space of phonons which are directly related
to the Fermi surface, and that this change may be
observable as kinks in phonon dispersion curves, such
anomalies have been observed in some metals. Brock-
house et aL' were the Grst to see the eGect, in lead. As

*Chalmers University of Technology, Gothenburg, Sweden.
' W. Kohn, Phys. Rev. Letters 2, 393 (1959).
~ B. ¹ Brockhouse, K. R. Rao, and A. D. B.Woods, Phys. Rev.

Letters 7, 93 (1961).

they pointed out, the investigation of the Fermi surface
via phonons and neutrons is a potentially interesting
complement to other methods. The neutron method
does not require particularly pure samples or low tem-
peratures, and the interpretation of data is mostly just
a matter of geometrical constructions. But it is rather
elaborate and, with present neutron sources and spec-
trometers, applicable only to metals that exhibit rela-
tively large anomalies and are especially amenable to
neutron spectrometry, and in fact has not previously
been used for a comprehensive study of a Fermi surface.
The anomalies in lead seemed tq be su6iciently pro-
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TAm.z I. The sizes and senses of Kohn anomalies for a nearly
spherical Fermi surface. Numbering is in the order of increasing
q according to-Fig. 1. A plus sign indicates that the anomaly is
upward in the direction of increasing q, a minus sign the opposite.
Brackets indicate that values are subject to considerable
reservations.

AnoIQaly
No.

[1,1,1&
1
2
3

[2,00j'1'
2
3

[2,2,0)'1

2
3

6

8
9

—0.025
+0.022
+0.012

(—0.010)
+0.014

(—0.009)-0.034

—0.017
+0.017
+0.019

(—0.016)
(—0.004)
(—0.004)
(—0.016)
(—0.008)
(—0.008)

Q~ (10i3 rad sec )
T$

—0.011
+0.009

0

(—0.016)
0

(—0.014)—0.016

0
0

+O.O05
0

(—0.013)
(—0.016)

0
(—0.008)
(—0.009)

T2

0
+0.019

0
(—0.014)
(—0.013)
(—0.013)
(—0.014)

0
0

nouQccd to RHow such RD 1Dvcstlgatlon, Rnd to this cnd
we carried out extensive measurements, both in sym-
metry directions and elsewhere. Many anomalies were
revealed, some of which correspond directly to points
on the Fermi surface on or near the symmetry axes,
while others required for their interpretation detailed
consideration of the surface topography, Twenty points
on the Fermi surface could be assigned, amounting to a
fRlrly complete dctcl'minRtlon of thc whole sUlfRcc. OUI'

version is generally quite close to that of Anderson and
Gold, ' who used. the dc Haas —van Alphen method, but
thcl"e al c slgn16cant (Mcrenccs) pRrtlcularly lQ

third zone.

Kohn anornRllcs RI'c RssoclRtcd with R small ncgatlve
contribution to phonon energies duc to virtual excita-
tion of electrons by phonons, and occur because this
contribution varies more or less abruptly when there is
abrupt variation in the density of electron transitions
voth 1cspcct to wave-vector space. Thc importRIlt
transitions are between states close to the Fermi surface
so that the interaction condition Q= iII—ks (where Q is
the unreduced phonon wave vector and hi, k2 are
electron wave-vectors) may be regarded as a relation
for points ki and kg on the Fermi surface. Abrupt varia-
tions of the transition density occur for pairs of points
where the tangent planes are parallel. Diametrically
opposite points on R sphere RI'c Rn idealized example:
Transition vectors parallel to the diameter and of length

Q Iolll smail cll'clcs 0'f the sphclc wl11cll shrink as Q
Illcl CRscs Rnd dlsappcRI' whell Q= 2klp„so that the

' J. R. Anderson and A. V. Gold, P&ys. Rev. 139, 1459 (1965).

density of transitions falls from a constant value when
Q is smaller than the limit 2k' (if zones of thickness EQ
are considered) to zero beyond the limit. When the sum
of all possible transitions with their di6erent energy
transfers is taken into account, the anomaly is not so
shRrp as slIIlplc consldcl"Rtlon of 1Tlomcntum tI'RnsfcI' on
the Fermi surface indicates, but there is still an upward
shift of phonon frequency as Q increases through 2k'.
If the surface is locally concave outwards, the shift is
dowQwRrd instead.

The rules that the sense of an anomaly is determined
by the local curvature and that small curvature tends
to make an anomaly large are inadequate when opposing
tendencies are of comparable strength, e.g., at a saddle
point with approximately equal and opposite principal
curvatures. In such cases, de6nite conclusions cannot
be reached merely by considering the shape of the
surface: It may be that Qot only the curvature but also
the variation of gradsE (where E is electron energy)
diff cl s 1Q dlGcrcnt sul'face directions from thc point
concerned. If an anomaly is regarded as the sum of
contributions from narrow segments of the Fermi sur-
face that radiate from the point concerned, the contri-
bution from each segment must take account of the
variation in grady' as well as the curvature. Compli-
cations in this respect are particularly likely to occur
near the intersections of the Fermi surface with Bragg
plRncs.

