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The optical conductivity of simple (nearly-free-electron) metals, in particular the alkali metals, is derived
from the Kubo-Greenwood formula by using an expression for the matrix element (x3’|V | %) which we have
previously determined to first order in the “optical” pseudopotential. The strength of the interband ab-
sorption in the solid alkali metals Li, Na, and K is found to be given approximately by replacing the param-
eter of the lattice potential determining the band gap in Butcher’s formula with the corresponding optical-
pseudopotential matrix element. In Na and K, the calculated interband absorption is about 509, of the
experimental value; in Li good agreement is obtained. The results in liquid Na are discussed to the effect
that an “interband absorption” should be visible in the liquid state under favorable conditions, e.g., under

pressure.
1. INTRODUCTION

HE purpose of this paper is to describe a calcu-
lation of the optical conductivity of simple
(nearly-free-electron) metals, in particular the solid and
liquid alkali metals, at a finite frequency in an electric
field. For simplicity, the self-consistency in the evalu-
ation of the matrix elements involved will be described
separately in the next paper! (hereafter referred to as
AII). The motivation for this computation is the
numerical discrepancy between the measured optical
absorption of the alkali metals? due to interband transi-
tions and that calculated in current literature—¢ We
shall show how our present theory corrects an error
which has existed in these previous calculations and
thereby removes nearly 509, of the discrepancy.

In Butcher’s original theory of interband transitions
in nearly-free-electron metals,® and recent improve-
ments, the interband optical absorption is found to be
proportional to a matrix element of the screened lattice
potential or pseudopotential. Such matrix elements
determine the band gap at the Brillouin zone face and
hence the distortions of the Fermi surface from the
free-electron sphere but have seemed not to account for
the strength of the absorption. Hopfield* first improved
on Butcher’s theory by pointing out that although the
pseudopotential matrix element entering the Fermi
surface may be screened by a static Hartree dielectric
function, the corresponding matrix element for optical
absorption has to be screened by a dynamic dielectric
function at the frequency of the absorbed photon. He
observed, however, that such a correction would be
quite small. Next, Overhauser’ incorporated exchange
in the framework of self-consistent, time-dependent,

* This work was supported by the Advanced Research Projects
Agency through the Center for Materials Research at Stanford
University.

1A. O. E. Animalu, following paper [Phys. Rev. 163, 562
(1967)] referred to as AIL

2 Proceedings of the International Collogium on Optical Properties
and Electronic Structure of Metals and Alloys, Paris, 1965 (North-
Holland Publishing Company, Amsterdam, 1966), p. 47. See also
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Hartree-Fock theory, deliberately omitting the screen-
ing of the exchange interaction. He thereby restored
agreement between theory and experiment in a small
photon energy range near the interband threshold but
lost over-all qualitative agreement. We feel, in any
case, that a proper screening of exchange would lead to
results close to the Hartree approximation, and so
would leave the discrepancy unresolved.

Appelbaum® reformulated the probelm in terms of
orthogonalized plane waves rather than the simple plane
waves of nearly-free-electron theory. However, he
appeared to have missed a sizeable correction to the
matrix elements arising from orthogonalization. More
recently, Animalu and Harrison” focused attention upon
these orthogonalization terms and pointed out that
these terms make additional contributions to the usual
pseudopotential matrix elements. They therefore,
defined an “optical” pseudopotential matrix element
which is different from the usual one determining the
Fermi surface. On the basis of this interpretation, we
shall develop a general self-consistent theory in AII to
deal not only with the optical absorption but also with
various electromagnetic phenomena dependent on the
emission or absorption of a single photon by the Bloch
electron, and derive inter alic Hopfield’s dynamic
screening for the optical pseudopotential.

In Sec. 2 of this paper, the dynamically screened
optical pseudopotential will be used to reduce the
Kubo-Greenwood formula for the real part of the
optical conductivity, and hence to derive expressions
for the interband absorption in the solid and the con-
ductivity of the liquid metal. Numerical results will be
presented and discussed in Sec. 3.

2. THEORY OF THE OPTICAL CONDUCTIVITY

The real part of the optical conductivity of Bloch
electrons at a frequency w in an isotropic or cubic
7A. O. E. Animalu and W. A. Harrison, Bull. Am. Phys. Soc.
12, 415 (1967). Note: the expression given for {¢s|w|¢:) in this
reference ignored the non-Hermiticity of W, lience the asymmetry
in ky and k;; the correct order of factors in W should be
(ks | W [Jei) = (g [ W+ (e — &) P | i),

wh;rIe W always acts to the right. A detailed derivation is included
in AIL
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material is given by the general formula of Kubo?® and
Greenwood® in the form used recently (for liquid
metals) by Faber and Mott!

