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i.e., by putting the specimen under pressure or by
increasing the temperature since the later produces
similar increase in u(g), and using a metal or alloy where
the zero of the pscudopotcDtlal docs Dot fall oQ thc
major peak in o(q). The interference functions used
werc calculated from the expression given by Ashcroft
and Lekner": The hard. core radius of 3.1 (a.u.) was

kept 6xcd, but the packing density q was adjusted
appropriately, e.g., at 10'po compression, rl =0.50,
whereas, q= 0.45 at zero pressure.

indeed the E-8 interaction in transition metals is weak,
then an effective electron-photon coupling matrix could

be constructed along the lines suggested in AII and the

theory would also be applicable to transition metals.
An important correction which the use of an "optical"-

pseudopotential matrix element has revealed is that the

RssulTlptlon of CODstRDt. 1Tlatrlx clcIQcQt, curlelltly Inadc

by Spicer and co-workers" in analyzing phot, oemission

experiments needs to be reexamined. This question will

be considered in greater detail in a subsequent paper.

4. CONCLUSION

Kc hRvc shown that thc optlcRl pscudopotcntlal
gives reasonable results for the optical conductivity in
simple (nearly-free-electron) metals. It would also
appear from the works of Mueller" and Heine'4 that, if

"N. W. Ashcroit and J.Lekner, Phys. Rev. 145, 83 (1966)."F.M. MueHer, Phys. Rev. 153, 659 (1967).
24 V. Heine, Phys. Rev. 153, 673 (1967).
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It is shown that the interaction oi Bloch (conduction) electrons moving in the periodic lattice potential

of a metal with an electromagnetic field is adequately described by a simple reduced Hamiltonian in which

the coupling between a single electron and a single photon is represented by a dynamically screened "optical

pseudopotential .Thus, realistic calculation of the transition probabilities for various processes, particularly

photoemission and absorption, including the collective eRects due to the self-consistent field of the electrons,

can be performed without recourse to detailed energy-band-structure computation in simple (nearly-free-

electron) metals. Furthermore, a simple Hamiltonian of this type can be used quite generally for other

purposes, for example, in calculating the self-energy of the Bloch electron due to emission and reabsorption

of single photons. An expression is given for the eRective mass of the Bloch electron in an electromagnetic

field.

1. Dt'TRODUCTIO5'

N thc pRst. , efforts have bccn made to solve thc
~ ~ Schrodinger equation for B, Bloch (conduction)

clcctlon moving ln thc static perlodlc potcntlal of R

Inctal uDdcl RD applied electromagnetic 6eld by using

tile scllllclasslcal effective-Hamiltonian method and/01

the effective-mass approximation. ' These approaches

do Qot) however) take 1Qto RccouQt thc mlxlng of states

from di6crcnt bands and the modification of the coupl-

ing between the electron and the apphcd 6eld duc to
the self-consistent 6CM of thc conduction electrons.

Consequently, they are inadequate for perforlnlng

realistic calculation of the Aarssiiioe Probobt'irises for
~ This work was supported by the Advanced Research Project

Agency through the Center for Materials Research at Stanford

University.
~For a review see, e.g., J. Callaway, ENergy Bawd Theory

(Academic Press Inc., New Pork), 1964, pp. 233-306.

VRrlous ploccsscs dcpcQdent oD thc cIQlssion ol Rbsolp-

tion of R photon by the electron, upon which we wish

to focus attention in this paper.
Thc mlxlng of states fl om dlRerent bands ln high

stukc Gelds responsible for Zencr tunnchng and mag-

Dctlc breakthrough ls well known Rnd relatively well

understood. ' The situation in a space and time earywsg

6eM is perhaps the least clear at the moment. An

cxamplc of this ls thc optical RbsoI'ptloD duc to lntcr"

band transitions in metals, particularly the alkali metals

which have roused. considerable attention recently. ' In
a recent review of photoemission studies, Spicer' has

emphasized the need for going beyond the eRective-mass

' H. Mayer and B. Hietel, hl Eroeeedings of th» International
Colloyuum amd Optical Properties and E/ectroriic Structures of
Metals and .4lloys, I'ass, 1965 (North-IIolland Publishing Com-

pany, Amsterdam, 1966), p. 47.
'%. K. Spicer, Phys. Rev. 154, 385 (1967).
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c' d'rP'(rt)A'(r, t)P(rt)+Elf'„ja, (2 1)+ (ihe/mc) d r'nP(rt)A(r, t) VP(rt)+(e'/2mc') r r

