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%.e., by putting the specimen under pressure or by
increasing the temperature since the later produces
similar increase in a(g), and using a metal or alloy where
the zero of the pseudopotential does not fall on the
major peak in a(g). The interference functions used
were calculated from the expression given by Ashcroft
and Lekner??: The hard core radius of 3.1 (a.u.) was
kept fixed, but the packing density # was adjusted
appropriately, e.g., at 109, compression, 7=0.50,
whereas, 7=0.45 at zero pressure.

4. CONCLUSION

We have shown that the optical pseudopotential
gives reasonable results for the optical conductivity in
simple (nearly-free-electron) metals. It would also
appear from the works of Mueller?® and Heine? that, if

2 N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).
2 F. M. Mueller, Phys. Rev. 153, 659 (1967).
2V, Heine, Phys. Rev. 153, 673 (1967).
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indeed the s-d interaction in transition metals is weak,
then an effective electron-photon coupling matrix could
be constructed along the lines suggested in AII and the
theory would also be applicable to transition metals.
An important correction which the use of an “optical”-
pseudopotential matrix element has revealed is that the
assumption of constant matrix element currently made
by Spicer and co-workers?® in analyzing photoemission
experiments needs to be reexamined. This question will
be considered in greater detail in a subsequent paper.
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Tt is shown that the interaction of Bloch (conduction) electrons moving in the periodic lattice potential
of a metal with an electromagnetic field is adequately described by a simple reduced Hamiltonian in which
the coupling between a single electron and a single photon is represented by a dynamically screened “optical
pseudopotential”’, Thus, realistic calculation of the transition probabilities for various processes, particularly
photoemission and absorption, including the collective effects due to the self-consistent field of the electrons,
can be performed without recourse to detailed energy-band-structure computation in simple (nearly-free-
electron) metals. Furthermore, a simple Hamiltonian of this type can be used quite generally for other
purposes, for example, in calculating the self-energy of the Bloch electron due to emission and reabsorption
of single photons. An expression is given for the effective mass of the Bloch electron in an electromagnetic

field.

1. INTRODUCTION

N the past, efforts have been made to solve the

Schrodinger equation for a Bloch (conduction)
electron moving in the static periodic potential of a
metal under an applied electromagnetic field by using
the semiclassical effective-Hamiltonian method and/or
the effective-mass approximation.! These approaches
do not, however, take into account the mixing of states
from different bands and the modification of the coupl-
ing between the electron and the applied field due to
the self-consistent field of the conduction electrons.
Consequently, they are inadequate for performing a
realistic calculation of the transition probabilities for

* This work was supported by the Advanced Research Project
Agency through the Center for Materials Research at Stanford
University.

1For a review see, e.g., J. Callaway, Energy Band Theory
(Academic Press Inc., New York), 1964, pp. 233-306.

various processes dependent on the emission or absorp-
tion of a photon by the electron, upon which we wish
to focus attention in this paper.

The mixing of states from different bands in high
static fields responsible for Zener tunneling and mag-
netic breakthrough is well known and relatively well
understood.! The situation in a space and time varying
field is perhaps the least clear at the moment. An
example of this is the optical absorption due to inter-
band transitions in metals, particularly the alkali metals
which have roused considerable attention recently.? In
a recent review of photoemission studies, Spicer® has
emphasized the need for going beyond the effective-mass

2. Mayer and B. Hietel, in Proceedings of the International
Colloguium and Optical Properties and_Elecironic Structures of
Metals and Alloys, Paris, 1965 (North-Holland Publishing Com-
pany, Amsterdam, 1966), p. 47.

3 W. E. Spicer, Phys. Rev. 154, 385 (1967).
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and effective-Hamiltonian approaches in computing
transition probabilities in order to include self-con-
sistently the collective effects due to electron-electron
interactions in the presence of an external perturbing
field. The few such attempts which have been made in
the recent literature include the resonance studies by
Phillips,* the electron-electron effects in photoemission
by Hopfield,® and the most recent studies of plasmon
effects by Mahan.® Another effect which has proven to
be of considerable importance in optical transitions
(particularly in the alkali metals) comes from the fact
that the pseudopotential entering the optical transition
probability is different from the usual one determining
energy bands and electron-phonon interaction. This has
been called the “optical” pseudopotential”-8: It depends
explicitly on the frequency of the absorbed photon. We
have shown in a previous paper?® that the difference
between the optical and the regular pseudopotential
accounted for nearly a factor of 2 between the observed
and the calculated interband optical absorption, in the
alkali metals.

