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The optical conductivity of simple (nearly-free-electron) metals, in particular the alkali metals, is derived
from the Kubo-Greenwood formula by using an expression for the matrix element (x&' ~V ( xs) which we have
previously determined to 6rst order in the "optical" pseudopotential. The strength of the interband ab-
sorption in the solid alkali metals Li, Na, and K is found to be given approximately by replacing the param-
eter of the lattice potential determining the band gap in Butcher s formula with the corresponding optical-
pseudopotential matrix element. In Na and K, the calculated interband absorption is about 50% of the
experimental value; in Li good agreement is obtained. The results in liquid Na are discussed to the effect
that an "interband absorption" should be visible in the liquid state under favorable conditions, e.g., under
pressure.

1. INTRODUCTION

'HE purpose of this paper is to describe a calcu-
lation of the optical conductivity of simple

(nearly-free-electron) metals, in particular the solid and
liquid alkali metals, at a finite frequency in an electric
field. For simplicity, the self-consistency in the evalu-
ation of the matrix elements involved will be described
separately in the next paper' (hereafter referred to as
AII). The motivation for this computation is the
numerical discrepancy between the measured optical
absorption of the alkali metals' due to interband transi-
tions and that calculated in current literature. '—' We
shall show how our present theory corrects an error
which has existed in these previous calculations and
thereby removes nearly 50% of the discrepancy.

In Butcher's original theory of interband transitions
in nearly-free-electron metals, ' and recent improve-
ments, the interband optical absorption is found to be
proportional to a matrix element of the screened lattice
potential or pseudopotential. Such matrix elements
determine the band gap at the Brillouin zone face and
hence the distortions of the Fermi surface from the
free-electron sphere but have seemed not to account for
the strength of the absorption. Hopfield4 first improved
on Butcher's theory by pointing out that although the
pseudopotential matrix element entering the Fermi
surface may be screened by a static Hartree dielectric
function, the corresponding matrix element for optical
absorption has to be screened by a dynamic dielectric
function at the frequency of the absorbed photon. He
observed, however, that such a correction would be
quite small. Next, Overhauser incorporated exchange
in the framework of self-consistent, time-dependent,
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A. O. E. Animalu, following paper )Phys. Rev. 163, 562
(1967)] referred to as AII.

' Proceedings of the International Collogium on Optical Properties
end Electronic Structure of Metals and A/toys, Paris, 1965 (North-
Holland Publishing Company, Amsterdam, 1966), p. 47. See also
H. Mayer and M. H. el Naby, Z. Physik 174, 289 (1963}.' P. N. Butcher, Proc. Phys. Soc. (London) A64, 765 (1951).

4 J. J. Hop6eld, Phys. Rev. 139, A419 (1965).' A. W. Overhauser, Phys. Rev. 156, 844 (1967}.' J. A. Appelbaum, Phys. Rev. 144, 435 {1966).

Hartree-Fock theory, deliberately omitting the screen-
ing of the exchange interaction. He thereby restored
agreement between theory and experiment in a small
photon energy range near the interband threshold but
lost over-all qualitative agreement. We feel, in any
case, that a proper screening of exchange would lead to
results close to the Hartree approximation, and so
would leave the discrepancy unresolved.

Appelbaum' reformulated the probelm in terms of
orthogonalized plane waves rather than the simple plane
waves of nearly-free-electron theory. However, he
appeared to have missed a sizeable correction to the
matrix elements arising from orthogonalization. More
recently, Animalu and Harrison7 focused attention upon
these orthogonalization terms and pointed out that
these terms make additional contributions to the usual
pseudopotential matrix elements. They therefore,
defined an "optical" pseudopotential matrix element
which is diBerent from the usual one determining the
Fermi surface. On the basis of this interpretation, we
shall develop a general self-consistent theory in AII to
deal not only with the optical absorption but also with
various electromagnetic phenomena dependent on the
emission or absorption of a single photon by the Bloch
electron, and derive inter alia Hopfield's dynamic
screening for the optical pseudopotential.