0

orthonormal set of functions inand (Xi) is a complete ort on
r space. Then (2.1) becomes

r~CpCVpr~r, Ic&Cpr C&r Clc &
H=p Ek~kci, ~ ca+2 &, ~ ~ cI,

Ik tb

~b )b &,t)ci tci,+Q ha)qxbq), q),+ Z gk'kq& bq) -QX ck'
k'kQX

b
e ' t -'Q' 2.2)

g(rt)=~ci p r,X (r) P&(rt) =g c,&X,'(r),
+(terms of the form bqi qici'b &ci'c&), (2.4)

(2 3) where

the energy of the free electro-VFhere the last term is e
nd all the other terms have their usualmagnetic Geld, an a

d annihilation oper-oduce creation anmeaning. We intro
field and for the electronsators for the photons of the e an

b writing

k

2 is the polarization, cog' is the fre-where eqi, (X=1, ) is
f the hoton, V is t e norm

~A O. E. Animalu and W. . a
( ).

~ ~ ~ ~ ~ j

ev. 163, 557A. O. E. Anirnalu, prece ing
(196"7).

Ea I = xl, *(r)

Vk'y', kp

(b'/2m) V—'+ U(r) 5Xi,(r)d'r, (2.5

g2

fr r'—
XX&(r')X (ri) rdd'"r', (2.6)
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and

gu a q&,
= (k/2 ')qg} i (fek, mc)

~ eq1 Xg *(r)(e+'o'V) Xg(r) d'r (2.7)

Thc last set of terms in the electron and photon oper-
ators may be described as "anharmonic" terms in the
essentially Froiich-type Hamiltonian (2.4): These
biquadratic terms represent the scattering of photons
by the Bloch electrons as in the Compton eRect, and
so will not concern us further. In any case, for the inter-
esting cases of weak helds, terms of order A' are small.
The formal expression (2.4) becomes useful if we can
determine the complete set of functions (Xq) and hence
the matrix elements in (2.5), (2.6), and (2.7) explicitly.

We choose a representation in which (2.5) is diagonal
so that the X's are solutions of the single-electron Sloch
equation (without electron-electron interactions);

If, as in the eRective Hamiltonian method, we were to
determine the Bloch functions by performing a full
energy-band calculation, the evaluation of the matrix
elements in (2.6) and (2.7) would be quite complicated.
Instead, we perform a pseudopotential transformation

(2.9)

(2.10)

1s a projection operator (P'= P) onto th«ore states the
summation being over the occupied core electron orbitals
in the system. This leads, without any approximation,
to the pseudopotential equation

we obtain orthogonality between the X's:

&x~ lx~&= I
«I'&~ ~+o(w'), (2.14)

provided that we also treat (k'IBID) as a first order
quantity. For our present purpose, it is convenient to
rewrite (2.12) in the more compact form by replacing
Elk) by PI,- lk")(k" IPlk) to obtain

Ixp)=«'lk)+up+' lk")

X (k"
I W(k} lk)/(ep —ep-}+ (2 15)

where ao' is a new constant incorporating the diagonal
term (kll'lk) and Wis the Animalu-Harrison optical"
pseudopotentiaP deined by

&k" IW(k) Ik&=&k" IW(k)+(~~ —~~)~lk) (2 16)

It depends on the energy of both states but has been
labeled here by the energy of the state in W(k). The
definition of 8' is not compelling, but it enables us to
give a simple physical interpretation to the 6nal results.