Our objective in this paper is to show, firstly in Sec. 2,
how the optical pseudopotential arises quite naturally
in the second-quantized Hamiltonian for the assembly
of Bloch electrons in an applied electromagnetic field.
Secondly, we show, in Sec. 3, how the effect of electron-
electron interaction can be incorporated self-consistently
in terms of the dynamic Hartree dielectric function at
the frequency of the absorbed or emitted photon, and
reduces to the result previously obtained by Hopfield’

52V2

n= [ ¢*<rt>[—~—+ U(r)]¢<rt)+ [amrrvape t)T

OPTICAL TRANSITIONS IN SIMPLE METALS

563

for an ordinary pseudopotential. The simple reduced
Hamiltonian obtained in this way not only gives the
transition probabilities directly but is also useful as a
starting point for investigating various problems. As
an example we shall use the Hamiltonian in deriving the
effective mass of a Bloch electron in an electromagnetic
field in Sec. 4: This is a self-energy effect due to continu-
ous emission and reabsorption of photons.

It would appear, therefore, that we have obtained a
general and quantitative form of the theory of optical
transitions in simple metals, which has the advantage
that we do not have to perform a preliminary energy-
band-structure computation. The calculation of an
optical pseudopotential, as we have shown in a previous
paper,? entails no more labor than the usual regular
pseudopotential. We must point out, however, that the
present theory cannot account for special effects due
to the shape of the bands, e.g., critical points,* although
it is useful for calculating the appropriate oscillator
strengths involved.

2. SECOND QUANTIZATION OF THE
HAMILTONIAN

Consider a system of Bloch (conduction) electrons
moving in a periodic crystal potential U(r), under an
applied electromagnetic field described by a vector
potential A(r,?), in the Lorentz gauge (V-A=0). The
full Hamiltonian for the system may be written in the
second-quantized form

e

lt;'«(r’t)tﬁ(ﬂ)

+ (ihe/mc) f Bt () A(r,t) - Vi (1) + (e2/2mc?) / APt A2(e )y (et)+ Heiea, (2.1)

where the last term is the energy of the free electro-
magnetic field, and all the other terms have their usual
meaning. We introduce creation and annihilation oper-
ators for the photons of the field and for the electrons
by writing

A= < Veoor

Y()= % eXa(r), Y) =X alxi*(@),

12
) 2 ea(bor et Qb gt eier) | (2.2)
QX

(2.3)

where egn (A\=1, 2) is the polarization, wg is the fre-
quency of the photon, V is the normalization volume,

4 J. C. Phillips, Solid State Phys. 18, 56 (1966).
5J. J. Hopfield, Phys. Rev. 139, A419 (1965).
"G D. Mahan, Phys. Letters 24A 708 (1967).
A. O. E. Animalu and W. A. Harrlson, Bull. Am. Phys. Soc.
12 415 (1967)
$A. O. E. Animalu, preceding paper, Phys. Rev. 163, 557
(1967)

and {X;} is a complete orthonormal set of functions in
r space. Then (2.1) becomes

H= Z Ek'kck'fck‘f“%

Z Vi .kpck'TCp'TCkcp

k'k k'p’ kp
+ 2 grran@anto-oaNewtert Y. hoobaratbor
QA
=+ (terms of the form boatborcrTcr), (2.4)
where
Ekrk=/xk/*(r)
X[— (72 2m) V24U () Jx(1)d3r, (2.5)

2

Virp pp= f X * ()X *(x')

[r—r'|

XX (X)X p(r)d%d%’ , (2.6)
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and
grror=(1/2Vwor)2(ieh/mc)

-eqx/‘xk:*(r)(e+"°"V)Xk(r)d3r. (2.7

The last set of terms in the electron and photon oper-
ators may be described as “anharmonic” terms in the
essentially Frolich-type Hamiltonian (2.4): These
biquadratic terms represent the scattering of photons
by the Bloch electrons as in the Compton effect, and
so will not concern us further. In any case, for the inter-
esting cases of weak fields, terms of order 42 are small.
The formal expression (2.4) becomes useful if we can
determine the complete set of functions {X;} and hence
the matrix elements in (2.5), (2.6), and (2.7) explicitly.
We choose a representation in which (2.5) is diagonal
so that the X’s are solutions of the single-electron Bloch
equation (without electron-electron interactions);

[—ﬁ2V2/2m+ U(I')]XLZ Ekxk.