2mreh?
2 | X | Vo | Xi)| 2

T
miw k'k

o(w)=

where 7wy is the energy difference between the single-
electron Bloch states X and X, V, being proportional
to the current operator in the x direction, and the #’s
are Fermi distribution functions. By using the expres-
sion obtained in Ref. 7 for the matrix element appearing
in (2.1), and defining an effective coupling matrix
between an electron and a photon (of the electric field)

grntt= (h/ 2w) 2 (ieh/m)ex- (X | V| Xz)
= (h/2w)!1*(ch/m)ex
.[k'(k’lWlk)—k(kIWlk’)*:l 22)

Ty

We may rewrite (2.1) in the explicit and compact form

o(w)= Qu/B) X | gemn| 2 (1—n1)8 (hoop . — o) .
ey (2.3)

In (2.2), ex (\=1, 2) is the polarization and w is the
frequency of the photon in a plane-wave representation
of the electric field normalized to a unit volume. W is
the optical pseudopotential,” with matrix elements
between plane waves

K |Wk)= (k' |W—+hwwP k), (24)

where W is the usual pseudopotential operator (to be
understood to act always to the right); P=3Y .|a){a|
is the usual projection operator of pseudopotential
theory, the summation being over the ion core states;
and the frequency wy = (exr— €x)/%, where e,=#%%*/2m
is the energy of a plane-wave state |k). In general, W
is a non-Hermitian operator

(K| Wk)— k| W| K =+ K| Plk). (2.5)

The complete expression (2.2) has to be screened by a
dynamic dielectric function at the frequency w=wyx, as
we shall show in AII, in order to achieve the self-
consistency suggested by Hopfield.*

We proceed now to the integration of (2.3). Since
the optical pseudopotential is strictly %2 dependent,
the anisotropy introduced by crystal symmetry in the
integration is, in general, nontrivial. For example, in the
ultraviolet and visible spectrum we should consider for
the alkali metals the twelve reciprocal lattice vectors:

8 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

9 D. A. Greenwood, Proc. Phys. Soc. (London) A71, 585 (1958).

10T, E. Faber, in Proceedings of the International Collogium on
Optical Properties and Electronic Structure of Metals and Alloys,
Paris, 1965 (North-Holland Publishing Company, Amsterdam,
1966), p. 259; Advan. Phys. 15, 547 (1966).

1 N, F. Mott, Phil. Mag. 13, 989 (1966).
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G==£(2r/a)(1,1,0), £(27/a)(1,0,1), &(27/a)(0,1,1),
+(2r/a)(—1,1,0), £(27r/a)(—1,0, 1), and *(2r/a)
X (0, —1,1), all of which satisfy |k+=G|>%r, since
G/kr=~2.28. For any pair of G’s, say == (2x/a)(1,1,0),
the argument of the energy & function in (2.3) is

yE= () 2m) (| k£G|*—k*) — o

= (1*/2m) (£ 2k-G+G*)— . (2.6)

Similarly, by using (2.5) we obtain for each pair of G’s

| (k' | W)~k (k | 7|2
=G| (K'[W[k)|*+ (hw)?k?| (K| P [ k)|
20k G(K' | W k)| P|K). (2.7)

The insertion of the & sign in (2.6) and (2.7) makes
explicit the momentum conservation: k'=k+G, with
k<kp and k"> kp irrespective of the sense in which the
angle between k and G is described. For brevity we
shall write subsequently,

K| W|K)=Ws and (k'|P|k)="Pg,

noting, of course, that both W¢ and P¢ depend on the
state k. Also for a given value of %, G, and » ,we must
conserve energy by setting k'=[k+ (2mw/%)]'? and
defining the angle between k and k in the usual way as
cos [ (k?+k—G?)/2k'kE]. Thus, Wg and Pg also
depend implicitly on « but not on the sign of G in each
pair of G’s. However, the term (fw)P¢ does not become
indefinitely large, since P¢ drops off rapidly as o
increases.

