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The o 'o' approximation introduced by Slater for the exchange terms in the Hartree-Fock (HF) equations,
with or without Latter s cutoff in the tail of the potential function, leads to serious errors when applied to
excited configurations of atoms. A more accurate approximation (HX) is suggested in which Hartree's
method is used for the self-interaction correction, and a modiGcation of the Slater p't'3 term is used to approxi-
mate the remainder of the HF exchange terms. The HX scheme is fairly simple; iterative convergence to
self-consistent-Geld solutions is quite stable; and the resulting one-electron radial wave functions produce
acceptably accurate values of one-electron and total binding energies, interaction parameters F~, G~, and t;,
and expectation values of r". Perturbation-theory relativistic and correlation corrections are computed;
the latter are based on the free-electron approximation, with empirical modiGcations to allow for differences
between free and bound electrons. Results agree well with experimental ionization and excitation energies
for a wide variety of conGgurations,

I. INTRODUCTION

'~SING the Slater-london theory of atomic struc-
ture, "approximate, but still very useful, ttb initio

calculations can be made of atomic energy levels and
spectra, either in the single-conlguration approxima-
tion' or including con6guration-interaction effects. For
this purpose, there are required theoretical values of:
(1) the total binding energy of the spherically-averaged
atom in each configuration of interest (corresponding to
the center-of-gravity energy E, of all possible states
of the configuration); (2) the electrostatic and spin-
orbit radial integrals Fs, Gs, and f;, in terms of which
the energy splittings from E,„are expressible; (3) the
more general Slater integrals E~, if con6guration-inter-
action effects are to be included; and (4) the dipole
radial integrals for the transitions in question, if abso-
lute transition probabilities are to be calculated.

All of these quantities are given by familiar expres-
sions involving various integrals of the one-electron
radial wave functions. In particular, using determinantat
wave functions for the atom, the one-electron and total
binding energies are given by'

jV&= g c+ji' t+Q g&i

=(il —V li)+(sl —2Z/rl')+& J".

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

~E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England, 1935),
Sec. 45 and Chaps. 6 and 7.

~ J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc. , ¹wYork, 1960},Chaps. 12—14, 20—23.

'R. D. Cowan and N. J. Peacock, Astrophys. J. 142, 390
(1965); 143, 283 (1966); R. D. Cowan, J. Qpt. Soc. Am. 56,
1416A (1966); Astrophys. J. 147, 377 (1967).

4 R. N. Zare, J. Chem. Phys. 45, 1966 (1966).' In this paper, all equations and numerical results are for dis-
tances in Bohr units and energies in Ry (—15,605 eV), except
where explicitly stated otherwise.

yg —p (g~t+p c+p pit)

where the Coulomb interaction energy I'& between
electrons i and j, averaged over all possible magnetic
quantum numbers, is given by'

f l k i') '
''=~(ni, n'i')--,'Pl lG'(nl, n'l') (3)

~ 'e 0 0)

for nonequivalent electrons, and by

(2l+ 1) fl 0 l
gnl, nt —PO(ni nl) Fs(nl, nl) (4)

(4/+1)»o (0 0 0

for equivalent electrons.
The best wave functions to use for evaluating these

quantities are ones obtained by solution of the Hartree-
Fock (HF) equations for the spherically averaged
atom. However, these equations are sufEciently com-
plex that for certain types of excited configurations it
may be dificult to obtain convergence to self-consistent
solutions, even when fairly accurate initial estimates are
available for the wave functions and eigenvalues. '
Moreover, the approximations inherent in practical
applications of the Slater-Condon theory are such~
that radial wave functions of HF accuracy are not
usually needed. According)y it seems worthwhile trying
to find an approximate calculational method which will
give wave functions of reasonable accuracy, and which
at the same time is suKciently simple to give results
in a highly routine manner using only very rough
starting information.

Perhaps the best known approximation to the HF

'In the case of the comparatively simple conGgurations Ni
Lr 3d'4d and Ga r 4s'4d, considerable eBort and computer time
have failed to produce convergence at all with either of two
distinctly diferent and normally satisfactory HF programs.

