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by the expression

1
1/mop*=—2_ ni/m*(k) , (4.2)
N &

where #;, is the Fermi distribution, N is the number of
conduction electrons per unit volume, and fi is the
“oscillator strength” for transitions from state % to
state &’;

2

s (4.3)

2%
fre=

/Xk,*VXkd3r

MWk

where #wy i is the energy difference between the Bloch
states X; and Xi. From the expression (2.17) which
defines gi ko in the limit as Q — 0, we obtain

e | ¥ [ X6 =LK (R )
— (k| T8 | W)Y s, (44)

where #iwi 1= ex— ;. The present formalism can there-
fore be used to evaluate oscillator strength directly in
nearly-free-electron metals without recourse to energy-
band calculations. However, the pseudopotential needed
is different from that determining, for example, electron-
phonon interaction and the energy-band structure. In
addition, (4.4) can be evaluated self-consistently by
replacing W and Wes; given by (3.18).

For the complete problem we have, in general, a
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Green’s function

where 3 (k,E) is the self-energy, so that we can define
an effective “electromagnetic” mass by

(1/%)0E/ k| serp="tkr/Mmom*, (4.6)
and find, from the poles of (4.5),
Mem*=mp(1—0 > /aE)lk=kF, @.7n

where mp is the zero-field Bloch effective mass. This is
our effective-mass theorem. This is the analog of the
so-called “thermal” mass in the electron-phonon inter-
action.!® It does not seem at the present time to have
any more general meaning than the optical effective mass
introduced above. But it is evidently the proper mass
to be used in describing the influence of the field on the
dynamical properties of the Bloch electron. No attempt
will be made here to compute this mass explicitly; in
practice, it should follow the procedure for the electron-
phonon case exactly.16
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Fermi Surface of Lead from Kohn Anomalies
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The dispersion relations for phonons in lead determined by neutron spectrometry exhibit a large number of
Kohn anomalies, which may all be related to the Fermi surface in a consistent manner by considering both
electron transitions diametrically across the Fermi surface and nondiametral transitions between points
with parallel tangent planes. Factors affecting the size and shape of anomalies are reviewed. The detailed
interpretation of anomalies leads to a mapping of the Fermi surface, and the result may be compared
with that of Anderson and Gold, who used the de Haas-van Alphen method. There is fair agreement,

with significant particular differences. The sizes of anomalies have been interpreted in terms of a screened
ion-electron interaction.

1. INTRODUCTION

INCE Kohn! pointed out that the phonon-electron
interaction changes abruptly along surfaces in the
wave-vector space of phonons which are directly related
to the Fermi surface, and that this change may be
observable as kinks in phonon dispersion curves, such
anomalies have been observed in some metals. Brock-
house et al.? were the first to see the effect, in lead. As

* Chalmers University of Technology, Gothenburg, Sweden.

1 W. Kohn, Phys. Rev. Letters 2, 393 (1959).

2 B. N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys. Rev.
Letters 7, 93 (1961).

they pointed out, the investigation of the Fermi surface
via phonons and neutrons is a potentially interesting
complement to other methods. The neutron method
does not require particularly pure samples or low tem-
peratures, and the interpretation of data is mostly just
a matter of geometrical constructions. But it is rather
elaborate and, with present neutron sources and spec-
trometers, applicable only to metals that exhibit rela-
tively large anomalies and are especially amenable to
neutron spectrometry, and in fact has not previously
been used for a comprehensive study of a Fermi surface.
The anomalies in lead seemed to be sufficiently pro-
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TaniE L. The sizes and senses of Kohn anomalies for a nearly
spherical Fermi surface. Numbering is in the order of increasing
g according to Fig. 1. A plus sign indicates that the anomaly is
upward in the direction of increasing ¢, a minus sign the opposite.
Brackets indicate that values are subject to considerable
reservations.

Aw (1013 rad sec™?)

Anomaly
NO. L T1 T2
1,1,1
L 1 ] —0.025 —0.011
2 +0.022 -+0.009
3 +0.012 0
2,0,0
C 1 . (—0.010) (—0.016)
2 +0.014 0
3 (—0.009) (—0.014)
4 —0.034 —0.016
2,20
C T : —0.017 0 0
2 +0.017 0 +0.019
3 +0.019 -+0.005 0
4 (—0.016) 0 (—0.014)
5 (—0.004) (—0.013) (—0.013)
6 (—0.004) (—0.016) (—0.013)
7 (—0.016) 0 (—0.014)
8 (—0.008) (—0.008) 0
9 (—0.008) (—0.009) 0

nounced to allow such an investigation, and to this end
we carried out extensive measurements, both in sym-
metry directions and elsewhere. Many anomalies were
revealed, some of which correspond directly to points
on the Fermi surface on or near the symmetry axes,
while others required for their interpretation detailed
consideration of the surface topography. Twenty points
on the Fermi surface could be assigned, amounting to a
fairly complete determination of the whole surface. Our
version is generally quite close to that of Anderson and
Gold,? who used the de Haas~van Alphen method, but
there are significant differences, particularly in the
third zone.