On substituting (2.7) in (2.3) and changing the
summation over k into an integration, we obtain at 0°K

62

1 -
o(w)=- Z [ (G| We|*+ (o)®*| Pol*

3 2rmi’ @
+ 2 (hw)kGW o P oz} k26 (y£)dkdz,  (2.8)

where z=k-G/kG is the angle between k and G, the
factor % is due to the isotropy of ¢(w) in a cubic system,
and the summation is over pairs of G’s as discussed
above. On performing the integration over z for each
pair of G’s, the last (third) term in the integrand
contributes zero and we find

62 1 ky
g(w)= —2 Gk
6rmhitw® ¢ Ji,
X{ | Wal|*+ ()2 (k/GY| Po|?}dk,  (2.9)
where

b= | [G2— (2mar/ 1) 1/2G| <Fow.

This is the general expression for the interband ab-
sorption in a cubic nearly-free-electron metal which we
shall evaluate numerically in the next section.

For the liquid metal, there is no special anisotropy
introduced by the momentum condition k’=k-q.
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Tasie I. Static and dynamic dielectric function in Na.®

7w (eV) #w/Er 6mr(g,0) |8mr(gw)| &mrP(gw) &mr(gw)

239 074 1.1053 1.1235 1.1229 0.0377
3.36 1.04 1.1053 1.1158 1.1142 0.0600
4.34 1.34 1.1053 1.1037 1.1009 0.0784
5.31 1.64 1.1053 1.0884 1.0844 0.0929
790 244 1.1053 1.0389 1.0328 0.1124

a Note: The dielectric functions are evaluated for g¢= (21r/a)\/2 m the
frequency range above the interband threshold, #w~2.1 eV. &rr® and
&rrl are, respectively, the real and imaginary parts of 8m~‘(q w).

Thus from (2.8) we find

e2Q) 0 1 p ( ) kr
— | a(q)gdq / k

X{| @2+ ()2 (k/ )| Py
+L(2me/ hqz)— 1](hw)ﬁqP dk,

where £, is defined similarly as in (2.9), Qo is the atomic
volume and we have set | (k'|W|k)*=a(q)|®,|% a(q)
being the usual liquid metal interference function. We
see that the last (third) term in (2.7) does not vanish in
this case. The evaluation of (2.10) entails no more labor
than the usual first-principle pseudopotential calcu-
lation for @,, P4 being obtained as a byproduct in such
a calculation.

In practice, the contribution from the second term in
the integrand of (2.9) is no more than about 5-15%,
and so for the solid we obtain the approximate result

o(w)=

(2.10)

2 kr

o (w)= —-z GE|W¢|2dk (2.11)
Ormh? »® &
oy 3271'L[Wc,v]2 (co—-wg“) (wet—w) )
¢  12xGnt w?

where wgt= (/2m)G(G+2kr), and in the last step we
have taken We out of the integrand by evaluating it at
the upper limit, k7. If we now consider the twelve G
vectors of the {110} set for the alkali metals, we see
that (2.12) is equivalent to Butcher’s formula.?®* How-
ever, the parameter of the lattice potential determining
the band gap is here replaced by the corresponding
optical-pseudopotential matrix element. The result
(2.11) is equivalent to ignoring the non-Hermiticity
of W.

From (2.11), we obtain for the liquid metal a similar
approximation which we write in the form (changing
the order of integration)

k'+k

e, 1
- kdk / |@|%a(g)dq, (2.13)
=k

48mimht w3/ y,

o(w)=~

where

K= (24 Qma/ 1))
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ENHANCEMENT OF ABSORPTION AT hw=0.74 E;

o (w)/ aylw)

05 1 1 — !
1.4 2.0 3.0 4.0

-1, -1
ke (o) —>

T16. 1. Enhancement of absorption at #w=0.74Ep. Note: A
smooth curve has been drawn through the points marked Li, Na,
K, Rb, and Cs which are the actual calculated values.

as before, and
ko= (kpz— (me/h) )”2

for kp> (2mw/h), =0 otherwise. This expression is the
explicit form of the formula used recently by Wilson
and Rice.’? These special results can now be seen from
the perspective of our general theory.