In Sec. 2 of this paper, the dynamically screened
optical pseudopotential will be used to reduce the
Kubo-Greenwood formula for the real part of the
optical conductivity, and hence to derive expressions
for the interband absorption in the solid and the con-
ductivity of the liquid metal. Numerical. results will be
presented and discussed in Sec. 3.

2. THEORY OF THE OPTICAL CONDUCTIVITY

The real part of the optical conductivity of Bloch
electrons at a frequency co in an isotropic or cubic

' A. O. E. Animalu and W. A. Harrison, Bull. Am. Phys. Soc.
12, 415 (196'i). Note: the expression given for Qy ~ V(p;) in this
reference ignored the non-Hermiticity of 8', hence the asymmetry
in hy and h;; the correct order of factors in W should be

(ktiWik;) =(kr[W+(et —e;)Pik;),
where S"always acts to the right. A detailed derivation is included
in AII.
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Inatellal ls given by the genei"al formula of Kubo and
Greenwood' in the form used recently (for hquid
metals) by Faber" and Mott"

2%8 It
a(~)= & I «'l&*l&~)l'

m2~ I'I

)&n, , (1—np)h(t'ai. g
—her), (2.1)

where Itor&. & is the energy difference between the single-
electron Bloch states XI, and XI„V,being proportional
to the current operator in the x direction, and the e's
are Fermi distribution functions. By using the expres-
sion obtained in Ref. 7 for the matrix element appearing
in (2.1), and defining an effective coupling matrix
between an electron and a photon (of the electric field)

6=~ (2~/a) (1,1,0), ~ (2~/a) (l,0,1), ~ (2~/a) (0,1,1),
~(2zr/a)( —1, 1, 0), &(2zr/a)( —1, 0, 1), and +(2zr/a)
r&(0, —1, 1), all of which satisfy [k&6[)kr, since
G/k+=2. 28. For any pair of 6's, say +(2zr/a) (1,1,0),
the argument of the energy 8 function in (2.3) is

y+—= Pz/2m)([k~6[ z —kz) —a
= (6'/2m) (+2k 6+G') —Ace. (2.6)

Similarly, by using (2.5) we obtain for each pair of 6's

Ik'(I 'I wlk) —k(l I wl I ')*I'
=O'I (k'I w[k) I'+ (kM)'k'I (k'I P [k) ['

&2Pzco)k 6(k'[Wlk)(k[P[k'). (2.7)

The insertion of the + sign in (2.6) and (2.7) makes
explicit the momentum conservation: k'=k+6, with

k&k~ and k'& k~ irrespective of the sense in which the
angle between k and 6 is described. For brevity we
shall write subsequently,

(k'I Wlk)=—Wa and (k'IPIk)=—Pa,

We may rewrite (2.1) in the explicit and compact form

~(~)= (2~/a) P lg„,„,Hlzn, .(1—n, )S(W„,„—iz~).
k'EcX (2 3)

In (2.2), ei (X= 1, 2) is the polarization and cd is the
frequency of the photon in a plane-wave representation
of the electric field normalized to a unit volume. 8' is
the optical pseudopotential, ' with matrix elements
between plane waves

(1 'I wl I )= (1 'I a+a, .,P I
I ), (2.4)

where M& is the usual pseudopotential operator (to be
understood to act always to the right); P=P In)(a I

is the usual projection operator of pseudopotential
theory, the surnination being over the ion core states;
and the frequency &u& i=—(ei, ei,)/f'z, whe—re ei,=O'Iz'/2m

is the energy of a plane-wave state
I
k). In general, W

is a non-Hermitian operator

(k'I W[k& —(kl Wlk'&*=+~'. (k'IP lk& (2 5)

The complete expression (2.2) has to be screened by a
dymum~c dielectric function at the frequency or =or&.&, as
we shall show in AII, in order to achieve the self-

consistency suggested by Hop6eld. 4

We proceed now to the integration of (2.3). Since
the optical pseudopotential is strictly k dependent,
the anisotropy introduced by crystal symmetry in the
integration is, in general, nontrivial. For example, in the
ultraviolet and visible spectrum we should consider for
the alkali metals the twelve reciprocal lattice vectors:

R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
9 D. A. Greenwood, Proc. Phys. Soc. (London) A71, 585 (1958).
' T. E. Faber, in Proceedings of the International Colloq~gnz on

Optical Properties and Electronic Structure of Metals and Alloys,
Paris, 1965 (North-Holland Publishing Company, Amsterdam,
1966), p. 259; Advan. Phys. 1S, 547 (j.966).