2. FACTORS AFFECTING ANOMALIES

Kohn anomalies are associated with a small negative
contribution to phonon energies due to virtual excita-
tion of electrons by phonons, and occur because this
contribution varies more or less abruptly when there is
abrupt variation in the density of electron transitions
with respect to wave-vector space. The important
transitions are between states close to the Fermi surface
so that the interaction condition Q= k;—k; (where Q is
the unreduced phonon wave vector and ki, ke are
electron wave-vectors) may be regarded as a relation
for points k; and k; on the Fermi surface. Abrupt varia-
tions of the transition density occur for pairs of points
where the tangent planes are parallel. Diametrically
opposite points on a sphere are an idealized example:
Transition vectors parallel to the diameter and of length
Q join small circles of the sphere which shrink as Q
increases and disappear when Q=2kp, so that the

3J. R. Anderson and A. V. Gold, Phys. Rev. 139, 1459 (1965).
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density of transitions falls from a constant value when
Q is smaller than the limit 2% (if zones of thickness AQ
are considered) to zero beyond the limit. When the sum
of all possible transitions with their different energy
transfers is taken into account, the anomaly is not so
sharp as simple consideration of momentum transfer on
the Fermi surface indicates, but there is still an upward
shift of phonon frequency as Q increases through 2.
If the surface is locally concave outwards, the shift is
downward instead.

The rules that the sense of an anomaly is determined
by the local curvature and that small curvature tends
to make an anomaly large are inadequate when opposing
tendencies are of comparable strength, e.g., at a saddle
point with approximately equal and opposite principal
curvatures. In such cases, definite conclusions cannot
be reached merely by considering the shape of the
surface: It may be that not only the curvature but also
the variation of gradiE (where E is electron energy)
differs in different surface directions from the point
concerned. If an anomaly is regarded as the sum of
contributions from narrow segments of the Fermi sur-
face that radiate from the point concerned, the contri-
bution from each segment must take account of the
variation in grad:E as well as the curvature. Compli-
cations in this respect are particularly likely to occur
near the intersections of the Fermi surface with Bragg
planes.

Considerations of local shape are easily extended to
transitions between points that are not diametrically
opposite; in this case the shape to be considered is that
of a surface which is given by the difference between
the two local surfaces, taken along lines parallel to the
chord between the points with parallel tangent planes.

The treatment of Kohn anomalies by Taylort includes
the angle between the transition vector and the normal
to the Fermi surface. When this angle approaches 90°,
anomalies become small. Such an angular dependence
is at least partly included in our “difference surface,”
since the curvature of this surface increases as the angle
concerned increases. Fuller consideration of this point
is unnecessary here.

Taylor’s formulas? include the effect of grad;E, ie.,
the electron velocity v. (As they stand, the formulas are
not symmetric in vy and v, but such symmetry would
be introduced by a condition of inversion symmetry on
the Fermi surface.) The significant thing for our quali-
tative discussion is that anomalies increase in size as
electron velocities decrease, roughly as | vi— vs|~ This
factor is directly related to the energy difference be-
tween electron states in the denominator of the second-
order energy shift for a phonon interacting with elec-
trons. Two consequences are that transitions between
points on the same side of the Fermi surface may be
strong, because the electron velocities are nearly
parallel, and that regions of the Fermi surface near

¢ P. L. Taylor, Phys. Rev. 131, 1995 (1963).
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Bragg planes may be particularly active, because the
component of the electron velocity perpendicular to the
Bragg plane is small.’