~B. G. VVybourne, Spectroscopic I'roperties of Rare Earths
{Interscience Publishers, Inc. , New York, 1965), pp. 69-78.
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TABLE I. Results for Ar x 3p'3d, computed by various schemes.

HFS
k~=1.5 k =1.0

HFSL
k =1.5 k, =i.0

Ez(Ry)
E(Ry)
e"(Ry)
E~(Ry)
e@'(Ry)
E,'&(Ry}
e~(Ry)
Ere(Ry)
(r ')g„(a.u.)
(r')3„(a u ). .
(r')l, (a u )
(r ')te(au)
(r')~e(a u )
(r')3e(a.u.)
E'(3p,3d) (Ry)
F'(3p,3d) (Ry)
G'(3p, 3d) (Ry)
G'(3p, 3d) (Ry)
1'8„(cm ')
1'se(cm "

1038.266
—1052.527

—2.527
—3.464
—1.440
—2.075
—0.113
—0.117

1.598
3.393

222.5
0.018

118.5
6.6X10'

0.234
0.020
0.008
0.004

929
0.1

1075.858
—1052.327

—2.504
—2.679
—1.430
—1.381
—0.039
+0.008

1.874
2.653

101.1
0.198

44.60
1 5X106

0.575
0.193
0.222
0.129

l169
11.4

1048.054
—1052.614b

—2.262
—3.132
—1.228
—1.801
—0.023
—0.107

1.742
2.952

149.5
0.060

115.6
13-1X10'

0.320
0.064
0.064
0.036

1060
2.4

1075.792
—1052.363

—2.583
—2.759
—1.507
—1.456
—0.136
—0.041

1.887
2.636

100.7
0.140

53.28
1.3X10'

0.481
0.137
0.151
0.087

1179
7.6

1047.997
-1052.622

—2.288
—3.157
—1.252
—1.823
—0.120
—0.116

1.744
2.965

159.8
0.041

94.15
4.1X10'

0.295
0.044
0.036
0.020

1061
1.2

1057.728
—1052.706

—2.892
—3.139
—1.781
—1.812
—0.118
—0.117

1.800
2.852

119.9
0.030

99.81
4.6X106

0.275
0.033
0.022
0.012

1089
0.5

1052.670
—1052.664

—3.162
—3.162
—1.831
—1.831
—0.117
—0.117

1.633
2.871

121.9
0.027

104.11
5 OX10'

0.264
0.029
0.017
0.010

a See Ref. 22.
b If the total energy is not calculated from the quantum mechanical equations (1)-(4), but instead the exchange portion is computed with the aid of

the statistical approximation, then E = -1048.0SS Ry ( = -Eg), in agreement with the virial theorem (6), which should apply in this case.

equations is the Hartree-Fock-Slater' (HFS) scheme,
which consists of replacement of the HF exchange
terms by the statistical potential-energy function

V,„(r)=—k, (24p/tr) 't' (5)

derived from the exchange energy of a zero-temperature
free-electron gas, p here being the local electron density
p(r) in the atom. Slater chose the value k, =-'s, so that
the eigenvalue of the radial equation would have the
physical signi6cance of a one-electron binding energy,
just as in the HF case (Koopmans's theorem). s For
ground con6gurations this approximation is usually
satisfactory. However, there is evidence'~12 that better
wave functions are obtained using the value k,=i
derived from the variational principle's'4 (and long
used in the Thomas-Fermi-Dirac theory of the atom)";
the total kinetic and potential energy are then such as
to satisfy the virial theorem

(as do HF values), but the eigenvalues no longer repre-
sent one-electron binding energies. But regardless of

' J. C. Sister, Phys. Rev. 81, 385 (1951),or Ref. 2, Appendix 22.' T. Koopmans, Physica 1, 104 (1934).
'oD R. Hartre. e, The Caictdatioa of Atomic Strttctttres (John

Wiley 8t Sons, Inc., New York, 1957), p. 61."B.Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966)."R.D. Cowan, A. C. Larson, D. Liberman, J, B. Mann, and
J. &aber, Phys. Rev. 144, 5 (1966)."R.Gasps, r, Acta Phys. Hung. 3, 263 (1954).