3. NUMERICAL RESULTS AND DISCUSSION
General Results

We begin the presentation of numerical results by
making some general qualitative observations which
follow from the formulas derived in the preceding
section. We compare the approximate result (2.12) with
the usual one

ezm[ ng 2 (w—-wg‘) (wg'"— w)
ool\w)= )
rGht w®

where Wy is the usual pseudopotential matrix element
screened by a static dielectric function and determining
the band gap at the (110) Brillouin zone face in the
alkali metals. We see that the absorption is “enhanced”
by a factor

F(hs)=0()/oo@)~ | Wal?/[Wel*.  (3.2)

Since W differs from W¢ by the extra non-negative
factor iwPq (Note: P?= P), it follows that if We>0 as

3.1)

in Li® and Na, 415 then We> W so that F(fw)>1. If,

2 E. G. Wilson and S. A. Rice, Phys. Rev. 145, 55 (1966).
BT, S. Ham, Phys. Rev. 128, 82 (1962); 128, 1524 (1962).
14 N. W. Ashcroft, Phys. Rev. 140, A935 (1965).

15 M. J. G. Lee, Proc. Roy. Soc. (London) 295A, 440 (1966).
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SODIUM (SOLID)

THEORY (CURVE a)

e o ¢ EXPT(MAYER 8 HIETEL) AT -183°C
—-—+ OVERHAUSER

—=~=—— BUTCHER WITH Wg=0.23eV (LEE)

1.0~

olw) (10%sec")
o

05l 2 TIMES

F16. 2. o (w) in solid Na due to interband transitions. Note: The
theoretical curve @ has been multiplied by a factor of 2 in order to
obtain curve b.

on the other hand, W¢<0 as in K, Rb, and Cs,*®* then
We<Wyg so that F(hw)<1. The present theory, there-
fore, has the appropriate qualitative features suggested
by Overhauser® but not for the reasons (time-depend-
ent, Hartree-Fock screening) given by him. The actual
number obtained by evaluating the exact expression
(2.9) is compared with (3.1) in Fig. 1 at #w=0.74Ep,
ie., hw(eV)=3.48 (Li), 2.39 (Na), 1.56 (K), 1.37 (Rb),
and 1.17 (Cs).

To demonstrate that the enhancement is not due to
dynamic screening we show in Table I the calculated
values of 8xr(g,w) and 8ur(g,0) at fixed g=G=27V2/a
in solid Na (e is the lattice constant). The screening of
exchange was incorporated in Hubbard’s approximation
(which should be about right): This simply requires
replacing the Coulomb interaction 4mwe?/q® by (4we?/¢?)
X[1—1(9)], with f(q)=1/2(kr+¢+ks), 1/ks being
taken here as the Thomas-Fermi screening length, in
the standard expressions for the dielectric function
given in text books (see, e.g., Pines'®). There is hardly
any significant difference between the two in the ultra-
violet and visible range of photon energies, a fact
previously noted by Hopfield.*

There is no adjustable parameter in the theory.
However, we have noted that whereas the effective
mass'® m* entering the screening of We is 1.3 in Li,
1.096 in Na, and 0.88 in K it is the free-electron mass,
(i.e., m*=m) which enters the dynamic screening of the
optical-pseudopotential matrix element We in the
nearly-free-electron model used here. It would be of
interest to see the effect of such a parameter in the
calculation: This will be done below in connection with
Li where the difference might be expected to be sig-
nificant in the computation of o (w).

Finally, at high frequencies above the interband
threshold, the term (fw)P¢ in W¢ drops rapidly and
WG is different from W¢ but not necessarily less than
W in K, Rb, and Cs, as shown below.

16 D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963), p. 143.
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The Optical Pseudopotential

The procedure for computing an optical pseudo-
potential follows the one outlined by Harrison in his
book.}” We have, however, made some simplification in
the computation of the usual pseudopotential matrix
element by writing

Wo={+a|W|k)=V+2 (W 2m+ | Ea| +C)
X (k+q|a)alk),

where the core energies £, and the core functions are
Herman and Skillman'® neutral-atom values, and C is
a constant adjusted to obtain the observed band
gap at g=G= (2r/a)V2 (e.g., for Ws=0.23 €V in Na,
C=—2.52 Ry). In (3.3), V4 is given by Eq. 8-60 and
each contribution to P,=(k+q|P|k)=>(k+q|a)
X {a|k), by Eq. 863 of Ref. 17. To compute W,
we simply add (%w) P, to (3.3).