"N. F. Mott, Phil. Mag. 13, 989 (1966).

noting, of course, that both S'g and. I'g depend on the
state k. Also for a given value of k, 6, and co,we must
conserve energy by setting O'=PP+(2~/Iz)]'~' and

dining the angle between k and k' in the usual way as
cos '[(k"+k'—G')/2k'k]. Thus, Wa and Pa also

depend implicitly on a& bzzt not on the sign of 6 in each
pair of G's. However, the term (Aa&)Pa does not become

indefinitely large, since I'z drops off rapidly as or

increases.
On substituting (2.7) in (2.3) and changing the

summation over k into an integration, we obtain at O'K

(G'I Wal'+(~)'~'[Pal'
3 2'Jl"52 or

W2(/~)IzGWaPaz)lz'b(y+)dkdz, (2.8)

where z=—k 6/kG is the angle between k and 6, the
factor -', is due to the isotropy of 0 (~) in a cubic system,
and the summation is over pairs of 6's as discussed
above. On performing the integration over s for each
pair of 6's, the last (third) term in the integrand
contributes zero and we find

~2 $ kg

a(~) = —g Gk
6x"mA' o)3 &

X(lw, [z+ (a )z(1/G)z[P, [z)dk, (2.9)

where
=

I
LGz —(2mco/k) j/2G I

& Iz p.

This is the general expression for the interband ab-
sorption in a cubic nearly-free-electron metal which we
shall evaluate numerically in the next section.

For the liquid metal, there is no special anisotropy
introduced by the momentum condition k'= k+q.



Tmlz I. Static and dynamic dielectric furl. ction

Aor(ev) Aor/Er SHp(q, o) I 8Hs (q,oc) ) 8HÃ(g, or)

2.39 0.74 1.1053 1.1235 1.1229
3.36 1.04 1.1053 1.1158 1.1142
4.34 1.34 1.1053 1.1037 1.1009
5.31 1.64 1.1053 1.0884 1.0844
7.90 2.44 1.1053 1.0389 1.0328

in Na'

saic (q,or)

0.0377
0.0600
0.0784
0.0929
0.1124

2.0

ENHANCEMENT OF ABSQRPTIQN AT %au ~0.74 E~

a N t The dielectric functions are evaluated fo q = ( !=(2g!c)~ in the
frequency range above the 1nterband th

oe:
reshold Acu 2.1 ev. SHF an

@HFDF are, respectively, the real and imaginary parts of 8HF{@,eg .

Thus from (2.8) we find

g(~) =
klc't.20p

g(q)qsd
48m mA o) p &m

&& ( I w, I'+ (Aor)'(k/q)'I I',
I

'

+[(2mor/kqs) —1](hor)acr,P,}dk, (2.10)

1.0

t
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kF (a.u. )

Fn. 1. Enhancement of absorption at Su=0.748~. Note: A
smooth curve has been dravyn through the points marked Li, Na,
K Rb and Cs vrhich are the actual calculated values.

where k„ris defined similarly as in (2.9), Qs is the atomic
vol~e and we have s«

I
&&'It l~)'=—g(q) I~.I' g(q)

being the usual liquid metal interference function. We
see that the last (1;bird) term in (2.7) does not vanish in
h' The evaluation of (2.10) entails no more labor

than the usual erst-principle pseudopotential calcu-
lation for 8„I', being obtained as a byproduct in such
a calculation.