Other factors affecting the size of anomalies depend
entirely on phonon quantities, and may be obtained
from an equation expressing the variation of w? with
respect to ¢ in a metal (see, for instance, Vosko et al.,
Egs. 3.21, 5.1, 5.2):

w (@) =wa(q)+2 ¢ ((g-¢/9)*F' (9)— (Q-¢/Q)*F'(Q))
—(q-e/9)°F'(g), (1)

where the sums do not include g=0. Q=g+, q being
the phonon wave vector reduced to a cell near the origin
of wave vector space and g a reciprocal lattice vector,
and e is the unit polarization vector of the phonon.
wq 1s associated with the direct interaction between ions,
and F’' with the interaction between ions via the con-
duction electrons. F’ is explained in the text and
diagrams of the article by Vosko et al.: It is the product
of the square of an expression which refers to the inter-
action of a bare ion and an electron and a screening
factor. Kohn anomalies are associated with a kink in
this latter factor at Q=2kp, the height of the kink
being approximately 0.07 of the value of the function at
this point, i.e., the kink in F’ is about 0.07 of F'(2kr).
Using the same units as Vosko ef al., the height of an
anomaly (Aw) for a spherical Fermi surface should be
approximately

Aw=0.035F'(2kF) - 0,2(Q-e/Q)?- (symmetry factor)/w,
)

where w, is the plasma frequency (6.67X10% rad sec™!
for lead), and the symmetry factor takes account of the
number of simultaneous equal contributions to the

5 Footnote added in manuscript. L. M. Roth, H. J. Zeiger, and
T. A. Kaplan [Phys. Rev. 149, 519 (1966)] suggest that Taylor’s
results apply only to diametral transitions, and, moreover, that
Kohn anomalies do not occur for transitions between parts of the
Fermi surface where the normals are parallel (as distinct from
antiparallel). The latter statement is of particular interest here,
because two observed anomalies in the [1,1,1] dispersion curve
have been interpreted by us in terms of electron transitions of the
kind rejected by Roth ef al. But it seems that their reasoning is
incomplete in that they neglect the phonon energy in the de-
nominators of their integrands [see their Eq. (24)], and when
they point out that a certain integrand changes sign if ki is
exchanged for —ks, ks for —k, (i.e., when transitions with the
same Q between opposite positions on the Fermi surface are
considered) in order to draw the conclusion just mentioned about
the parallel and antiparallel cases, they have omitted the accom-
panying change in the limits of integration in k space. Consider-
ation of an example with transitions from an occupied region to
the left of a point a on a line in k space to an unoccupied region to
the right of a point b (0>b—a) and transitions with the opposite
regions occupied and unoccupied (Q <b—a) shows that there is no
cancellation between the two groups of transitions. However,
although the reason given by Roth et al. for the rejection of the
“‘parallel” case does not seem acceptable, it is true that this case
is not covered in Taylor’s treatment, nor in our discussion in
Sec. 2. A fuller treatment indicates that anomalies may occur in
the “parallel” case, though they do not conform to the formulas we
have used here—but space does not permit us to elaborate on
this point.

¢ S. H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 (1965).
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F1c. 1. Estimated positions of Kohn anomalies for a nearly
spherical Fermi surface in planes between the principal symmetry
directions.

sums of Eq. (1) which may occur when q is in a sym-
metry direction. Different models of the ion-electron
interaction give values of F'(2kr) between 0.01 and 0.04.
Departures of the Fermi surface from the spherical form
will often make Eq. (2) quite inaccurate, but neverthe-
less it seems worthwhile using it for a first estimate of
the expected sizes of anomalies, particularly since the
relative sizes of the anomalies at the same position in
different polarization branches should usually be given
correctly by the formula. Table I shows the result of
such a calculation, where for the sake of definiteness we
have assumed F’'(2kr)=0.01, which is approximately
the value for a Bardeen model (see Vosko et al..’
Fig. 21). Figure 1 explains the numbering of the
anomalies: The quadrangle there is obtained by un-
folding three sides of an elementary tetrahedral cell of
reciprocal space, and the curves on it are the inter-
sections with spheres of radius 2kr (2.48 ¢ units for the
free-electron Fermi sphere in lead), centered at various
lattice points, and slightly modified to indicate the
effect that occurs near Bragg planes. Numbering is
outward from the origin. The sign of an anomaly is plus
in Table I if the anomaly is expected to be upward in
the direction of increasing ¢ in Fig. 1 (minus in the
opposite case). The signs correspond to a spherical
surface, neglecting the possible effect of Bragg planes
on the shape of the Fermi surface in their neighborhood.
The L branch in the table is always that with the highest
frequency, the 7 branch is next, and the 7's branch the
lowest; the only place where this may cause confusion
is for ¢>0.97 in the [2,2,07 direction, where the branch
with polarization in the [2,2,0] direction is the T;
branch. Bracketed figures indicate that the shape of the
Fermi surface at the point obviously departs consider-
ably from the spherical form, so that these values are
only of interest for the relation between the different
branches.