"W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
"See, for example, P. Gombj, s, Die Statistische Theoric des

Atoms used ihre Anzeendlngen (Springer-Verlag, Vienna, 1949),
p. 78.

the value used for k„ the HPS approximation tends to
be very poor for excited electrons because (for neutral
atoms) the function (5) tends to zero at large radii
instead of to the proper value —2/r of the self-inter-
action portion of the exchange potential. "This results
in much too small a magnitude for the eigenvalue e' of
the excited electron, and a correspondingly poor wave
function (see Table I).

The error in (5) has been partially corrected by
Herman and Skillman" through use of a potential
cutoff of the type suggested by Latter": The tota1
potential used in the one-electron radial equation is
taken to be either that computed using (5) or the correct
asymptotic value

lim V(r) = —2(Z—&V+1)/r, (7)

whichever is more negative. This modification Lwhich
we shall refer to as the Hartree-I'ock-Slater-Latter
(HFSL) method, though it is frequently referred to in
the literature simply as HFSJ insures that computed
eigenvalues will never be less negative than the hydro-
genic values, but they clearly will not be so negative as
they would be if a gradual (rather than discontinuous)
change were made to the limiting form (7). Moreover,
this scheme may give very poor values of ionization
energy when computed as the di6erence between total
binding energies of atom and ion (which is the correct
method in principle): Consider, for example, a configura-

's F. Herman and S. Skillman, Atomic Strlctlre Calculatioes
(Prentice-Hall, Inc. , Englewood Clips, New Jersey, 1963)."R. Latter, Phys. Rev. 99, 510 (1955).



Tanrz II. HFSL energies (Ry) for argon (k, =1.0).

Config.

Ar x 3p'3d
Ar r 3p'4f
Ar I 3p'5g
Ar rz 3p'

—1052.622
—1052.572—1052.550
—1052.472b

Ionization Energy
hE exp

0.150 0.1274
0.100 0.06277
0.078 0.04003

& C. E.Moore, Atomic E22e7 gy Levels (U. S.National Bureau of Standards,
Circular No. 467, U. S. Govt. Printing Ofhce, Washington, D. C., 1949-
1958), 3 vols; C. J. Hurnphreys, E. Paul, Jr., R. D. Cowan, and K. L.
Andrew, J.Opt. Soc. Am. , 57, 855 (1967).

b Use of the HFS value -1052.501 Ry would give more accurate values
of d E for the reason discussed in the text.

tion such as Ar I 3p'est with large el, where the excited
electron lies almost entirely outside the 3p' core, and
the potential-cutoff point therefore lies between core and
outer electron. The excited electron sees the proper
potential —2/r almost everywhere, and this results in
the proper hydrogenic wavefunction and eigenvalue.
However, the potentials seen by the core electrons
should be essentially identical in Ar I 3p'ml and Ar rr 3p',
but are in fact quite different because in the former
case the potential is essentially a HFS one (the cutoff at
—2/r lying outside the core) whereas in the latter case
the HFSL cutoff at —4/r lies well within the core. The
resulting difference in core energies for atom and ion
greatly distorts the computed ionization energy, as
illustrated in Table II.

It is true that for highly excited con6gurations the
assumption made in Koopmans's theorem (that core
wavefunctions are identical in atom and ion) is well

satis6ed so that the ionization energy can be obtained
accurately simply by using the one-electron energy E'
of the excited electron, but the ambiguities present in
borderline cases make it clearly desirable to eliminate
the error in hj.

we shall use not the HFS potential

V(t) =—2Z/r+ V,(r)+ V.,(r)

» C. A. Coulson and C. S. Sharma LProc. Phys. Soc. {London)
79, 920 (1962}jhave used this approach rather than Latter's in
correcting the Thomas-Fermi potential for self interaction.