Considerations of local shape are easily extended to
transitions between points that are not diametricaHy
opposite; in this case the shape to be considered is that
of R sulfRcc which ls glvcn by thc difference between
the two local surfaces, taken along lines parallel to the
chord between the points with parallel tangent planes.

The treatment of Kohn anomalies by Taylor4 includes
the angle between the transition vector and the normal
to the Fermi surface. When this angle approaches 90,
anomalies become small. Such an Rnguhr dependence
ls Rt lcRst pRI'tly 1Qcludcd 1Q oui difference sUrfRcc,
since the curvature of this surface increases as the angle
coQcclned lnclcRscs. Fullcl considcrRtlon of this polQt
ls UnncccssRly here.

Taylor's formulas4 include the cGect of gradI, E, i.e,,
tllc elcctl 011 velocity 'v. (As tlmy stRlld, 'tile formulas ale
not symmetric in yi and v2, but such symmetry would
bc lntloduced by a coIldltlon of lnvcI'sloQ symmetry oQ
the Fermi surface. ) The significant thing for our quali-
tative discussion is that anomalies increase in size as
electron velocities decrease, roughly as

~
vl —vs

~

'. This
factor is directly related to the energy difference be-
tween electron states in the denominator of the second-
order energy shift for a phonon interacting with elec-
tI'ons. T%'0 consequences RI'c that tlRnsltlons bet%'ccQ
points on the same side of the Fermi surface may be
strong, because the electron velocities are nearly
parallel, and that regions of the Fermi surface near

& P. L. Taylor, Phys. Rev. Dl, 1995 (1963).
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Bragg planes may be particularly active, because the
component of the electron velocity perpendicular to the
Bragg plane is small. '

Other factors affecting the size of anomalies depend
entirely on phonon quantities, and may be obtained
from an equation expressing the variation of z' with
respect to q in a metal (see, for instance, Vosko et al. ,

s

Eqs. 3.21, 5.1, 5.2):

~'(q) =or4'(q)+2 s ((C e/g)'F'(g) —(& e/Q)'F (Q))
—(q e/q)'F'(q), (1)

where the sums do not include g= 0. Q= q+g, q being
the phonon wave vector reduced to a cell near the origin
of wave vector space and g a reciprocal lattice vector,
and e is the unit polarization vector of the phonon.
co~ is associated with the direct interaction between ions,
and F with the interaction between ions via the con-
duction electrons. Ii' is explained in the text and
diagrams of the article by Vosko et a/. : It is the product
of the square of an expression which refers to the inter-
action of a bare ion and an electron and a screening
factor. Kohn anomalies are associated with a kink in
this latter factor at Q=2kr;, the height of the kink
being approximately 0.07 of the value of the function at
this point, i.e. , the kink in F' is about 0.07 of F'(2k').
Using the same units as Vosko et ut. , the height of an
anomaly (Aor) for a spherical Fermi surface should be
approximately

+or= 0.035p'(2&r, ) or~'(Q e/Q)' (symmetry factor)/or,

(2)

where or„ is the plasma frequency (6.67X10"rad sec '
for lead), and the symmetry factor takes account of the
number of simultaneous equal contributions to the

' footnote added in manuscript. L. M. Roth, H. J. Zeiger, and
T. A. Kaplan LPhys. Rev. 149, S19 (1966)j suggest that Taylor's
results apply only to diametral transitions, and, moreover, that
Kohn anomalies do not occur for transitions between parts of the
Fermi surface where the normals are parallel (as distinct from
antiparallel). The latter statement is of particular interest here,
because two observed anomalies in the L1,1,1j dispersion curve
have been interpreted by us in terms of electron transitions of the
kind rejected by Roth et al. But it seems that their reasoning is
incomplete in that they neglect the phonon energy in the de-
nominators of their integrands I see their Eq. (24)], and when
they point out that a certain integrand changes sign if k1 is
exchanged for —k2, k2 for —k& (i.e., when transitions with the
same Q between opposite positions on the Fermi surface are
considered} in order to draw the conclusion just mentioned about
the parallel and antiparallel cases, they have omitted the accom-
panying change in the limits of integration in k space. Consider-
ation of an example with transitions from an occupied region to
the left of a point a on a line in k space to an unoccupied region to
the right of a point b (Q&b —a) and transitions with the opposite
regions occupied and unoccupied (Q(b —a) shows that there is no
cancellation between the two groups of transitions. However,
although the reason given by Roth et al. for the rejection of the
"parallel" case does not seem acceptable, it is true that this case
is not covered in Taylor's treatment, nor in our discussion in
Sec. 2. A fuller treatment indicates that anomalies may occur in
the "parallel" case, though they do not conform to the formulas we
have used here —but space does not permit us to elaborate on
this point.