Formula (2) may be inaccurate even for relative
values of anomalies in different branches at the same
position if the corresponding point on the Fermi surface
is on a Bragg plane. This may be illustrated by reference
to Fig. 4. From a consideration of the shape of the sur-
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F16. 2. The sites of measurements not on axes of symmetry
(points) and observed anomalies (squares). Dashes through points
indicate polarizations of observed phonons.

face, the transition c¢ics has weight zero because all
translations of the transition vector move one or the
other end of it into an empty region. This does not apply
to diametrically opposite points near ¢; and ¢3. Accord-
ingly, there should be a hole in the associated surface of
anomalies at the position corresponding to ¢, but it is
not evident from any simple argument whether or not
this hole may be of a size comparable to the resolution
of measurements in q space. The effect is neutralized
for phonons with polarization parallel to ¢ic; because
the surface near ¢, acts as a direct continuation of that
near ¢; in this case—and likewise for the surfaces near
¢2 and cs.

The screening factor and F’ should actually bear the
marks of nondiametral transitions as well as diametral.
What this may imply for the sizes of the former we do
not know, but we assume that the relative sizes for
different branches will still be governed by a formula
like (2).

The factors in formula (2) are not present in the treat-
ment of anomalies by Taylor.# Presumably they
disappear or go into disguise when an average value of
the matrix element for the electron-phonon interaction
in terms of resistivity is introduced in his Eq. (5).
¢ Harrison” suggested that the irregularities in thef
dispersion curves of lead are not images of the' Fermi
surface, but of the energy—wave-number relation for
electrons. In terms of the function F’ of Vosko et al.®
which we have utilized above, this means that the ob-
served anomalies might be attributed to the grosser
structure, not to the small kink. As Cochran® has com-
mented, “it seems unlikely that the rather pronounced
kinks in the dispersion curves for lead can be accounted
for except in terms of the behavior of the dielectric
function”—i.e., in terms of the effect described by

7'W. Harrison, Phys. Rev. 129, 2512 (1963).

8 W, Cochran, Inelastic Scatiering of Neutrons (International
Atomic Energy Agency, Vienna, 1965), Vol. I, p. 16.
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Kohn.! This comment is borne out by the many details
of the present comparison between the Fermi surface
and anomalies. But the other effect may give rise to
broader humps or dips in dispersion curves; a possible
example is mentioned in Sec. 4C.

Maris? has suggested that kink-type anomalies in
phonon dispersion curves may arise from the phonon-
phonon interaction if two of the three phonons involved
in one of the simplest types of interaction have the same
group velocity. No observed anomalies call for such
interpretation, but even from other points of view it
seems justifiable to disregard this possibility, in the
present instance at least. As in the analogous case of
Kohn anomalies, the sharp discontinuity in w(g) sug-
gested by the simple consideration of topography [of
two different surfaces in (qw) space here] will be
“blunted” by several factors in a more complete treat-
ment, and in fact it remains to be proved that an
anomaly does occur when these factors have been taken
into account. In the first place, the contribution to the
phonon energy here involves a sum over states which
are not at all so concentrated to a particular neighbor-
hood in wave-vector space as they were in the electron-
phonon case: In the electron-phonon case a small shift
of k away from the peak of the interaction’s energy
resonance entails a relatively large energy shift and
large reduction of the interaction probability. Also, the
approach to a critical position for an interaction in-
volving three phonons as one moves along a dispersion
curve involves the approach to osculation of surfaces
w=w(q) and, say, w=wi(q)+ws(@—q), when q
varies, and this approach will often be gradual or
oblique, as consideration of a two-dimensional example
indicates (the subscript 1 here indicates a phonon which
interacts virtually with phonons 2 and 3). Moreover,
the thickness of dispersion surfaces—the frequency
widths of phonons—tends to blur the critical position.

The present section has included a variety of factors
that may be involved in irregularities in phonon disper-
sion curves, and it seems advisable to recapitulate very
briefly the more important conclusions for the inter-
pretation of anomalies in lead. The electron transitions
corresponding to Kohn anomalies are between points
on the Fermi surface where tangent planes are parallel,
and may be either diametral or nondiametral. The size
and sense of an anomaly depend on the shape of the
surface near the points just mentioned, in a way that is
amenable to simple qualitative analysis, and the size
also depends on three factors contained in formula (2)—
the phonon frequency and polarization, and a symmetry
factor. In interpreting anomalies, it is appropriate first
to attempt an identification of the diametral anomalies
listed in Table I, using the expected positions and rela-
tive strengths as a rough guide. Then nondiametral
transitions may be considered, all the time bearing in
mind alterations of previous results necessitated by

9 H. J. Maris, Phys. Letters 22, 402 (1966).
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superpositions. Where anomalies can be followed
laterally from symmetry directions, this is of course a
valuable aid to identification.