II. HARTREE STATISTICAL-EXCHANGE
SCHEME (Hx)

The principal difhculty with the HI S method is that
the Slater exchange term (5) provides a very poor ap-
proximation to the self-Coulomb-interaction correc-
tion, which at large r forms the leading member of the
exchange terms. The obvious solution is to go back to
Hartree's original scheme and subtract out the self-

interaction term exactly, 's and then to use some sort
of approximation only for the remaining portion of the
Hartree-Pock exchange terms. Thus in the radial dif-
ferential equation

Lwhere V, is the classical electron-electron potential
energy for the entire electron density p(r)), but rather

V'( t) = —2Z/r+ V,'(r)+ V,.'(r), (10)

—&t( '/p) «'(24p/ ) t(s (12)

of which the above guess constitutes the special case
k] =k kp= 3. Ke have made calculations for a wide

variety of atomic con6gurations using two di6erent
values of kp, and have found empirically that properties
(b) and (c) require kt—0.7 with ks ——1.0 or kt—0.6 with

kp 3 Detailed comparison of computed results
(E E' (r") F"Gs) with the corresponding HF values'~"
shows the case kp=1 to be slightly better on the whole
than kp ——-3, the first case is also somewhat simpler
(requiring computation of a cube root only once rather
than for each orbital) and is the only one which will

be considered further.
For most conhgurations, use of (12) gives acceptable

agreement with HF results. However, a number of
excited conhgurations have been encountered for which

"Another way of looking at the expression (11) is to note that
the statistical exchange term is really a function of the density
$p of electrons having spin parallel to electron s; from —,'p is to be
subtracted p', unless there is only one electron in orbital i.—in
which case $p contains only $p'.

'0 C. Froese, J. Chem. Phys. 45, 1417 (1966)."J.M. Wilson (private communication).
"-J. B. Mann, Jr. (private communication).

where V.' is the classical potential energy for the den-
sity p—p' of electrons other than i.

For V,' we wish to 6nd some reasonably simple
analytical expression (based on the statistical approxi-
mation) which will approximate fairly closely the
properties of the exact HF terms, among which may be
included: (a) The function should, vanish for any single-
electron con6guration, and for any two-electron con-
figuration tss' (since exchange terms arise only between
electrons of parallel spin); (b) the virial theorem (6)
should be satis6ed; (c) for each orbital, sr= E'; (d) radial
wave functions for equal / but di6erent e should be
orthogonal. ln addition to these internally-contained
properties, we also wish the individual wave functions
(as measured by the quantities E', F", Gs, f;, and.

(r")~) to agree as well as possible with the HF ones.
In order that requirement (a) be satisfied, we assume

the desired expression to be a function of a modi6ed
electron density

p'(r) =p(r) —Lmin(2, co;)$p'(r), (11)

where &a; is the number of equivalent electrons (n;f;)"'
in the con6guration under consideration; that is, p is
the total electron density less the densities of electron
i and of the electron (of same tr/ but opposite spin) with
which it is paired, if the latter exists. "One might then
guess that V„' could be obtained from V„simply by
replacing p in (5) by p', however, in order to provide
greater Aexibility, we consider the more general ex-

pression
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(12) is inadequate, the excited orbital appearing in
some cases to require a decrease in the magnitude of
(12) at large r, and in other cases to require an increase
at small r. The latter is the more. serious problem, and
arises for an excited d or f electron in configurations
such as Sc x 3d4s4d, Cu x 3d"4d, Zn r 3d"4s4d, and
Vb r 4f"6s5f In.these cases the value of e' for the outer
electron may di6er greatly from 8', there are very
serious departures from orthogonality I the overlap
integral (3dl4d) being as large as 0.4), and the wave-
function P;(r) may be more than an order of magnitude
too large at small r—as shown both by comparison with
HF, and by the fact that the computed f; (which goes
roughly as (r s);) is much greater than experiment.
These dBBculties seem to result from a high sensitivity
of the excited orbital to the depth of the inner potential
well and to the height of the intermediate potential
barrier which are formed (or tend to be formed) by the
partial cancellation between the two terms of the ef-
fective potential /(l+ 1)/r'+ V(r) in (8).We have found

by trial and error that the difhculties can be removed by
addition to (12) of a factor f(r) which differs from unity
only at small r (i.e., in the vicinity of the inner well),
and which is constructed as follows: The various orbitals
n;1; of the con6guration are to be arranged in the order
of decreasing magnitude of bind. ing energy (or eigen-
value). Then f(r)—=1 for the ith orbital except in the
two cases (a) 1; t=l;~2, or (b) t; s=l;~2 and co; i ——1.
In either of these cases we take

f(r)=» r&ro,
= 1+ks(1—r/rs), r(ro.