In practice, the contribution from the second term in
the integrand. of (2.9) is no more than about 5—15%,
and so for the solid we obtain the approximate result

0.5
l, 4

as before, and

ks ——(kr,"—(2mor/k) )'"
for ks) (2mor/k), =0 otherwise. This expression is the
explicit form of the formula used recently by %ilson
and Rice."These special results can now be seen from
the perspective of our general theory.~2 $ ky

g(~) =
6ZmA2~' 6

(2 11)GklW, I
dk

3. NUMERICAL RESULTS AND DISCUSSION

Gener'al Results

Ke begin the presentation of numerical results by
making some general qualitative observations which
follow from the formulas derived in the preceding
section. We compare the approximate result &2.j. , wi
the usual one

e'ml Wgls (or —«)(~g+
(2.12)

12wGA4

where org+= (k/2m)G(G~2kF), and in the last step we

have taken 5'0 out of the integrand by evaluating it at
thc uppcI' hmlt, ~p. If wc now consider the twclvc
vectors of the {110}set for the alkali metals, we see
that (2.12) is equivalent to Butcher's formula. "How-
ever, the parameter of the lattice potential determining
the band gap is here replaced by the corresponding
optical-pseudopotential matrix element. The result
(2.11) is equivalent to ignoring the non-Hermiticity
of 8'.

From (2.11), we obtain for the liquid metal a similar
0

approximation which we write i
the order of integration)

esml W'g le (or—org )(org+—or)
(3.1)Op GO

where kg is the usual pseudopotential matrix element
screened by a static dielectric function and determining
the band gap at the (110) Brillouin zone face in the
alkali metals. We see that the absorption is "enhanced"
by a factor

o (or) =
48Ã ssk '—)c

k'= (k'+ (2mor/rc) )"-'

~( )= ( )/ o( )- Iif' I'/llf' I' (3 2)

Since 8 g divers from l~t/'g by the extra non-negative
factor AorI'g (Note: I's=P), it follows that if Wg&0 as

q

~ E. G. Wilson and S. A. Rice, Phys. Rev. 145, 55 (1966)."F.S. Ham Phys. Rev. 128, 82 (1962); 128, 1524 (1962).
'4 N. W. Ashcroft, Phys. Rev. 140, A935 (1965)."M.J. G. Lee, Proc. Roy. Soc. (London) 29SA, 440 (1966).
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QVERHAUSER---- BUTCHER WITH We = 0.23ev (LFE)
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The Optical Pseudoyotential

The procedure for computing an optical pseudo-
potential follows the one outlined by Harrison in his
book. '7 Ke have, however, made some simplification in
the computation of the usual pseudopotential matrix
element by writing

w, —= (&+ql wl &)= I',+2 (&'I '/2m+
I ~-I+G)

I.
3

hem (eV)

FIG. 2. 0.(co) in solid Na due to interband transitions. Note: The
theoretical curve a has been multiplied by a factor of 2 in order to
obtain curve b,

on the other hand, H/"g(0 as in K, Rb, and Cs," '4 then
Wg(WG so that F(ka&) &1.The present theory, there-
fore, has the appropriate qualitative features suggested
by Overhauser' but not for the reasons (time-depend-
ent, Hartree-Fock screening) given by him. The actual
number obtained by evaluating the exact expression
(2.9) is compared with (3.1) in Fig. 1 at Ace=0.74P.r,
i.e., Aid(eV) =3.48 (Li), 2.39 (Na), 1.56 (K), 1.37 (Rb),
and 1.17 (Cs).