3. OBSERVATION OF ANOMALIES

A general account of our measurements on phonons
in lead has been given earlier.’® A three-axis crystal
spectrometer was used to record one-phonon resonances
in the inelastic scattering of neutrons by a lead crystal
at 80°K, a focusing method being used throughout to
optimize resolution. Measurements in the principal
symmetry directions were almost everywhere at small
enough ¢ intervals to locate anomalies within about
0.02 in ¢ (the unit being 1.279 A=, so that reciprocal
lattice points have their integral coordinates). Similar
detailed series of measurements were made along several
other lines in q space in order to follow the loci of
anomalies. The sites of such measurements are indicated
in Fig. 2, together with the sites of observed anomalies.
The quadrangle in Fig. 2 is the same as in Fig. 1; the
polarization of the phonons concerned is indicated by
dashes (dashes at right angles indicate that measure-
ments were made on phonons with each polarization).

In looking for anomalies in the phonon dispersion
curves of aluminum,'! we made use of a device for
enhancing irregularities, and this was again used here.
Corresponding to each dispersion curve or profile (plot
of w along a line in q space), a curve of (Aw/Aq) versus q
along the line was drawn. The values of the slope were
taken from pairs of adjacent measurements, and to each
value an error was assigned which was a combination of
the error estimates for the two measurements concerned.
Figure 3 is an example of such a curve for phonons with
wave vectors and polarization in the [2,2,07] direction,
with a particularly irregular appearance. This treatment
of the data reveals anomalies that are often hidden in a
curve of w versus q by the steep slope. It might seem
preferable to remove the effect of large slopes by
considering the difference between the observed fre-
quencies and some smooth adjacent curve—among
other things, errors would then depend on single meas-
urements, and would not increase as the ¢ interval
decreased. But the choice of the smooth curve would
require some such analysis of data as our curve of slope
versus ¢ involves, and would be arbitrary to an extent
that corresponds to errors in the latter curve. So we
have kept to the slope analysis. It should be remem-
bered that the errors in a curve such as that in Fig. 3
are not ordinary mutually independent errors: The
area under the curve is fixed quite accurately in any
interval of, say, 0.2 or longer. In several cases where
more than one series of measurements were made, each
series was analyzed separately before combining the
results, since possible systematic errors do not affect

10 R. Stedman, L. Almqvist, G. Nilsson, and G. Raunio, Phys.

Rev. 163, 567 (1967).
1 R. Stedman and G. Nilsson, Phys. Rev. Letters 15, 634 (1965).
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F16. 3. An example of a curve used in locating anomalies. For
ghonqns with wave vectors and polarization in the [2,2,0]
irection.

irregularities in a single series of measurements. Such
repeated measurements, as well as measurements at
different temperatures and experience from aluminum, !
indicate that estimated errors in curves like Fig. 3 are
too large, but it is difficult to eradicate this error in
the errors.

Figure 3 illustrates, though in a rather exceptional
fashion, difficulties that may be associated with close
juxtaposition of irregularities. From the single curve
alone it is not at all obvious whether some anomalies
are positive at a certain position or negative at a nearby
position. However, information from other curves and
successive steps in the construction of a Fermi surface
enable such difficulties to be resolved.

4. THE FERMI SURFACE
A. Diametral Transitions

If the picture of the correspondence between anom-
alies and points on the Fermi surface (F S) is to be
convincing, it is hard to avoid tedious detail, but this
can be compressed by the use of abbreviations: e.g.,
“[1,1,1] L No. 2” for “anomaly No. 2 (Table I) in the
dispersion curve for L phonons in the [1,1,1] direction” ;
“the ¢1fs anomaly” for “the anomaly corresponding to
the transition ¢;f; in Fig. 4.”

Numbers 1 and 2 in the [1,1,1] direction do not occur,
because the arc from No. 1 in the [2,2,0] direction (e)
does not intersect the [1,1,17] axis. No. 3 (b on the FS)
is clearly visible, at ¢=0.795--0.015. A point near b can
be identified in a neighboring profile.