For the screening of W, we used the approximation
of dividing (3.3) by the static Hartree-Fock dielectric
function, which ignores the £ dependence but introduces
only slight error?; for W, dynamic screening was used

(3.3)

LITHIUM (SOLID)

e o o EXPT GPHODGSON) AT 105°K
THEORY
——— BUTCHER WITH Wg= l.2eV (HAM)
~ 40
1
o
Y ° e 9
gm 3.0
gl
3 20F
3
1.0
|
0
1.8 20
hw (eV)
o®
° L]
°e POTASSIUM (SOLID)
—~ 201
To . e o« EXPT (MAYER & HIETEL) AT 20°C
] e —— THEORY (CURVE a)
b3 ° ——— BUTCHER WITH Wg=-0.24eV (HAM)
o ® G
= °
3 o
® 1o}
!
0
08 1.0

hw (eV)

F16. 3. o(w) in solid Li and K due to interband transitions.
Note: The actual theoretical curve corresponds to m*/m=1.0
in Li.

Y'W. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966).

18 F., Harman and S. Skillman, Afomic Structure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963).

B A, O. E. Animalu, Phil. Mag. 11, 379 (1965).
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TasBLE IL Orders of magnitude of the contributions

to Wgq for G=q=27xV2/a.®

Li Na X Rb Cs
kr(a.u.) 0.589 0.488 0.395 0.369 0.341
We(eV) 1.2 0.23 —0.24 —0.43 —0.50
C(Ry) 1.516 —2.521 -—2918 —3.567 —3.775
(kr+G|P|kr) 0.0606 0.0410 0.0478  0.0422  0.0425

82| Wg| is the observed band gap across the (110) Brillouin zone face,
P=Z4|a)a|, and the adjustable constant C is defined in Eq. (3.3).

in the same manner. The latter approximation is the
more desirable, since it is the entire expression (2.2)
that should be screened as shown in AIIL. ~
Orders of magnitude of the contributions to W, for
g=2mV2/a are given in Table II. Extrapolation of P,
in this table is dangerous since, in general, it varies with
frequency: The value given is at zero frequency and for
back-scattering, which is the appropriate limiting value
of the matrix elements entering the optical absorption.
Although the computation of P, is generally reliable, it
becomes more tedious for the heavier alkali metals, Rb
and Cs: For these two elements we found that no
reliable value of V, in (3.3) could be obtained (the
reliability being tested by the limit of W, as ¢— 0)
without taking a prohibitively large mesh of integration.
On this account the final results are given only for Li,

LIQUID SODIUM (100°C)

ZERO PRESSURE
— —— 10% COMPRESSION

alq)

0.0

Wq (Ry)

-0.05—~

=0.10’

F16. 4. Pseudopotential W, and the interference function a(g)
in liquid Na at 100°C. Note: W, has been adjusted to give
W¢=0.23 (eV) in solid Na, where G/2kr~1.14. The peak in a(g)
occurs at ¢/2kr=~1.16. The net effect of pressure is to exaggerate
the structure in the product a(¢) | W,|? appearing in the integrand
of (2.10). )
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* A LIQUID Na (100%)
15l . | e « « EXPT(MAYER & HIETEL)
\‘ ZERO PRESSURE
o\ ——— 10% COMPRESSION| THEORY
_'_"' \ eeseee.. DRUDE
8 \
<% 10 .
"o
3 .
. .
05}~
0 1 1 ] 1
10 2.0 30 40

“hw(eV)

F16. 5. ¢(w) in liquid Na at 100°C. Note: The Drude curve is
derived by assuming Ziman’s relaxation time (cf. Ref, 12).

Na, and K which were accurately determined to better
than 59,.

Numerical Results: ¢ (0)

The interband absorption in the solid was calculated
in two ways: (i) from the exact expression (2.9), and
(ii) from the approximation similar to (2.12) in which
we replaced [| Wa|2+ (w)2(k/G)?| P¢|?] in (2.9) by its
value at k=Fkr. The results are close for small %w, since
in practice, the range k,<k<kr is extremely close to
kr (e.g., for hw/Er=0.74, k,/kr=0.98). A similar
procedure was used for the conductivity of liquid Na as
given by (2.10). For the same reason the ¢ integration
which is the more sensitive is performed last.