To demonstrate that the enhancement is not due to
dynamic screening we show in Table I the calculated
values of hriF(q, co) and Bnp(q, 0) at fixed q=G—= 2~%2/a
in solid Na (u is the lattice constant). The screening of
exchange was incorporated in Hubbard's approximation
(which should be about right): This simply requires
replacing the Coulomb interaction 4mt, '/q' by (4ire'/q')

XI 1—f(q)], with f(q) =1/2(ki'+q'+k, 2), 1/k, being
taken here as the Thomas-Fermi screening length, in
the standard expressions for the dielectric function
given in text books (see, e.g. , Pines" ). There is hardly
any significant difference between the two in the ultra-
violet and visible range of photon energies, a fact
previously noted by Hopfield. 4

There is no adjustable parameter in the theory.
However, we have noted that whereas the effective
mass" m* entering the screening of S'g is 1.3 in Li,
1.096 in Na, and 0.88 in K, it is the free-electron mass,
(i.e., m*= nz) which enters the dynamic screening of the
optical-pseudopotential matrix element 8'|-. in the
nearly-free-electron model used here. It would be of
interest to see the effect of such a parameter in the
calculation: This will be done below in connection with
Li where the difference might be expected to be sig-
nificant in the computation of 0 (co).

Finally, at high frequencies above the interband
threshold, the term (M)Pz in Wg drops rapidly and
J/t/0 is diferent from t/t/'g but not necessarily less than

in K, Rb, and Cs, as shown below.
6 D. Pines, Elementary Excitations in SoHds (W. A. Benjamin,

Inc. , New York, 1963), p. 143.

LITHIUM ( SOLID)

e o e EXPT (tHODGSON) AT 105 K

THEORY
BUTCHER WITH SG = I 2 eV (HAM)

mr~ =I.o

4.0—
Ol

3.0—
iO

$.0—
3
b

1.0—

~ ~«l P) g I 0
/ f77

0- I

I.8 2.0 3.0
'he@ (eV)

4.0
I

5.0

2.0—
I

IO
CO

TO

O

4
0

POTASSIUM (SOLID)

+ EXPT (MAYER 8 HIETEL) AT 20 C
THEORY (CURVE a )

—-- BUTCHER WITH e~=-0.24ev (HAM)

3
1 I.O—

Oi I

0.8 I.O 2.0
hem (eV)

I

4.0

Fxo. 3. g (co) in solid Li and K due to interband transitions.
Note: The actual theoretical curve corresponds to m*/m=1. 0
in Li.

"W. A. Harrison, I'seudopotentials in the Theory of Metals
(W. A. Benjamin, Inc. , New York, 1966)."F. Harman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).

"A. O. E. Animalu, Phil. Mag. 11, 379 (1965).

X(&+ql~)(~l&), (33)

where the core energies E and. the core functions are
Herman and Skillman'8 neutral-atom values, and C is
a constant adjusted to obtain the observed band

gap at q==G= (2~/u)v2 (e.g. , for WG=0.23 eV in Na,
C= —2.52 Ry). In (3.3), V, is given by Eq. 8—60 and
each contribution to P,= (Ir+ql —PI k) =P (jk+q Ip)
X(nlrb), by Eq. 8-63 of Ref. 17. To compute W,
we simply add (hem) P, to (3.3).

For the screening of t/V, we used the approximation
of dividing (3.3) by the static Hartree-Fock dielectric
function, which ignores the k dependence but introduces
only slight error"; for H/'~ dynamic screening was used
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TABLE II. Orders of magnitude of the contributions
to Wo for G—=q=2sv2/o. '

Li
1,5- ~

'C)

k&(a.u.) 0.589
W (eV)
C(Ry) 1.516
(Irs+GIPIhpl 0.0606

0.488 0395
0.23 —0.24—2.521 —2.918
0.0410 0.0478

0.369 0.341—0,43 —0.50—3.567 —3.775
0.0422 0.0425

r g
sl

+os )0
'O

3
4

a2INOI i,' P"0
t is the observed band gap across the (110) Brillouin

P—ZN]rg)(aI, and the adjustable con t t C i d fis an s e ned in Eq. (3.3).