Number 1 in the [2,0,0] direction (h) occurs at
9=0.624-0.015 as a positive anomaly in the L and T
branches. This agrees well with other points near e
though since different curvatures occur at h (see Fig. 5)’
the expected sign is uncertain. An anomaly in a neigh-
boring profile probably corresponds to a point between
h and q (near u in Fig. 5). Number 2 (a on the FS) is
not immediately apparent. It is very likely that the FS
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free-electron sphere.

here is concave outwards, so that the anomaly is
negative, and it may then occur (without being obvious)
close to No. 1, at ¢=0.574-0.015. This assignment is
supported by an anomaly in a neighboring profile which
corresponds to a point near y. Number 3 disappears if
the fourth zone of the FS is empty—and evidence
mentioned later shows that this is probably the case.
Number 4 is closely connected with Nos. 7 and 9 in the
[2,2,0] direction—all three disappear if fif is less
than 1.414.

Number 1 in the [2,2,0] direction (e) is quite clear
at ¢=0.45540.015. Two nearby points in Fig. 4 and
two in Fig. 5 may be identified in neighboring profiles.
Numbers 2 and 4 are not observed, because the arc
from [2,0,0] No. 2(a) does not intersect the [2,2,0] axis.
From other observations near b, No. 3 is expected near
¢=0.95; it may be identified with an anomaly at
¢=0.942-0.02. Number 5 corresponds to n, and from
the estimated positions of h and f is expected at about
¢=1.05; a small positive anomaly in the T'; branch at
¢=1.06=0.015, possibly accompanied by one in the T
branch (where large curvature of the dispersion curve
makes observation difficult) is the only possibility, and
we tentatively assign it to n. Number 6 does not occur
if the fourth zone of the FS is empty, and there is no
anomaly requiring this assignment. There is no negative
anomaly in the L and T, branches which could be
identified with No. 7, so on this point there is nothing
to contradict the conclusion arrived at below, that fifs
is less than 1.414. Marked structure beyond ¢=1.1 in
the L and T; (Fig. 3) branches may be interpreted in
terms of anomalies 8 and 9 (c and f), together with non-
diametral anomalies. Number 8 is expected at ¢=1.2
+0.05: There is a positive anomaly in the L and T4
branches at ¢=1.224-0.02. Number 9 is expected to
occur near g=1.414: If fif; is less than 1.414 the
anomaly is positive, and vice versa, while if fifs were
exactly 1.414 the anomaly would disappear. ¢:f3 would
then correspond to a relatively large negative anomaly
near ¢g=1.31. The structure suggested by these con-
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siderations does actually occur, and leads to ¢ica=1.61
+0.015, f1f2=1.39+0.015.

B. Nondiametral Transitions

For a near spherical Fermi surface such as that of
lead, the main places where pairs of parallel tangent
planes may occur are in the same diametral plane, or in
the same Bragg plane (taking the Fermi surface to
approach Bragg planes perpendicularly) or in parallel
planes of one or the other kind. Examination of various
nondiametral sections of an approximate Fermi surface
indicates that most of the chords that may be significant
for anomalies should lie in the diametral planes of
Figs. 4 and 5, and this is borne out by the fact that
practically all observed anomalies can be accounted for
by reference to the two figures concerned. For each
figure we may trace anomalies corresponding to transi-
tions between pairs of points with parallel tangent
planes that are not diametrically opposite, on the basis
of known and estimated features of the Fermi surface.
‘The procedure may be illustrated by reference to Fig. 4:
Starting with ¢if1, a chord with parallel terminations
moves in a way that may be described by ¢1f1 — 2151,
%6S1—> G181 —> XU, Xolks —> Co€3, Cse3 (where a comma
corresponds to a shift by a reciprocal lattice vector).
The locus of the corresponding anomalies may be traced,
and it is usually easy to see from the figure what the
shape of a given anomaly should be, and in what branch
it should be strongest. Another locus of anomalies—as
before, for transitions between the second and third
zones—is given by c3fi— %581, ¥ss1—> @sg1 —> X,
X4h2 —> Cae3, C1€3, and two for transitions in the third zone
are given by ei f1— w151, 51— gogy, etc. and esf1— wssy,
usS1—> gag1, etc. The first and fourth of these loci are
smooth curves, while the second and third have sharp
bends. The corresponding diagrams for Fig. 5 are
particularly simple if the fourth zone of the FS is
assumed to be empty, and it is in fact the absence of
any anomalies corresponding to the more complicated
structure electrons in the fourth zone would entail that
is the main argument here for assuming the fourth zone
empty.

The loci of anomalies just mentioned must be parts
of surfaces on which anomalies may occur. As long as
we confine ourselves to symmetry directions the locus
curves suffice, but elsewhere we may expect them to
be insufficient. For instance, the locus c;f; — %353, etc.
approaches the [1,1,1] axis from one side and then falls
back again. This by itself would indicate anomalies near
the [1,1,1] axis and on one side of it, but since there is
threefold symmetry about the [1,1,1] axis it is quite
likely that the locus approaching this axis from one side
in the plane of Fig. 4 is actually part of a surface which
surrounds the axis and corresponds to anomalies on both
sides of it in the plane we are considering. In fact,
anomalies do occur on both sides of the [1,1,1] axis in
the region concerned, and the only available explanation
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seems to be along the lines just mentioned. However,
we have not attempted to pursue this explanation in
detail.