If, as in the effective Hamiltonian method, we were to
determine the Bloch functions by performing a full
energy-band calculation, the evaluation of the matrix
elements in (2.6) and (2.7) would be quite complicated.
Instead, we perform a pseudopotential transformation

|Xi)=(1—"P)| ¢r), (2.9)
P=3% |a)a]

(2.8)

where
(2.10)

is a projection operator (P?= P) onto the core states, the
summation being over the occupied core electron orbitals
in the system. This leads, without any approximation,
to the pseudopotential equation

[—7%2V/2m~+W ]| o)=Ei| o) » (2.11)

where W is a weak pseudopotential operator,® the pre-
cise form of which does not matter until actual numerical
computation is required. We make explicit the depen-
dence of W on the energy of the state & by writing
W (k) subsequently.

We now make an approximation, by determining
| o) in (2.11) to first order in W by perturbation theory,
and substituting the result in (2.8) to obtain

X6} =aof [K)—P )+ [K”)
&”|W ()| k)

€ €xrs

, (2.12)

where @, is a normalization constant, and e;=%2%k2%/2m
is the energy of the plane-wave state |k). Since the
@x’s are, in general, nonorthogonal, we must check to
any desired order in W that the X’s are orthogonal. By
using (2.12), together with the relation P?=P when

9 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
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necessary, and the fact that, in general, W satisfies
the non-Hermiticity relation

(KW (&) o) — (k| IV (£7) [ K')*

=—(ew—e) (K| P|k), (2.13)
we obtain orthogonality between the X’s:
K | X)= | @] 281 +O(W?) (2.14)

provided that we also treat (k'|P|k) as a first order
quantity. For our present purpose, it is convenient to
rewrite (2.12) in the more compact form by replacing
P|k) by > p |K’)K"”| P|k) to obtain

[xa=aq llo-+as X |K")

X (K" | W(k) |K)/ (e —ewr)+- -+, (2.15)

where a¢’ is a new constant incorporating the diagonal
term (k| P|k) and W is the Animalu-Harrison “‘optical”
pseudopotential” defined by

&' | W) | k)= (K" | W (k)+ (e —e)P| k). (2.16)

It depends on the energy of both states but has been
labeled here by the energy of the state in W (k). The
definition of T is not compelling, but it enables us to
give a simple physical interpretation to the final results.

By using (2.15) in (2.7), retaining only first-order
terms, and noting that egy-Q=0 in the Lorentz gauge,
we obtain

( /3
8K kA=

weN

12 K{&'—Q| W) |k
> (eh/mc)em.[< Q|W(k) k)

€ €x’—Q
—k<k+0rv‘v</a'>|k'>*/<ek+o—ekr>]. (2.17)

This result follows less directly from (2.12) provided
we recognize that

¥ |PVPIR=F T (¥'|a)a] ¥]e )/ |2),

is logically a second-order quantity, since VP# PV,

In the matrix element of the electron-electron inter-
action in (2.6), the only terms which survive to first
order in W are the free-electron-gas results, which we
write in the form that will be used later in Sec. 3 for
deriving the screening in the random-phase approxi-
mation,

Vklpf kp= (47['62/[ k,"‘ kl 2)5k'—k,p’——p (218)
for the direct Coulomb interaction, and
Vi po=[4me?/(|k—p|2+k:2) J0kpw—p  (2.19)

for the exchange part, 1/k; being a screening length.
The screening of the exchange is incorporated here for
completeness: It does not detract from our general
results.
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The conservation of momentum requires
K=k+q+0Q,

where 7q is the momentum imparted to the electron
by collision with an ion.
On gathering results, the final form of (2.4) becomes

H=} Ewxia+i X V(@+Q)crreroior—e—oicrcx
k k'kqQ

(2.20)

+ X geranant-b-oahewter
k'EQ)
+2- hwoaboatdgn, (2.21)
QN

where we have dropped the exchange term momentarily
so that V(q+Q)=4wre?/|q+Q|2.