In Fig. 2 the results for solid Na are shown and com-
pared with experiments? and with the earlier results due
to Overhauser.® We see that the calculated value is
about 509, of the experimental value. A similar con-
clusion applies to solid K [Fig. 3(b)]. In Li [Fig. 3(a)]
the agreement between theory and experiment® is quite
good. Recently, Mahan? has demonstrated on the basis
of the optical pseudopotential leading to the result in
Fig. 2, that additional enhancement by about 509,
comes from electron-hole scattering via virtual exchange
of plasmons, We presume a similar explanation to apply
to K although the situation is not clear on account of
the ‘“‘anomalous” peak overlapping the interband
absorption, the origin of which is not yet understood.
In Li which is less free-electron-like, such an effect, if
present, would spoil the good agreement obtained here.

The results for liquid Na are given in Figs. 4 and 5.
In Fig. 4 the pseudopotential and the interference
functions entering (2.10) are shown side by side at zero
pressure and at 109, compression. The objective in
considering the two cases is clear from Fig. 4 where the
109 compression introduces more structure in the
product a(g)|W,|? and consequently demonstrates in
Fig. 5 that an “interband” absorption peak should be

visible in the liquid state under favorable conditions:

2 Reference 2, p. 60.
# G. D. Mahan, Phys. Letters 244, 708 (1967).
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%.e., by putting the specimen under pressure or by
increasing the temperature since the later produces
similar increase in a(g), and using a metal or alloy where
the zero of the pseudopotential does not fall on the
major peak in a(g). The interference functions used
were calculated from the expression given by Ashcroft
and Lekner??: The hard core radius of 3.1 (a.u.) was
kept fixed, but the packing density # was adjusted
appropriately, e.g., at 109, compression, 7=0.50,
whereas, 7=0.45 at zero pressure.

4. CONCLUSION

We have shown that the optical pseudopotential
gives reasonable results for the optical conductivity in
simple (nearly-free-electron) metals. It would also
appear from the works of Mueller?® and Heine? that, if

2 N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).
2 F. M. Mueller, Phys. Rev. 153, 659 (1967).
2V, Heine, Phys. Rev. 153, 673 (1967).
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indeed the s-d interaction in transition metals is weak,
then an effective electron-photon coupling matrix could
be constructed along the lines suggested in AII and the
theory would also be applicable to transition metals.
An important correction which the use of an “optical”-
pseudopotential matrix element has revealed is that the
assumption of constant matrix element currently made
by Spicer and co-workers?® in analyzing photoemission
experiments needs to be reexamined. This question will
be considered in greater detail in a subsequent paper.
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Tt is shown that the interaction of Bloch (conduction) electrons moving in the periodic lattice potential
of a metal with an electromagnetic field is adequately described by a simple reduced Hamiltonian in which
the coupling between a single electron and a single photon is represented by a dynamically screened “optical
pseudopotential”’, Thus, realistic calculation of the transition probabilities for various processes, particularly
photoemission and absorption, including the collective effects due to the self-consistent field of the electrons,
can be performed without recourse to detailed energy-band-structure computation in simple (nearly-free-
electron) metals. Furthermore, a simple Hamiltonian of this type can be used quite generally for other
purposes, for example, in calculating the self-energy of the Bloch electron due to emission and reabsorption
of single photons. An expression is given for the effective mass of the Bloch electron in an electromagnetic

field.

1. INTRODUCTION

N the past, efforts have been made to solve the

Schrodinger equation for a Bloch (conduction)
electron moving in the static periodic potential of a
metal under an applied electromagnetic field by using
the semiclassical effective-Hamiltonian method and/or
the effective-mass approximation.! These approaches
do not, however, take into account the mixing of states
from different bands and the modification of the coupl-
ing between the electron and the applied field due to
the self-consistent field of the conduction electrons.
Consequently, they are inadequate for performing a
realistic calculation of the transition probabilities for

* This work was supported by the Advanced Research Project
Agency through the Center for Materials Research at Stanford
University.

1For a review see, e.g., J. Callaway, Energy Band Theory
(Academic Press Inc., New York), 1964, pp. 233-306.

various processes dependent on the emission or absorp-
tion of a photon by the electron, upon which we wish
to focus attention in this paper.

The mixing of states from different bands in high
static fields responsible for Zener tunneling and mag-
netic breakthrough is well known and relatively well
understood.! The situation in a space and time varying
field is perhaps the least clear at the moment. An
example of this is the optical absorption due to inter-
band transitions in metals, particularly the alkali metals
which have roused considerable attention recently.? In
a recent review of photoemission studies, Spicer® has
emphasized the need for going beyond the effective-mass
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