In the [1,1,1] direction we were previously able to
assign only one anomaly, but nondiametral transitions
account for four more. A negative anomaly in the L
branch at ¢=0.1520.015 corresponds to transitions
near ¢;fs. The nearby anomaly expected at ¢=0.11 in
the [2,2,0] direction is unfortunately in a region where
we have no measurements. A negative anomaly in the
L branch at ¢=0.272£0.015 corresponds to transitions
near xgug. A positive anomaly at ¢=0.47-40.02 in the L
and T branches corresponds to transitions near #gsi.
An anomaly in the 7 branch which may be negative at
g=10.68 or positive at g=0.72, or a combination of both,
corresponds to transitions near xgs;. This should occur
in the L branch too, but is obscured there by the large
anomaly at ¢=0.8. In neighboring T'; profiles there are
two associated anomalies, and at (0.26, 0.26, 0.50) in
the T branch there is an anomaly [upward towards
(0.5, 0.5, 0.5)] corresponding to transitions near xs.

In the [2,0,0] direction, transitions like gigs would
correspond to an anomaly at about ¢=0.38 in the L
branch, but this is not visible, presumably because gis a
saddle point. Transitions near ashs (Fig. 5) may be
expected to give negative anomalies near ¢=0.97; in
fact both dispersion curves have particularly large
curvature at the zone boundary, and this might well be
due to nearby negative anomalies.

In the [2,2,0] direction, e;f; would correspond to a
positive anomaly in the L and T branches at about
g=0.47; a weak anomaly in this position is apparent in
the 7'y branch, but not in the L branch because of the
large negative anomaly at ¢=0.46. Transitions like fyt;
would correspond to a positive anomaly in the L branch
at about ¢=0.5; it is uncertain whether there is an
upward tendency immediately after the negative
anomaly at ¢=0.46, but there definitely seem to be
juxtaposed negative and positive anomaliesat associated
positions in neighboring profiles. cie; would correspond
to an anomaly at about ¢=0.58 in the L branch,
presumably negative, and nearby transitions to a
positive anomaly at about ¢=0.63: It is uncertain
whether the negative anomaly occurs, but there is a
positive anomaly at ¢=0.64=4-0.015, accompanied by
positive anomalies in neighboring profiles (one outside
the plane of Fig. 4). eify would correspond to an
anomaly at about ¢=0.92 in the T branch and gig, to
one at about ¢=0.85 in the L branch, but both would
presumably be weak, and they are not in fact discernible.
ciex would correspond to an anomaly in the I branch
at about ¢=1.03, but this would also presumably be
weak, and is not observed. ¢sf corresponds to a negative
anomaly in the L and T branches at ¢=1.332:0.015,
and nearby transitions account for an anomaly in a
neighboring profile.
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F1c. 5. Partial sections through
the Fermi surface. For sections in
Bragg planes the surface on both
sides of the plane is shown (solid
and dashed lines).

C. A Harrison Anomaly?

The only definite irregularity with no apparent
explanation in the above terms is a rather broad hump
in the T branch at ¢=0.57 in the [2,2,0] direction
La= (0.4, 0.4, 0)], accompanied by similar structure at
the nearby point (0.6, 0.4, 0). At 370°K the [2,2,0] T
curve has the same shape as at 80°K. The humps have
a width of about 0.15 in ¢. They may perhaps be
attributed to a dip in the function F'(Q) at about
Q=1.65, taking the origin of Q as (2,0,0) or (0,2,0). A
glance at Fig. 21 of Vosko et al.b shows that F'(Q) may
pass through a fairly narrow dip near this position. The
site of the dip would be where the curvature is largest,
probably just to the left of the minimum. The minimum
of I’ is a zero which corresponds to a zero of the form
factor that enters into the jon-electron element (see, for
instance, Vosko et al., Fig. 5, and the associated text).

Examination of the possible sites at which a dip in
F'(Q) at about Q=1.65 might lead to humps in disper-
sion curves shows that these would be surprisingly few:
(0.35,0,0) L, (0.4,0.4,0)L and T, (0.85, 0.85,0) L
(1.0,0.7,0) Ty and Ts. Of these six, the third is that
mentioned above, and conditions for its observation are
unusually favorable because the 7, branch has small
curvature in this region. The fifth also seems to occur—
near the place where the T’ branch rises to touch the T}
branch and polarizations behave in an anomalous
fashion (what has been termed “a crossover singu-
larity”), cf. Table I of Ref. 7. The others may occur,
but conditions for their observations are not favorable.