By using (2.15) in (2.7), retaining only f1rst-order
terms, and noting that eqq Q=O in the Lorentz gauge,
wc obtain

h 1/2

ga I qx= — — — (~"i ~~}eq&'
2 VMgy

—k(k+Q I
W(k')

I
k'&*/(e, +o—eg ) . (2.17)

necessary, and the fact that, in general, 8' satis6es
the non-Hermiticity relation

(k'I W(k)! k)—(kl W(k') lk')*
= —(eg. —eg, }(k'IPI k), (2.13)

where 8' is a weak. pseudopotential operator, ' the pre-
cise form of which does not matter until actual numerical
computation is required. Ke make explicit the depen-
dence of W on the energy of the state k by writing
W(k) subsequently.

Wc now make an approximation, by determining

I yI, ) in (2.11) to 6rst order in W by perturbation theory,
and substituting the result in (2.8) to obtain

lxp&=-ao Ik) —Elk)+P' lk")

&k"
I w(k} lk)

X — +". , (2.»)

where «1s a norlIlahzatlon c011stallt, and ay=A k /2'
is the energy of the plane-wave state lk). Since the
qA, 's are, in general, nonorthogonal, we must check. to
any desired order in lV that the X's are orthogonal. By
using (2.12), together with the relation I"=I' when

9 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

is logically a second-order quantity, since VI'/I'V.
In the matrix element of the electron-electron inter-

action in (2.6), the only terms which survive to first
order in t/t/" are the free-electron-gas results, which we

write in the form that wiH be used later in Sec. 3 for
deriving the screening in the random-phase approxi-
mation,

l'a, ,~,=(«~'/lk' —kl')~k ~, ,
for the direct Coulomb interaction, and

(2.18)

l'"..= I:4 ~'/(Ik —pl '+k. ')l~~-u, '-u (2 19)

for the exchange part, 1/k, being a screemng length.
The screening of the exchange is incorporated here for
completeness: It does not detract from our general
results.

This result follows less directly from (2.12) provided
wc recognize that

&k'I»&1 k) =2 2 &k'l~&&~l & I~')(~'lk)



The conservation of momentum requires

It'= it+ q+Q, (2.2O)

where Aq is the momentum imparted to the electron
by collision with an ion,

On gathering results, the final form of (2.4) becomes

+=+ Ekck ck+ P —V(r{+Q)ck+~+q ck' q q-&—k'&k
k k'kqQ

+ Z gk kqk(bqk+b qk')ck'ik
k'kQX

+Q ho)qkbqktbqk, (221)

where we have dropped the exchange term momentarily
so that V(q+Q)=4zre'/lq+Q

It is useful to assess the simplihcation achieved in the
second-quantized formalism. Firstly, we have pre-
scribed Ob Audio the interaction between a single electron
and a single photon in terms of the familiar pseudo-
potential theory: This has made it easy to spotlight the
fact that the pseudopotential required for electro-
magnetic phenomena is different from the regular one
determining, for example, the shape of the Fermi surface
and electron-phonon interaction. The transition proba-
bility for various processes dependent on the mixing
of two Bloch states Xk and Xk and the absorption or
emission of a single photon is simply proport. ional to
gkt k g)t gkkc q)t. which { an be evaluated self con
tently, as described in Sec. 3, without recourse to any
detailed band-structure calculation: This is the real
advantage over the effective Hamiltonian (szzzgle-band)
formalism. The Hamiltonian itself can be used for
various purposes such as the one described in Sec. 4
and for calculating photon-assisted tunneling currents
in simple metals. FinRlly the formalism ls appllcRble
to the regular solid or amorphous materials (e.g.,
liquid metals), to a lattice distorted by phonons or
vacancies, and to alloys, for we can write

&1 'I Ivl 1 )=s(l &'—kl) &1 'i~1 1 ),

$(lit' —kl)—=—Q exp[—z(k' —ir) R;jE s

is the usual structure factor of diffraction theory which
takes completely into account the dependence of 8' on
the positions I; of the X ions in the system, and
(lt'I@lit) is the matrix element of the potential associ-
Rted with R single ion.