~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I

4.0

ZERO PRESSUR

0,0

a

ln the same manner. The latter approximation is the
more desirable, since it is the entire expression (2.2)

1.0 2.0 3,0

that should be screened as shown in AII.
% cu {6'if')

Orders of magnitude of tllc coIitl'ibiltloIls to WQ foi' derived by assuming Ziman's relaxation time (cf. Ref. 12).
x lapo Rtlon o I g

in this table is dangerous since, in general, it varies with
requency: The value given is at zero frequency and for +a, and K. which were accurately determined to better

back-scattering, which is the appropriate limiting value

Althou
of t e matrix elements entering the optical b t'

ough the computation of I'~ is generally reliable it
Numerical Results: o (ss)

4 ~

yre la e, 1

ecomes more tedious for the heavier alkali metals Rb The lnterband absorption ln the sohd wRS CRlculRted

value of p' in (3 3) c uld be obtained (the (ii) f101n 'tlic Rppi oxlIIIRtioI1 slInilal to (2 12) ll ll

y bc;„g t~~t~d by thc I;m;t of WQ Rs II~0) we replaced L~Wg~'+(A~)'(k/G)'~P ' in

On this account the 6n l
p i lve y arge mesh oflntegratlon. value at k=k p. The results Rre close f ll I

CU gi ] 111 (2.9) by 1ts

the 6nal results are given only for Li ln practice, the rang k &1&k l l

procedure was used for the conductivity of liquid Na as

II
givcI1 by (2.10). Fol tlM sanlc IcRso11 'tile g Illtcgiatloll

LIQUIQ SODIUM (100 CI I
which is the more sensitive is performed last.

In Flg. 2 the results for solid Na are shown and com-

———IP e/o COMPRESSION
pared with experiments' and with the earlier results due

I
to Overhauser. ' We see that the calculated value is

—p.,p about 50% of the experimental value. A similar con-
clusion applies to solid K LFig. 3(b)j.In Li LFig. 3 (a)j
t e agreement between theory and experiment" is quite
good. Recently, Mahan" has demonstrated on the basis
o the optical pseudopotential leading to the result

4 0

1"esu 1I1

ig. , that additional enhancement by about 50%

/
comes from electron-hole scattering via virtual exchan e
of plasmons. Vfe presume a similar explanation to apply

/
I

to K Rlthou ~ugh the situation ls not clear on account of
0 ~ 0

.0 q/2lt„
the "anomalous" peak overlapping the interband
absorption, the origin of which is not yet understood.

/
n i which is less free-electron-like, such Rn CBect lf

/
present, would spoil the good agreement obtained. here.

/
The results for liquid Na are given in Fi s. 4 and 5.

'ig. t e pseudopotential and the interference

/
functions entering (2.10) are shown side by side at sero

/

pressure and at 10% compression. The objective in

"G.IG
considering the two cases is clear from Fig. 4 where the

0

% compression mtroduces more structure in the
It ~W, ~' d o seque y mo

q as een a (usted to give It ]

occurs at III/2k' =1.16. The net eRect of
)

~

& d N h G)2P 1 14 Th k g ~
' P Ppea s ou e

t e structure in the product a W
ne e ect o pressure is to exaggerate v 1R e con l lons:

p a(q) I WQ I appearing in the integrand "Reference 2 p. 60.
G. D. Maban, Phys. Letters g4A, 708 (1967).
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i.e., by putting the specimen under pressure or by
increasing the temperature since the later produces
similar increase in u(g), and using a metal or alloy where
the zero of the pscudopotcDtlal docs Dot fall oQ thc
major peak in o(q). The interference functions used
werc calculated from the expression given by Ashcroft
and Lekner": The hard. core radius of 3.1 (a.u.) was

kept 6xcd, but the packing density q was adjusted
appropriately, e.g., at 10'po compression, rl =0.50,
whereas, q= 0.45 at zero pressure.

indeed the E-8 interaction in transition metals is weak,
then an effective electron-photon coupling matrix could

be constructed along the lines suggested in AII and the

theory would also be applicable to transition metals.
An important correction which the use of an "optical"-

pseudopotential matrix element has revealed is that the

RssulTlptlon of CODstRDt. 1Tlatrlx clcIQcQt, curlelltly Inadc

by Spicer and co-workers" in analyzing phot, oemission

experiments needs to be reexamined. This question will

be considered in greater detail in a subsequent paper.