It is useful to assess the simplification achieved in the
second-quantized formalism. Firstly, we have pre-
scribed ab initio the interaction between a single electron
and a single photon in terms of the familiar pseudo-
potential theory: This has made it easy to spotlight the
fact that the pseudopotential required for electro-
magnetic phenomena is different from the regular one
determining, for example, the shape of the Fermi surface
and electron-phonon interaction. The transition proba-
bility for various processes dependent on the mixing
of two Bloch states X and X, and the absorption or
emission of a single photon is simply proportional to
Zire,on ¥ gew —on. wWhich can be evaluated self-consis-
tently, as described in Sec. 3, without recourse to any
detailed band-structure calculation: This is the real
advantage over the effective Hamiltonian (single-band)
formalism. The Hamiltonian itself can be used for
various purposes such as the one described in Sec. 4
and for calculating photon-assisted tunneling currents
in simple metals. Finally, the formalism is applicable
to the regular solid or amorphous materials (e.g.,
liquid metals), to a lattice distorted by phonons or
vacancies, and to alloys, for we can write

| W|k)=S(| K~k |5|k),

where

1
SR —kD=— T expl~i(K'~K)-R]

is the usual structure factor of diffraction theory which
takes completely into account the dependence of W on
the positions R; of the N ions in the system, and
(k'|@| k) is the matrix element of the potential associ-
ated with a single ion.

3. DYNAMICAL SCREENING OF THE
ELECTRON-PHOTON INTERACTION

In Sec. 2 we determined the coupling matrix girox
between the electron and a single photon of the electro-
magnetic field in terms of an optical pseudopotential 17
constructed from the single-electron Bloch equation
(2.8) which does #not include electron-electron inter-
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action. Consequently, 77 in the defining expression
(2.17) is unscreened. In this section we shall determine,
in the framework of self-consistent, time-dependent,
Hartree-Fock theory, the influence of electron-electron
interactions on each Fourier component gigox (note that
k'=k+q+Q) of the coupling matrix. We write

Zkar* = grort grad™, 3.1)

where the second term is the modification due to the
self-consistent field of the conduction electrons.

For simplicity we ignore exchange in the meantime,
and use the equation of motion method. We may remark
here that we would get the same result from the
Schrédinger equation but we would have to go to second
order in the density matrix. In the equation-of-motion
method using the second-quantized formalism, the
desired result will be obtained by considering no more
than the linear response of the electron-hole pair,
Pke@=Ck CkiqrqQ, to the perturbation due to a single-
photon mode (i.e., fixed Q and \)

Hine=>" graor(dart0-aa")pree! (3.2)
kq

[Note that bgx(t)=0bgx(0) e~i@ar.]
The equation of motion of the electron-hole pair is

[H,pree]= —i%dpiea/ 3t. (3.3)
The electron-density fluctution is
PeQ= % Cx'CtatQ- (34)

We seek an oscillating solution of (3.3) at a frequency
w=wq) associated with the mode (Q,\), for if the elec-
tron-density fluctuation is to respond to (2.3) with this
frequency, then each electron-hole pair must do likewise.
Thus, from (3.3)

—#(w+i8)(pree) = (CH pree ) 3-5)

where the small positive number & corresponds to
adiabatic turning on the interaction (3.2), and the ex-
pectation value is taken in the ground state.

In the random phase approximation (RPA),'* we
obtain

—#(w+16){pre@) = (Ex— Exyq+0){pra@)+ (Mx— 11 q10)
X {v(q+Q){pe)+ groar(an)+(b-ar))}  (3.6)

where 7y is the Fermi distribution. The Bloch energies
E, for a nearly free electron metal can be written

Ey= e+ (k| W|k)+0(W?), 3.7
so that, on regarding {oxqq) as first order, we have to

retain only the zero order in (3.7). Thus, on rearranging
(3.6) we derive

N~ Ni4q+Q
—{v(q+Q){pq0)
€x— €xtq+Q+ 2w+ 8)
Fgraar (b)) +o-")}. (3.8)