~ S. H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 {1965}.

0,0,

FIG. 1. Estimated positions of Kohn anomalies for a nearly
spherical Fermi surface in planes between the principal symmetry
directions.

sums of Eq. (1) which may occur when q is in a sym-
metry direction. Different models of the ion-electron
interaction give values of F'(2k r;) between 0.01 and 0.04.
Departures of the Fermi surface from the spherical form
will often make Eq. (2) quite inaccurate, but neverthe-
less it seems worthwhile using it for a first estimate of
the expected sizes of anomalies, particularly since the
relative sizes of the anomalies at the same position in
different polarization branches should usually be given
correctly by the formula. Table I shows the result of
such a calculation, where for the sake of deiniteness we
have assumed F'(2kr)=0. 01, which is approximately
the value for a Bardeen model (see Vosko ef at. ,

s

Fig. 21). Figure 1 explains the numbering of the
anomalies: The quadrangle there is obtained by un-
folding three sides of an elementary tetrahedral cell of
reciprocal space, and the curves on it are the inter-
sections with spheres of radius 2kr; (2.48 q units for the
free-electron Fermi sphere in lead), centered at various
lattice points, and slightly modified to indicate the
eGect that occurs near Bragg planes. Numbering is
outward from the origin. The sign of an anomaly is plus
in Table I if the anomaly is expected to be upward in
the direction of increasing q in Fig. 1 (minus in the
opposite case). The signs correspond to a spherical
surface, neglecting the possible effect of Bragg planes
on the shape of the Fermi surface in their neighborhood.
The I.branch in the table is always that with the highest
frequency, the T» branch is next, and the T2 branch the
lowest; the only place where this may cause confusion
is for q) 0.97 in the L2,2,0] direction, where the branch
with polarization in the $2,2,0j direction is the Tt
branch. Bracketed figures indicate that the shape of the
Fermi surface at the point obviously departs consider-
ably from the spherical form, so that these values are
only of interest for the relation between the diKerent
branches.

Formula (2) may be inaccurate even for relative
values of anomalies in different branches at the same
position if the corresponding point on the Fermi surface
is on a Bragg plane. This may be illustrated by reference
to Fig. 4. From a consideration of the shape of the sur-
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FIo, 2. The sites of measuremen&»«on axes of sgmxnet~
(points) an& ohserved anoma1ies (squares). Dashes through points
indicate polarizations of observed phonons.

fRce, thc tI'RDsltlon cLc3 has weight zero because Rll

translations of thc tlaDsltlon vcctol move onc Gx thc
Other cnd of lt into Rn empty region. This docs Dot Rpply
to diametrically opposltc points ncRx' cl Rnd c3. Accord-
ingly, there shouM bc R hole in the associated surface of
anomalies Rt the posltlon collespondlng to c, but lt 18

Dot evident fI'GIQ RQy slIQplc RI'gUIQcnt whether or Qot
this hole may be 0«size comp«able to the resolution
of measuremcnts ln Q space, T4c effect is neutralized
for phonons with polarization parallel to cycg because
the surface near c4 acts as a direct continuation of that
Dear cy ln this case — and llkcwlsc fol the SUI'fRccs DCRI'

cg RQd c3.
@he screening factol Rnd F shouM actuary bear thc

Inarks Gf nondiamctral transitions Rs %'cll Rs diaQ1ctlal.
%hat this may imply for the sizes of the former we do
not know, but we assume that the relative sizes for
diferent branches will still bc governed by R formula
like (2).

The factorsin formula (2) are not present in the treat-
ment of RQGIQallcs by Taylor. Plesumablf they
dlsappcal ol go into dlsgulsc wbcn Rn RvcI'Rgc vRlue of
thc matrix clement for thc clectx'GD-phonon interaction
in terms of resistivity is introduced in his Eq. (5).

HR1I'lson suggested that thc lrregularltlcs ln the
dlsperslon CUI'ves Of lead Rre Dot U11agcs of the FcrIM
sulfacc, but, of thc energy-wave-Dumber rc]ation fox'

electrons. IIl terms Gf thc function P of Vosko 8f gl.

which we have utilized above, this means that the ob-

served anomalies Inlght bc Rttllbutcd to tlM glosscI'

structure, Dot to the small kink. As Cochran' has com-

mented, "it seems unlikely that the rather pronounced

kinks in thc dispcrsloIl curves fox' lcRd cRQ bc accounted
fox' except 1Q tcx'Ins Gf thc bchavlol of thc diclcctllc
fuQctlon —l.c., ln terms of thc cGcct described by

&".Harrison, Phys. Rev. 129, 2512 (1963).
Cochran, INelgstsc ScQP8P'A$g of X8QEF08$ (International

tonic Energy agency, PieIlna, I965)» Vol. I, p. I6.