3. DYNAMICAL SCREENING OF THE
ELECTRON-PHOTON INTERACTION

In Sec. 2 we determined the coupling matrix gk kq)
between the electron and a single photon of the electro-
magnetic 6eld in terms of an optical pseudopotential 5'
constructed from the single-electron Bloch equation
(2.8) which does rzot include electron-electron inter-

action. Consequently, QY in the de6ning expression

(2.17) is zzzzscreezzed In. this section we shall determine,

in the framework of self-consistent, time-dependent,
Hartree-Fock theory, the influence of electron-electron
interactions on each Fourier component gk, qk (note that
&'= lt+q+Q) of the coupling matrix. We write

gkqqk gkkqk+gkqqx ~ . (3 1)

where the second term is the modi6cation due to the
self-consistent 6eld of the conduction electrons.

For simplicity we ignore exchange in the meantime,
and use the equation of motion method. We may remark
here that we would get the same result from the
Schrodinger equation bit we would have to go to second
order in the density matrix, In the equation-of-motion
method using the second-quantized formalism, the
desired result wiD be obtained by considering no more
than the linear response of the electron-hole pair,
pkqq=ck~ck+~+q, to the perturbation due to a single-

photon mode (i.e., fixed Q and X)

&'nz= Z gkqqk(bqk+b-qk') pi, q . (3.2)
kq

[Note that bqk(t) =bqk(0) s
—~"q&'.$

The equation of motion of the electron-hole pair is

(3.3)[H,Pk,q] = ZABPk, q/B—t.

The electron-density Quctution is

pqc= ~ c~ c~+q+& (3 4)

We seek an oscillating solution of (33) at a frequency
co—=&oqk associated with the mode (Q,X), for if the elec-
tron-density fluctuation is to respond to {2.3) with this
frequency, then each electron-hole pair must do likewise.
Thus, from (3.3)

@(~+z~)&p—k.q) =([&,pk. qj) (3.3)

where the small positive number 8 corresponds to
adiabatic turning on the interaction (3.2), and the ex-
pectation value is taken in the ground state.

In the random phase approximation (RPA), '0 we
obtain

-~(-+ b)&"„)=(~"-~„„.)&p„,)+(.,—.„„.)
X{.(q+ Q)( „)+„„,(&b„)+&b „))) {3.6)

where e~ is the Fermi distribution. The Sloch energies
Ek for a nearly free electron metal can be written

Zk=.k+(I I
IV

I t)+O(Wk), {3.7)

so that, on regarding (pk, q) as first order, we have to
retain only the zero order in (3.7). Thus, on rearranging
(3.6) we derive

+q
&p,kq) =- —( (q+Q)&., )

kk 6k+k+0+ tz(M+ zlzz)

+gk, qk{&bqk)+ &b-qkz)) ) . (3 g)
'0 D. Pines, F/ementary E~xcito@ows je Sol@'s (W. A. Benjamin,

Inc., New York, 1963), pp. 138-143.
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%e proceed to deduce the self-consistent term
gzyql'0 111 (3.1). Tllls 18 glvcll by Polssoll 8 cqllstloll

g"ql-(&Bql)+(&-ql')) =y(II+0)&pyq) (3 9)

If we now use the definitions (3.1) and (3.9) to eliminate

It(q+0)(p, q) from (3.8), we get

&~yyq)
=—

~g—ej,+,+0+A(o&+iB)

X~...'-{&b")+&b-."» {310)

Equations (3.9) and (3.10).have to be solved self-

consistently. Our procedure for doing this is to sum
over A in (3.10) and feed the result into the right-hand
side of (3.9)& tllcll Rdd tile Nsscf88IMd term gaqql((Bq&)

+(B qlt)) to both sides of the resulting equation. The
result is an integral equation for gI:,q),"',
gl,qe"= glyql —y(II+0)