4. CONCLUSION

Kc hRvc shown that thc optlcRl pscudopotcntlal
gives reasonable results for the optical conductivity in
simple (nearly-free-electron) metals. It would also
appear from the works of Mueller" and Heine'4 that, if

"N. W. Ashcroit and J.Lekner, Phys. Rev. 145, 83 (1966)."F.M. MueHer, Phys. Rev. 153, 659 (1967).
24 V. Heine, Phys. Rev. 153, 673 (1967).

ACKNOWLEDGMENTS

I wish to thank Professor W. A. Harrison for sug-

gesting this problem and Dr. Neville Smith and Robert
Shaw for helpful conversations. The cooperation of

Stanford University computors is gratefully acknow-

lcdgcd.
"See, for example, C. N. Berglund and %. K. Spicer, Phys,

Rev. 136, A1030 (1964); 136, A1044 (1964); also Ref. 2, p. 285.

P H VS I CAL RKV I E%' VOLUME 163, NUMBER 3 j, S NOVEMBER 1967

Self-Consistent Theory of Optical Transitions in Simple Metals*

A. 0. E. AxIMALU

Division of d ppiied Physics, Stanford University, Stanford, California.
(Received 1 June 1967)

It is shown that the interaction oi Bloch (conduction) electrons moving in the periodic lattice potential

of a metal with an electromagnetic field is adequately described by a simple reduced Hamiltonian in which

the coupling between a single electron and a single photon is represented by a dynamically screened "optical

pseudopotential .Thus, realistic calculation of the transition probabilities for various processes, particularly

photoemission and absorption, including the collective eRects due to the self-consistent field of the electrons,

can be performed without recourse to detailed energy-band-structure computation in simple (nearly-free-

electron) metals. Furthermore, a simple Hamiltonian of this type can be used quite generally for other

purposes, for example, in calculating the self-energy of the Bloch electron due to emission and reabsorption

of single photons. An expression is given for the eRective mass of the Bloch electron in an electromagnetic

field.

1. Dt'TRODUCTIO5'

N thc pRst. , efforts have bccn made to solve thc
~ ~ Schrodinger equation for B, Bloch (conduction)

clcctlon moving ln thc static perlodlc potcntlal of R

Inctal uDdcl RD applied electromagnetic 6eld by using

tile scllllclasslcal effective-Hamiltonian method and/01

the effective-mass approximation. ' These approaches

do Qot) however) take 1Qto RccouQt thc mlxlng of states

from di6crcnt bands and the modification of the coupl-

ing between the electron and the apphcd 6eld duc to
the self-consistent 6CM of thc conduction electrons.

Consequently, they are inadequate for perforlnlng

realistic calculation of the Aarssiiioe Probobt'irises for
~ This work was supported by the Advanced Research Project

Agency through the Center for Materials Research at Stanford

University.
~For a review see, e.g., J. Callaway, ENergy Bawd Theory

(Academic Press Inc., New Pork), 1964, pp. 233-306.

VRrlous ploccsscs dcpcQdent oD thc cIQlssion ol Rbsolp-

tion of R photon by the electron, upon which we wish

to focus attention in this paper.
Thc mlxlng of states fl om dlRerent bands ln high

stukc Gelds responsible for Zencr tunnchng and mag-

Dctlc breakthrough ls well known Rnd relatively well

understood. ' The situation in a space and time earywsg

6eM is perhaps the least clear at the moment. An

cxamplc of this ls thc optical RbsoI'ptloD duc to lntcr"

band transitions in metals, particularly the alkali metals

which have roused. considerable attention recently. ' In
a recent review of photoemission studies, Spicer' has

emphasized the need for going beyond the eRective-mass

' H. Mayer and B. Hietel, hl Eroeeedings of th» International
Colloyuum amd Optical Properties and E/ectroriic Structures of
Metals and .4lloys, I'ass, 1965 (North-IIolland Publishing Com-

pany, Amsterdam, 1966), p. 47.
'%. K. Spicer, Phys. Rev. 154, 385 (1967).