Kohn. This comment ls borne Gut by thc IQRQy details
Gf the plcscnt comparison bctwccD t4c Fermi sulfacc
Rnd anomalies. But the other cBect may give rise to
bI'GRdcl hUIQps GI' dlps ln dispersion CUI'vcs; R possiMc
example is mentioned in Sec. 4C.

Maris' has suggested that kink-type anomalies in
phonon dispersion curves may arise from the phonon-
phonoD Interaction 1f two Of thc three phoQGQs lIlvolvcd
ln onc of thc slDlplest types of interaction have thc SRIQc
group velocity. No observed anomalies call for such
lntcrprctatlon~ bUt cvcQ from Other pojnts of vlcw' lt
sccIQS ]Usti6ablc to dlsIcgRrd this possiblllty, ln t4c
px'cscQt lnstRQcc Rt lcRst. As 1D the RQRlogous CRsc of
Kohn anomalies' 'tile shRlp dlscolltllllllty 111 cu(g) sllg-
gested by the simple consideration of topography [of
two diferent surfaces in (q,cv) space herej will be
"blunted" by several factors in a more complete treat-
ment, and in fact it remains to be proved that an
anomaly does occur when these factors have been taken
Into accoUnt. IQ t4c 6I'st place) the contr[]3utlon to thc
phonon energy here involves a sum over states which
RI'c Qot Rt Rll so CGDccQtlRtcd to R particular neighbor-
hood 1Q wave-vector spRcc Rs they weI'c ln thc clcctI'GD-
phonon case: In the electron-phonon case a small shift
of k away floIQ thc peak Gf thc lnteractlon 8 energy
resonance entails a relatively large energy shift and
large reduction of the interaction probability. Also, the
approach to a critical position for Rn interaction in-
volving three phonons as one moves along a dispersion
CUI'vc lQvolves t4c RpplGRch, to osculatloD of surfRces
c0=47s(g) Rnd, BRy, M=MI(QI)+Ms(g —QI), wllcll
varlcsp Rnd this RpplORch wlB OfteQ be gradual OI'

ObllqUc, Rs consldcratlon of R two-diIlMQslGIlal example
indicates (the subscript1here indicates a phonon which
lll'tclRcts vll'tllally wltll pllollolls 2 and 3). Molcovcl. ,
thc thlckQcss of dispersion suI'faces —tl1c frequency
widths of phonons —tends to blur the critical position.

The present section has included R variety of factors
that may be involved in irregularities in phonon disper-
sion curves, and it seems advisable to recapitulate very
briefly the IQOI'c lIQpol'taQt conclusions fol thc 1Dtcl-
pretation of anomalies in lead. The electron transitions
colx'cspondlng to Kohn RQGIDalles Rrc between polDts
on the Fermi surface where tangent planes are parallel
and may be either diametral or nondiametral. The size
and sense of an anomaly depend on the shape of the
surface 1Max' the points JUst mentioned~ 1Q a wRy tbat 18

RQMQRble to simple qualltRtlvc RQRlysls RDd thc slzc
also depends on three factors contained in formula (2)—
thc phonon fl equcncy RQd polarlzatlonp RQd 3 syDUDctry
factor. In interpreting anomalies, it is appropriate 6rst
to attempt RQ ldentl6catlon of thc dlRIQetlRl RQOIQRlles
llstcd 1Q Table I~ Using the cxpectcd posltlons RQd I'clR-
tive strengths Rs a rough guide. Thea nondiametral
transltlons HMy be considered, all the tlQM bearing 1Q

mind alterations of previous results necessitated by

9H. J. Maris, Phys. Letters 22, 402 $966).



supcl posit, lons. %herc RDGIQRlles cRQ bc followed
laterally from symmetry directions, this is of course a
valuable aid. to identi6cation.

A gcnelRl Recount. of Gul measurclTlcnts GD phonons
Rd has been given earlier. 'o A three-axis crystal

spectrometer was used to Iecord. one-phonon resonances
in the inelastic scattering of neutrons by a lead crystal
at 80 K, a focusing method being used throughout to
optimize resolution. Measurements in the principal
symmetry directions were almost everywhere at small
cDGUgh g 1DtcI'vRls to locate RQGnlRllcs wlthln about
0.02 tn g (the untt being 1.279 A, so that rectprocal
lattice points have their integral coordinates). Similar
dctRllcd scllcs of measurements werc ITlRdc Rlong scvcI'al
other Hnes in q space in order to follow the loci of
anomalies. Thc sltcs of such mcasurcmcnts Rrc Indicated
in Fig. 2, together with the sites of observed anomalies.
Thc quadrRnglc ln Flg 2 ls thc 8Rmc Rs 1D Flg f j thc
polarization of the phonons concerned is indicated by
dashes (dashes at right angles indicate that measure-
ments were made on phonons with each polarization).