0 D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963), pp. 138-143.

(para)=—
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We proceed to deduce the self-consistent term
greer*® in (3.1). This is given by Poisson’s equation!!

gren* (Do)t (b_aa")) =v(q+Q){pee).  (3.9)

If we now use the definitions (3.1) and (3.9) to eliminate
2(q+Q){pqe) from (3.8), we get

N Nktq4Q

ex— exrqrot2{w+16)
X graar* ¥ ((pan)+(0-n")) . (3.10)

Equations (3.9) and (3.10)_have to be solved self-
consistently. Our procedure for doing this is to sum
over k in (3.10) and feed the result into the right-hand
side of (3.9), then add the unscreened term grgon({bar)
+{b_e")) to both sides of the resulting equation. The
result is an integral equation for greor™;

grer* = graa—v(q+Q)

Np~Mptet+Q
X2 : goan®",
? ep— eprqrQt(w+id)

where we have dropped the common factor ({bqr)
+(b_gnt)) multiplying both sides of the equation. This
is the analog of the integral equation given by Sham
and Ziman!? for the effective electron-phonon interac-
tion matrix. The most general form of (3.11) including
exchange (screened or unscreened) is

<quQ> =

(3.11)

np_'np’

grrar=giror— 2o Eor !

p#p €p— €prt(w16)
X {v(kpk'p') —vex(lpp'®)}, (3.12)

where k'=k+q+Q, p’=p+q+0Q, and
o(kpk'p") = (4me*/ | q+Q|)dw—x,p—», (3.13)
Vex(kpp'k')=[2me?/ (| p—k|*+ £ 16 px,p—w. (3.14)

Note that grwex is strictly k-dependent, so that the
solution of this equation follows along the lines sug-
gested elsewhere' for the special case where the ex-
change is replaced by a suitable local potential.

The qualitative feature of (3.11) and (3.12) can be
seen by ignoring the % dependence of guwy, €.g., by
evaluating it once at a fixed k=Fkp, say. Then we can
factor out gieex®t from the summation over p in (3.11)
to obtain

gran'= groor/ en(q+Q, ©) (3.135)
where
en(q+Q, w)=1+42(g+Q)
P
N P~ MptatQ (3.16)

? ep—epraroti(wtid)
is the Hartree dynamic dielectric function.

1 This equation becomes an obvious definition if we had
written the interaction terms (3.2) in the conventional form in
terms of an external potential gexp* and determined the screening
term ¢ from V2¢* = —4mre% by taking the Fourier transform.

121, J. Sham and J. M. Ziman, Solid State Phys. 15, 221 (1963).

13 A. 0. E. Animalu, Phil. Mag. 10, 379 (1965).
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In order to appreciate the meaning of (3.15) let us
consider the very special case when Q— 0 in (2.17)
corresponding to a pure electric field. Then (3.15)
takes the form

B\2 /el
e (2
2Vw c

K& | W) | k) —k(k| WE) [k *
X kk'} . 7
[ e ] / o , (3.17)

where k'=k+q and wir= (e —er)/%. If, in addition,
we neglect the non-Hermiticity of W in (3.17) so that
(K| W(k) | k)= (k| W (k') | l')*, then the term in square
brackets becomes q(k’'|W(k)|k)/ea(g,w). This has an
obvious interpretation in terms of an effective dynami-
cally screened optical pseudopotential;

(& | Wes(k) [ )~ (K| W(k) | k) en(g),
giving in (3.17)

gt~ (1/2Vw) 2)eti/mc)ex
Xq(k’ ‘ chf(k) l k}/‘hwklk . (319)

The screening corresponds to the optical frequency
w=uwy;, of the external field, as required by energy con-
servation in an optical transition. Thus, at zero field,
(3.18) reduces by virtue of (2.16) to the usual result

(& | W ets(k) | y= (K| W (%) | k)/ enr(q,0),  (3.20)

where W is the statically screened regular pseudo-
potential determining, for example, the shape of the
Fermi surface.

The result (3.18) has been previously suggested by
Hopfield® in connection with photoemission. However,
he derived his results with the usual pseudopotential
rather than an optical one. The differences between the
static and the dynamic dielectric functions have been
discussed in Ref. 8 and in textbooks (see e.g., Ref. 10,
p. 143). More recently, Phillips' has discussed the effect
of the dynamic screening in the enhancement of indirect
interband optical absorption in metals.