0p Sy+q+Q
Xg g„, "', (3.11)

6y 6y+qyq+ A(G&+I B)

where we have dropped the common factor (&bql)

+(b q&,t)) multiplying both sides of the equation. This
is the analog of the integral equation given by Sham
and Ziman" for the elective electron-phonon interac-
'tloll matrix. Tile 11108't gcllcl'Rl fol'111 of (3.11) lncludlng

exchange (screened or unscreened) is

Sy Syy

gy aqua' = gay ql —P gyy ql'
ywy 6y 6y'+ A(&+ IB)

y, {8(Ape'p') —y, (App'A')), (3.»)
where k'=k+ri+0, y'=II+Ii+0, and

y(kPk'P')=(4~8'/III+QI')Bj, I„y y, (3.13)

II, (happ'A') =
I 2Ire'/(I p kI'+A—,')]By 1;I,. ,(3.14)

Note that g)crcyq), ls strictly k-dependent, so that thc
solution of this equation follows along the lines sug-

gested elsewhere" for the special case where the ex-

change is replaced by a suitable local potential.
The qualitative feature of (3.11) and (3.12) can be

seen by ignoring the k dependence of gi, ~ @)„e.g., by
evaluating it Orner at a 6xed k=kp, say. Then we can
fRctol ollt gyyqleII flolll tile sunlII1Rtloll ovcl' ll 111 (3.11)
to obtain

glqql' = gayql/&Ir(q+Q, ~),
%'lmrc

~a(Ii+ 0, ~) = 1+v(Ii+0)
0p Sp+q+Q

XQ —(3.16)' "—~~.+0+A(~+I'B)

is the Hartree dynamic dielectric function.

'1This equation becomes an obvious de6nition if we harl
written the interaction terms (3.2} in the conventional form in
terms of an external potential q, p+ and determined the screening
term y" from v'qs'= —%re'p by taking the Fourier transform."L. J. Sham and J. M. Ziman, Solid State Phys. H, 221 (1963).

"A. O. E. Animalu, Phil. Mag. j.o, 379 (1965).

In order to Rpplcclatc thc nlcRlllllg of (3.15) Ict lls

consider the very special case when Q
—10 in (2.17)

corresponding to a pure electric fi.eld. Then (3.15)
takes the form

gI ~)"'= —C),

-k'&A'IW(A) Il)—I (l IW(A') Ik')'-
X—

III (g&(0)

koyl~ ~ (3.17)

In this section we shall prove a general theorem about
the eRective mass of Sloch electrons in an electromag-

netic Geld. %C precede our derivation by an illustration

in the context of the current theory of the "optical"
CRective mass'5 m, p*. The expression for m, ~* is given

most conunonly in terms of the so-called f-sum rule

(which can be derived from the k.y method of band-

structure calculation) for an isotropic material

yII/m*{k) = 1++ fy~y, (4.1)

i4 Reference 2 p. 22.
» M. H. Cohen, and. V. Heine, Advan. Phys. 7, BN (1958).

where k'=k+q and coy I.=(e)„.—el)/A. If, ln addltlon,
we neglect the non-Hermiticity of W in (3.17) so that
(k'IW(k) Ik)=(kIW(k') Ik')*, then the term in square
brackets becomes II&k'I W{k) Ik)/eII(q, u). This has an
obvious interpretation ln terms of an eRective dynami-

cally screened optical pseudopotential;

(k'I W.II(k) I k) = (k'I W(A)
I k)/eH(q, co), (3.18)

giving in (3.17)

gl. I,lel'= (A/2 Vcr) IIy) eA/ylyc) cI,

)& II&k'
I W„II(k) I

k)/Atelier. (3.19)

The screening corresponds to the optical frequency
co=~~.I, of the external 6eld, as required by energy con-

servation in an optical transition. Thus, at zero 6eld,
(3.18) reduces by virtue of {2.16) to the usual result

&k'I W,«(&) Ik) = &k'I &«{~~)Ik)/~II(n0),

where tt/, qq is the statically screened regular pseudo-

potential determining, for example, the shape of the
FcrIIll sul face.