In looking for anomalies in the phonon dispersion
curves of RluIl1inum, wc made use of R device fol
enhancing irregularities, and this was again used here.
Corresponding to each dispersion curve or profile (plot
of ao along a line in tl space), a curve of (A~/dq) versus q
along the line was drawn. The values of the slope were
taken from pairs of adjacent measurements, and to each
vRluc RQ error wRs RsslgQcd which wRs R comblnatlon of
thc error estimates fol thc two Q1cRsulcnlcQts concerned.
Figure 3 is Rn example of such a curve for phonons with
wave vectors and polarization in the L2,2,0) direction,
with a particularly irregular appearance. This treatment
of thc dRtR I-cvcRls RQGIQRllcs thRt arc often 11ldden ln a
curve of ~ versus q by the steep slope. It might seem
preferable to remove the CGect of large slopes by
conslderlng thc dIGcrencc bctwccD thc obscr'ved fI'c-
qucnclcs and some SInootI1 adjacent cuI'vc RD1ong
other things, errors would then depend on single meas-
ul cmentsq RDd would Qot, 1Dclcase Rs t11c g Interval
decreased. But thc cholcc of thc smooth cux'vc would
require sonM such RQRlysls of dRta Rs our cUrvc of slope
versus q involves, and. would, be arbitrary to an extent
that corresponds to errors in the latter curve. So we
have kept to the slope analysis. It shouM be remem-
bered that the errors in a curve such as that in Fig. 3
al c Qot ordinary Tj1utually lndcpcndcQt errors *. The
RrcR Under thc cux'vc 18 6xcd quite accurately ln RDy
interval of, say, 0.2 or longer. In several cases where
ITlole than onc series of DlcRSUI'clTlcnts wclc 1Tlade~ each
series was analyzed separately before combining the
results, since possible systematic errors do not agcct

"R.Stedman, L. Almqvist, G. Nilsson, and G. Raunio, Phys.
Rev. 163, M7 (1967)."R. Stedman and 0.Nilsson, Phys. Rev. Letters 15, 634 (1955).

0.2 0.& O.6

FIO. 3. An exRDlple of 8, CUrve Used ln locating RQOIQB, lies. For
phonons with wave vectors and polarization in the L2,2,0$
direction.

irregularities in a single series of measurements. Such
repeated. measurements, as mell as measurements at
diferent temperatures Rnd cxpcI'lcDcc floIQ Rlul111QUIQ ~~

lndicRtc that estimated crrols ln curves llkc Fig. 3 Rrc
too large) but lt 18 dlKcult to eradicate this clrol IQ
thc crrGI's.

Figure 3 illustrates, though in a rather exceptional
fashion„diScultics t4Rt IQRy bc RssoclRtcd with close
juxtaposition Gf irregularities. F1GIQ thc slnglc cuI'vc
alone it is Qot at RB obvious whether some anomahes
Rlc posltlvc Rt R ccx'tmn posltlon ox' IMgatlve Rt R nearby
posltlon. Howcvcr, lnfornlatlon from other cuI'vcs Rn
successive steps in the construction of a Fermi surface
enable such Ri@culties to be resolved.

4. THE FERMI SURFACE

A. D1RBletfRl TX'RQ81tloQS

If the picture of the correspondence between anom. -
alies and point~ on the Fermi surface (FS) is to be
convincing, lt 18 4Rrd to avoid tedious dctai, but this
can bc complcsscd by thc Usc of RbbI'cviations; e.g.,"L1,1,1j I.No. 2" for "anomaly No. 2 (Table I) in the
dispersion curve for I- phonons in the $1,1,1)direction";
"the ctfs anomaly" for "the anomaly corresponding to
the transition ctfr in Fig. 4."

Numbers 1 and 2 in the L1,1,1jdirection do not occur,
because the arc from No. 1 in the L2,2,0$ direction (e)
does not intersect the L1,1,1$ axis. No. 3 (b on the FS)
js clearly visible, at q= 0.795&0.015. A point near b can
be idcnt16ed ln R nclghborlng pr061c.

Number 1 in the L2,0,0j direction (h) occurs at
q'=0.$2~0,0/5 Rs R posltlvc anomaly 1D thc I Rnd p
branches. This agrees well with other' points near e,
though since different curvatures occur at h (see Fig. 5)
the expected sign is uncertain. An anomaly in a neigh-
boring profile plobRbly corresponds to R poiQt between
h and q (near u in Fig. 5). Number 2 (a on the FS) is
Qot immediately apparent. It is very likely that the I S



siderations does actually occur, and leads to t,»cg=1.61
&0.015, flfs=1.39&0.015.