(3.18)

4. AN EFFECTIVE-MASS THEOREM

In this section we shall prove a general theorem about
the effective mass of Bloch electrons in an electromag-
netic field. We precede our derivation by an illustration
in the context of the current theory of the “optical”
effective mass's m,,*. The expression for mq,* is given
most commonly in terms of the so-called f-sum rule
(which can be derived from the k-p method of band-
structure calculation) for an isotropic material

m/m*(k)=1+% 2T (4.1)

14 Reference 2 p. 22.
15 M. H. Cohen, and V. Heine, Advan. Phys. 7, 395 (1958).
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by the expression

1
1/mop*=—2_ ni/m*(k) , (4.2)
N &

where #;, is the Fermi distribution, N is the number of
conduction electrons per unit volume, and fi is the
“oscillator strength” for transitions from state % to
state &’;

2

s (4.3)

2%
fre=

/Xk,*VXkd3r

MWk

where #wy i is the energy difference between the Bloch
states X; and Xi. From the expression (2.17) which
defines gi ko in the limit as Q — 0, we obtain

e | ¥ [ X6 =LK (R )
— (k| T8 | W)Y s, (44)

where #iwi 1= ex— ;. The present formalism can there-
fore be used to evaluate oscillator strength directly in
nearly-free-electron metals without recourse to energy-
band calculations. However, the pseudopotential needed
is different from that determining, for example, electron-
phonon interaction and the energy-band structure. In
addition, (4.4) can be evaluated self-consistently by
replacing W and Wes; given by (3.18).

For the complete problem we have, in general, a
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Green’s function

where 3 (k,E) is the self-energy, so that we can define
an effective “electromagnetic” mass by

(1/%)0E/ k| serp="tkr/Mmom*, (4.6)
and find, from the poles of (4.5),
Mem*=mp(1—0 > /aE)lk=kF, @.7n

where mp is the zero-field Bloch effective mass. This is
our effective-mass theorem. This is the analog of the
so-called “thermal” mass in the electron-phonon inter-
action.!® It does not seem at the present time to have
any more general meaning than the optical effective mass
introduced above. But it is evidently the proper mass
to be used in describing the influence of the field on the
dynamical properties of the Bloch electron. No attempt
will be made here to compute this mass explicitly; in
practice, it should follow the procedure for the electron-
phonon case exactly.16
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The dispersion relations for phonons in lead determined by neutron spectrometry exhibit a large number of
Kohn anomalies, which may all be related to the Fermi surface in a consistent manner by considering both
electron transitions diametrically across the Fermi surface and nondiametral transitions between points
with parallel tangent planes. Factors affecting the size and shape of anomalies are reviewed. The detailed
interpretation of anomalies leads to a mapping of the Fermi surface, and the result may be compared
with that of Anderson and Gold, who used the de Haas-van Alphen method. There is fair agreement,

with significant particular differences. The sizes of anomalies have been interpreted in terms of a screened
ion-electron interaction.

1. INTRODUCTION

INCE Kohn! pointed out that the phonon-electron
interaction changes abruptly along surfaces in the
wave-vector space of phonons which are directly related
to the Fermi surface, and that this change may be
observable as kinks in phonon dispersion curves, such
anomalies have been observed in some metals. Brock-
house et al.? were the first to see the effect, in lead. As

* Chalmers University of Technology, Gothenburg, Sweden.

1 W. Kohn, Phys. Rev. Letters 2, 393 (1959).

2 B. N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys. Rev.
Letters 7, 93 (1961).

they pointed out, the investigation of the Fermi surface
via phonons and neutrons is a potentially interesting
complement to other methods. The neutron method
does not require particularly pure samples or low tem-
peratures, and the interpretation of data is mostly just
a matter of geometrical constructions. But it is rather
elaborate and, with present neutron sources and spec-
trometers, applicable only to metals that exhibit rela-
tively large anomalies and are especially amenable to
neutron spectrometry, and in fact has not previously
been used for a comprehensive study of a Fermi surface.
The anomalies in lead seemed to be sufficiently pro-