The result (3.18) has been previously suggested by
Hop6eld' in connection with photoemission. However,

hc dcllvcd his results with th.c usual pscudopotcntlal
rather than an optical one. The diGerences between the
static and the dynamic dielectric functions have been
discussed in Ref. 8 and in textbooks (see e.g. , Ref. 10,
p. 143).More recently, Phillips" has discussed the effect

of the dynamic screening in the enhancement of indirect
interband optical absorption in metals.
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by the expression

1/m. p* ———P eg/m*(k), (4.2)

Green's function

G(IS)=1/L~ E—. Z—(~,~)j, (4.5)

2h
fi a=

mQP~Ic

XI,.*VXj,d'~r (4.3)

where A~I, & is the energy di6erence between the Bloch
states Xq and X„. From the expression (2.17) which
defines gi, qoi, in the limit as Q

—+ 0, we obtain

(X'[~IX.&=~Lk'( '[~(~) [k&
—k(k i

W(k') l k')*j/A&op i„(4.4)

where A~I, I,
——el, —eI,. The present formalism can there-

fore be used to evaluate oscillator strength directly in
nearly-free-electron metals without recourse to energy-
band calculations. However, the pseudopotential needed
is diBerent from that determining, for example, electron-
phonon interaction and the energy-band structure. In
addition, (4.4) can be evaluated self-consistently by
replacing W and W,tt given by (3.18).

For the complete problem we have, in general, a

where n~ is the Fermi distribution, E is the number of
conduction electrons per unit volume, and fi, i, is the
"oscillator strength" for transitions from state k to
state k';

where g (k,E) is the self-energy, so that we can define
an eQective "electromagnetic" mass by

(1/A)BE/Bk~g t. ——Ak i/m *, (4.6)

and find, from the poles of (4.5),

m *=ms(1 B—P /BE)
~ k „~, (4.7)

where vs~ is the zero-Geld Bloch eGective mass. This is
our effective-mass theorem. This is the analog of the
so-called "thermal" mass in the electron-phonon inter-
action. "It does not seem at the present time to have
any more general meaning than the optica) effective mass
introduced above. But it is evidently the proper mass
to be used in describing the inQuence of the Geld on the
dynamical properties of the Bloch electron. No attempt
will be made here to compute this mass explicitly; in
practice, it should follow the procedure for the electron-
phonon case exactly. "
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The dispersion relations for phonons in lead determined by neutron spectrometry exhibit a large number of
Kohn anomalies, which may all be related to the Fermi surface in a consistent manner by considering both
electron transitions diametrically across the Fermi surface and nondiametral transitions between points
with parallel tangent planes. Factors affecting the size and shape of anomalies are reviewed. The detailed
interpretation of anomalies leads to a mapping of the Fermi surface, and the result may be compared
with that of Anderson and Gold, who used the de Haas —van Alphen method. There is fair agreement,
with significant particular differences. The sizes of anomalies have been interpreted in terms of a screened
ion-electron interaction.

r. INTRODUCTION

INCR Kohn' pointed out that the phonon-electron
~ ~

~

interaction changes abruptly along surfaces in the
wave-vector space of phonons which are directly related
to the Fermi surface, and that this change may be
observable as kinks in phonon dispersion curves, such
anomalies have been observed in some metals. Brock-
house et aL' were the Grst to see the eGect, in lead. As
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they pointed out, the investigation of the Fermi surface
via phonons and neutrons is a potentially interesting
complement to other methods. The neutron method
does not require particularly pure samples or low tem-
peratures, and the interpretation of data is mostly just
a matter of geometrical constructions. But it is rather
elaborate and, with present neutron sources and spec-
trometers, applicable only to metals that exhibit rela-
tively large anomalies and are especially amenable to
neutron spectrometry, and in fact has not previously
been used for a comprehensive study of a Fermi surface.
The anomalies in lead seemed tq be su6iciently pro-