FIG. 4. A section through the Fermi surface. Filled circles
indicate points from diametral anomalies, crosses points from
nondiametral anomalies. The large circle corresponds to the
free-electron sphere.

here is conca,vc outwa, rds, so that the anomaly is
negative, and. it may then occur (without being obvious)
close to No. 1, at q=0.57+0.015. This assignment is
supported by an anomaly in a neighboring pro6le which
corresponds to a point near y. Number 3 disappears if
the fourth zone of the FS is empty —and evidence
mentioned later shows tha, t this is probably the case.
Number 4 is closely connected with Nos. 7 and 9 in the
[2,2,0j direction —all three disappear if f If' is less
than j, .414.

Number 1 in the [2,2,0j direction (e) is quite clear
at q=0.455~0.01.5. Two nearby points in Fig. 4 and
two in Fig. 5 may be identi6ed in neighboring pro61cs.
Numbers 2 and 4 are not observed, because the arc
from [2,0,0j No. 2(a) does not intersect the [2,2,0j axis.
From other observations near b, No. 3 is expected near
q=0.95; it may be identi6ed with an anoma1y at
q=0.94+0.02. Number 5 corresponds to n, and from
the estimated positions of h and f is expected a,t abont
q= &.05; a small positive anomaly in the T» branch a,t
q= 1.06+0.015, possibly accompanied by one in the T2
branch (where large curvature of the dispersion curve
makes observation dificult) is the only possibility, and
we tentatively assign it to n. Number 6 does not occur
if the fourth zone of the FS is empty, and there is no
anomaly requiring this assignmcnt. There is no ncga. tive
anomaly in the I. and T~ branches which could be
idcntl6cd with No. 7, so on this point there is nothing
to contradict the conclusion arrived at below, that f,f,
is less than 1.414. Marked structure beyond q=-1.1 in
the I and TI (Fig. 3) branches may be interpreted. in

terms of anomahes 8 and 9 (c and f), together with non-

diametral a.nomalies. Number 8 is expected. at g=1.2
~0.05: There is a, positive anomaly in the 1. and T»
branches at )=1.22&0.02. Number 9 is expected, to
occur near q=1.414: If f If' is less than 1.414 the
anomaly is positive, and vice versa, while if f1f& were

exactly 1.414 tile R1101Ylaly wouM disappear. elf' wollM

then correspond to a relatively large negative anomaly
near q=1.31. The structure suggested by these con-

B. blondie. metral Transitions

For a near spherical Fermi surface such as that of
lead, the main places where pairs of parallel tangent
planes may occur are in the same diametral plane, or in
the same Bragg plane (taking the Fermi surface to
approach Bragg planes perpendicularly) or in parallel
planes of one or the other kind. Examination of various
nondiametral sections of an approximate Fermi surface
indicates that most of the chords that may be signi6cant
for anomalies should lic in the diametral planes of
Figs. 4 and 5, a,nd this is borne out by the fact that
practically all observed anomalies can be accounted for
by reference to the two figures concer~ed. For each
Ggulc wc IQRy trRcc anomalies corresponding to trRnsl-
tions between pairs of points with parallel tangent
planes that are not diametrically opposite, on the basis
of known and estimated features of the Fermi su~face.
The procedure may be illustrated. by reference to Fig. 4:
StRltlllg with elf l, a clloDi wltll pRlallcl tcl'111111Rtlolls
moves in a way that may be described by elf1—+ xlsl,
g6$1 ~ »Ilgl ~ glgl» glÃ2 ~ Clel» Clel (W11CIC a Colllllla
corresponds to a shift by a reciprocal lattice vector).
The locus of the corresponding anomalies may be traced,
and it is usually easy to see from the 6gure what the
shape of a given anomaly should be, and in what branch
it should be strongest. Another locus of anomalies —as
before, for transitions between the second and third
zones —ls glvcll by elfl ~ slsl» xssl ~ Glgl ~ xmas»»»

x4g2 ~ c4e3, c»e3, a.nd two for transitions in the third zone
are given by elf1—1 Nlsl, u6sl ~ g&gl, etc. and e&fl —+ u&sl,
N8s»~ g4g», etc. Thc 6rst and fourth of these loci are
sIIlooth culvcs whllc thc second Rnd third have sharp
bends. The corresponding diagrams for Fig. 5 are
particularly simple if the fourth zone of the FS is
assumed to be empty, and it is in fact the absence of
any anomalies corresponding to the more complicated
structure electrons in the fourth zone would entail that
is the main argument here for assuming the fourth zone
empty.

The loci of anomalies just mentioned must be parts
of surfaces on which anoma, lies may occur. As long as
we con6ne ourselves to symmetry directions the locus
curves suf6cc, but elsewhere we may expect them to
be insuflicient. For instance, the locus c»»fl —» xlsl, etc.
apploachcs tllc [1,1,1l axis flolll ollc side Rlld thell fRlls
back again. This by itself wouM indicate anomalies near
tllc [1,1,1j axis alld oil Qllc side of lt hilt slIlcc tllclc ls
threefold symmetry about the [1,1,1j axis it is quite
likely that the locus approaching this axis from one side
in the plane of Fig. 4 is actuRHy part of a surface which
surrounds the axis and corresponds to anomalies on both
sides of it in the plane we are considering. In fact,
anomalies do occur on both sides of the [1,1,1j axis in
the region concerned, and the only available explanation
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seems to be along the lines just mentioned. However,
wc have not attempted to pursue this explanation in
dctRll.