If the above interpretation of the observed irregu-
larity is correct, this would be an example of the kind
of anomaly suggested by Harrison? (see Sec. 2).

D. Results

Figures 4 and 5 are a graphical representation of our
results on the Fermi surface. Points from diametral
anomalies are shown as filled circles, others by crosses.
The uncertainty for the former is mostly about 4-0.008,
which corresponds to the size of the circles, while for
the latter the uncertainty is somewhat greater, since
both ends of the transition vector contribute inde-
pendently in this case. The symbols in the figures
coincide with those used by Anderson and Gold,? though
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TasLE II. Dimensions of the Fermi surface. Our results are com-
pared with those of Anderson and Gold (Ref. 3). The dimensions
refer to Figs. 4 and 5.

Our Anderson and Gold’s
Dimension value value
103 2.59 2.597
b1bs 2.53 2.496
€162 1.61 1.645
e1es 2.38 2.380
Sife 1.40 1.317
Q184 2.37 2.333
Un 0.155 0.166
Ux 0.41
Wn 0.18 0.238
Xh 0.69 0.708

in Fig. 4 suffixes are appended. A smooth Fermi surface
has been drawn through the points in each case, and
various dimensions of this surface are listed in Table 11,
together with corresponding dimensions from Anderson
and Gold.* Where the same dimension has been given
in more than one representation by them (in their
Table III, kk=2—hh, pp=1—rhh, w=1.414+nn,
ww=1.414—nn, Tb=1.732—1bb, Te=1.414—%ee), we
have included only one. (The value of %k in their
Table III implies that % lies outside the free-electron
sphere, which does not accord with their Fig. 9, nor with
the value they give for %k, and therefore appears to be
a misprint.) Some other points are so near to more
important points that their positions may be regarded
as practically fixed once the more important points are
given (d is near b, m near {, o near g, q near u), and
these have also been omitted from our table.

Anderson and Gold do not give error estimates for
the results we have quoted, but to judge by the errors
quoted in their Table I, their uncertainty is of roughly
the same order as ours. A general figure for our results
is #0.007. On this basis it will be seen that there is
general fair though not exact agreement between our
results and theirs, but poor agreement for fifs and nz.
Even the small differences may be significant, however;
for example, their value for b1bs definitely does not
agree with the observed anomaly. Their smaller value
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for fifsis quite contrary to our observations. Our value
for nn is admittedly based on weak evidence, but their
value would require an anomaly in the [2,2,0] Ty branch
at a position where nothing can be discerned.

The Fermi surface may be drawn in the form of a
series of parallel sections if Figs. 4 and 5 are accepted
as in the main accurate. The latter data and the sym-
metry condition that permutation of the coordinates of
a point on the Fermi surface yields another point on the
surface determine the whole surface surprisingly well.
The volume within our version of the Fermi surface was
estimated from such sections and found to be the same
as that of the free-electron sphere within 197, which is
within the accuracy of the estimate.

5. THE SIZE OF ANOMALIES

The sizes of anomalies quoted in Table I for a
spherical Fermi surface may be expected to apply quite
well for [1,1,1] No. 3 and, more roughly, to [2,2,0]
Nos. 1 and 3, while elsewhere departures from the
spherical shape are large. The observed heights of the
respective anomalies are 0.3824-0.06, 0.444-0.08, and
0.44-0.1, in units of 10 rad sec™’. When the estimates
in Table I are adjusted to take account of the fre-
quencies at the observed sites, and with regard to
departures of the Fermi surface from the spherical
shape, we find that the sizes in Table I should be multi-
plied by a factor 3.14-0.3. That is, taking into account
the approximate nature of formula (2), F/(2kr)=0.031
40.005. The value calculated by Vosko et al.5 (their
Fig. 21), based on a one-orthogonalized-plane-wave
ion-electron matrix element, is 0.035. Although there is
agreement on this point, it should perhaps be pointed
out thatthe shapes of their calculated anomalies are
quite different from those observed.

Incidentally, a figure previously given for the size of
Kohn anomalies in aluminum!! may be converted to the
same form as above: F'(2kr)=0.0254-0.012 in alu-
minum. The value calculated by Vosko et al. (their
TFig. 17) for a one-orthogonalized-plane-wave matrix
element is 0.047 in this case.