In the [1,1,1] direction we were previously able to
assign only one anomaly, but-nondiametral tra, nsitions
RccoUnt foI' foUr IDQI'c. A ncgatlvc anoxDRly ln thc I
branch at q=0.15+0.015 corresponds to transitions
near csfs The. nearby anomaly expected at q=0.11 in
tllc [2,2,0] direction is uIIfolt1111Rtcly 111 R I'cgioll wllci'c

we have no measurements. A negative anomaly in the
I. branch at g=0.27+0.015 corresponds to transitions
near xsN8. A positive anomaly at q= 0.47+0.02 in the I
and T branches corresponds to transitions near N8s».

An anomaly in the T branch which may be negative at
q=0.68 or positive at q=0.72, or a combination of both,
corresponds to transitions near ass». This should, occur
in the I.branch too, but is obscured there by the large
anomaly at q= 0.8. In neighboring T» profiles there are
two associated. anomalies, and at (0.26, 0.26, 0.50) in
the TI branch there is an anomaly [upward towards
(0.5, 0.5, 0.5)] corresponding to transitions near a4us.

In the [2,0,0] direction, transitions like gig4 wouM
correspond to an anomaly at about q=0.38 in the I.
branch, but this is not visible, presumably because g is a
Saddle poiIlt. T1Rllsit1011S 11CR1' Gslis (FIg. 5) Xilay bC

cxpcctcd to glvc DegRtlvc RnoIDRllcs ncR1 /=0.97; ln
fact both dispersion curves have particularly large
curvature at the zone boundary, and this might well be
duc to DcRI"by DcgRtlvc anomalies.

In the [2,2,0] direction, esfl would correspond to a
positive anomaly in the I. and T» branches at about
/= 0.47 j R weRk RDoIDRly ln this posl'tloD ls RppRlcDt ln
the T» branch, but not in the I branch because of the
large negative anomaly at q=0.46. Transitions like t23I5

would correspond to a positive anomaly in the I.branch
at a.bout q=0.5; it is uncertain whether there is an
upward tendency immediately after the negative
anomaly at q=0.46, but there de6nitely seem to be
juxtaposed negative and positive anomalies at associated
posltloDs ln nelghbollDg plofllcs. c»83 woUld col"lcspoDd
to an anomaly at about q=0.58 in the I branch,
presumably negative, and nearby transitions to a
positive anomaly at about q=0.63: It is uncertain
whether the negative anomaly occurs, but there is a
positive anomaly at q=0.64&0.015, accompanied by
positive anomalies in neighboring profiles (one outside
the plane of Fig. 4). elfi would correspond to an
anomaly at about q=0.92 in the T» branch and g»g2 to
one at about q=0.85 in the I- branch, but both would
presumably be weak, and they are not in fact discernible.
t".»e» would correspond to an anomaly in the I branch
at a.bout q=1.03, but this would also presumably be
weak, and is not observed. csf1 corresponds to a negative
anomaly in the I. and T» branches at q=1.33~0.015,
and nearby transitions account for an anomaly in a
nclghbol'1Dg pro61c.

FIG. 5. Partial sections through
the Fermi surface. For sections in
Bragg planes the surface on both
sides of 't1ie pla116 is showil (sohd
aiid dashed hiies).

C. A HRETLSOQ Pg,OIIlggyj

The only definite irregularity with no a.pparent
explanation in the above terms is a rather broad hump
111 'tlm Ts bl'Rncll Rt /=0. 57 111 tile [2,2,0] dlrcctlon
[II= (0.4, 0.4, 0)], accompanied by similar structure at
the nearby point (0.6, 0.4, 0). At 370'K the [2,2,0] Ts
curve has the same shape as at 80'K. The humps have
a width of about 0.15 in q. They Inay perhaps be
attributed to a dip in the function P(Q) at about
Q=1.65, taking the origin of Q as (2,0,0) or (0,2,0). A
glance at Fig. 21 of Vosko et al. s shows that F'(Q) may
pass through a fairly narrow dip near this position. The
site of the dip would be where the curvature is largest,
probably just to the left of the minimum. The minimum
of P is R zero which corresponds to a zero of the form
factor that enters into the ion-electron element (see, for
111stailcc, Vosko 83 8/. , Fig. 5, RIid tile associated. text).

Examination of the possible sites at which a dip in
P(Q) Rt Rboil't Q= 1.65 IIligll't lead to llllIIips 111 disper-
sion CUI'ves shows tIlat thcsc woUld bc sur'pI'lslngly few:
(035, 0, 0) I, (0.4, 0.4, 0) I and Ts, (0.85, 0.85, 0) 1.
(1.0, 0.7, 0) TI and Ts. Of these six, the third is that
mentioned, above, and conditions for its observation are
unusually favorable because the T~ branch has small
curvature in this region. The 6fth also seems to occur—
near the pla. ce where the T2 branch rises to touch the T»
branch and polarizations behave in an anomalous
fashion (what has been termed "a.crossover singu-
larity"), cf. Table I of Ref. 7. The others may occur,
but conditions for their observations are not favorable.

If the above interpretation of the observed irregu-
larit is correct, this would be an example of the kind
of anomaly suggested by Harrison' (see Sec. 2).

Figures 4 and 5 are a graphical representation of our
results on the Fermi surface. Points from diametral
anomalies are shown as 6llcd circles, others by crosses.
The uncertainty for the former is mostly about ~0.008,
which corresponds to the size of the circles, while for
the latter the uncertainty is somewhat greater, since
both ends of the transition vector contribute inde-
pendently 1D this CRse, Thc symbols ln the figures
colDcide with those Used by AndcI'son RIll Gold, ~ though
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TABLE II.Dimensions of the Fermi surface. Our results are com-
pared with those of Anderson and Gold (Ref. 3). The dimensions
refer to Figs. 4 and 5.

Dimension
Our

value
Anderson and Gold's

value

CICI
bIbg
CIC2

e1e3

fifa
gig4
UN
Ux
8"e
Xh

2.59
2.53
1.61
2.38
1.40
2.37
0.155
0.41
0.18
0.69

2.59/
2.496
1.645
2.380
1.317
2.333
0.166

0.238
0.708

in Fig. 4 su6ixes are appended. A smooth Fermi surface
has been drawn through the points in each case, and
various dimensions of this surface are listed in Table II,
together with corresponding dimensions from Anderson
and Gold. ' Where the same dimension has been given
in more than one representation by them (in their
Table III, kk=2 hh, pp=—1—hh, va=1.414+ma,
wan=1. 414—me, I'b=1.732——,'bb, I'e=1 41 4 .', ee),—w-e

have included only one. (The value of kk in their
Table III implies that k lies outside the free-electron
sphere, which does not accord with their Fig. 9, nor with
the value they give for hh, and therefore appears to be
a misprint. ) Some other points are so near to more
important points that their positions may be regarded
as practically 6xed once the more important points are
given (d is near b, m near f, o near g, q near u), and
these have also been omitted from our table.

Anderson and Gold do not give error estimates for
the results we have quoted, but to judge by the errors
quoted in their Table I, their uncertainty is of roughly
the same order as ours. A general figure for our results
is &0.007. On this basis it will be seen that there is

general fair though not exact agreement between our
results and theirs, but poor agreement for fifa and ee.
Even the small diRerences may be signihcant, however;
for example, their value for b~b3 definitely does not
agree with the observed anomaly. Their smaller value

for fifa is quite contrary to our observations. Our value
for me is admittedly based on weak evidence, but their
value would require an anomaly in the L2,2,0] Ta branch
at a position where nothing can be discerned.

The Fermi surface may be drawn in the form of a
series of parallel sections if Figs. 4 and 5 are accepted
as in the main accurate. The latter data and the sym-
metry condition that permutation of the coordinates of
a point on the Fermi surface yields another point on the
surface determine the whole surface surprisingly well.
The volume within our version of the Fermi surface was
estimated from such sections and found to be the same
as that of the free-electron sphere within 1%, which is
within the accuracy of the estimate.

S. THE SIZE OF ANOMALIES

The sizes of anomalies quoted in Table I for a
spherical Fermi surface may be expected to apply quite
well for L1,1,1] No. 3 and, more roughly, to L2,2,0]
Nos. 1 and 3, while elsewhere departures from the
spherical shape are large. The observed heights of the
respective anomalies are 0.38&0.06, 0.44&0.08, and
0.4~0.1, in units of 10"rad sec '. When the estimates
in Table I are adjusted to take account of the fre-
quencies at the observed sites, and with regard to
departures of the Fermi surface from the spherical
shape, we find that the sizes in Table I should be multi-
plied by a factor 3.1+0.3. That is, taking into account
the approximate nature of formula (2), F'(2k') =0.031
%0.005. The value calculated by Voslro ef ul. ' (their
Fig. 21), based on a one-orthogonalized-plane-wave
ion-electron matrix element, is 0.035. Although there is
agreement on this point, it should perhaps be pointed
out that the shapes of their calculated anomalies are
quite diferent from those observed.

Incidentally, a 6gure previously given for the size of
Kohn anomalies in aluminum" may be converted to the
same form as above: F'(2k~)=0.025+0.012 in alu-
minum. The value calculated by Vosko et al. (their
Fig. 17) for a one-orthogonalized-plane-wave matrix
element is 0.047 in this case.