Here ro is the location of the kth node of the wave func-
tion I'„,.~,, where k is the number of orbitals having
f=/; and N(N;. I If a double potential well exists, k

is also the number of antinodes lying in the inner po-
tential well, so that the kth node is that which lies
within the potential barrier; thus the effect of (13) is
to modify the depth of the inner well. J It may be noted
that the factor (13) serves a similar purpose to the
o6-diagonal energy parameters e'& which are required in
the HF equations to produce orthogonality of wave
functions of equal l.

As a 6nal approximation to the non-self-interaction
exchange terms we have taken

p' lp'i /24pi ' '
V„'=-kry

I

—II- -I, (14)
p'+ks/(e —l) kp/ E rr &

the quantity in brackets being included to provide
improvement at large r (small p'). Use of this approxi-
mation Lwith ki ——ks=0.7, ks=0.5j will be referred to
as the Hartree-plus-statistical-exchange (HX) scheme. "
Although the expressions (13) and (14) are moderately

"The more descriptive abbreviation HSX has been avoided
because the first two letters might be read @s "H@rtree-Slater"

"Bagman-$killmaq. ,
"

complicated, it is much simpler than the exact HF
theory, gives results in reasonably good agreement with
HF values in cases where the latter are available, and
has routinely given results (in good agreement with
experiment) for cases in which HF programs have
converged only after repeated attempts, or have failed
completely. All experience to date indicates that the
HX scheme should give good results in the great ma-
jority of cases, and that if there do exist cases in which
it wiB give unsatisfactory results, then these cases will
give themselves away through poor agreement of ~'

with E' and/or poor orthogonality of wave functions
of equal l, and can probably be handled by minor modi-
6cation of the three arbitrary constants kl, k2, k3.

III. RELATIVISTIC AND CORRELATION
CORRECTIONS

E„'=——,n&(sl Le'—V'(r) y I t)
and

En' xas(t'
I Pd V—'—/d—r][d/dr) I i),

(16)

(17)

with a—1/137 the 6ne-structure constant.
The correlation energy Li.e., correlation effects over

and above those resulting from the use of determinental
wave functions, which are represented by the exchange
terins in (1)—(4)j is of appreciable importance in the
calculation of excitation a.nd ionization energies, but
is very di%cult to compute accurately. Ke wish here
to see what it may be possible to do with the aid of
theoretical results on the correlation energy of a zero-
temperature free-electron gas. This approach has been
considered by numerous workers" '4'~" and applied

~4 C. %. Scherr, J.N. Silverman, and F. A. Matsen, Phys. Rev.
127, 830 (1962).

«'H. Hartmann and E. Clementi, Phys. Rev. 133, A|295
(1964).

ss P. Gombds, Acta Phys. Hung, 13, 233 (1961).'" J. F. Barnes, Phys. Rev. 140, A721 (1965), and references
quoted therein.

~8 $. Lundqvist and C. W. Ufford, Phys. Rev. 139, A1 (1965).

Before valid comparisons can be made between
theoretical energies (either HX or HF) and experiment,
account must be taken of relativistic and correlation
sects; these we shall compute approximately via
perturbation theory.

Although relativistic corrections to total binding
energies become quite large for heavy elements, the
main contributions come from the tightly bound inner
electrons. Relativistic corrections to excitation and
ionization energies of the outer electrons seldom amount
to more than a few percent. Hence we need not calcu-
late relativistic energies with high accuracy, '4 "and will
limit ourselves to the mass-velocity and Darwin cor-
rections (as discussed. , for example, by Herman and
Skillman), "taking as relativistic correction to the total
binding energy

E.=2' E.'= Z' (E-'+ED*),
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example, nonzero for a one-electron atom. The obvious
indicated modi6cation is to compute an energy e,'
=e,(r, ') for an electron in orbital i by using a value r,'
corresponding to the density p—p' of electrons other
than i, and to use in place of (19)

0.02 t-

to Thomas Fermi as weIl as self-consistent-field
calculations.

Theoretical values of the average correlation energy
per electron in a free-electron gas, calculated near the
high-density'~" and low-density3' "limits are shown
in Fig. 1 as a function of r„ the radius of a sphere
whose volume is the average volume per electron. The
dashed curve is the function

j.6.1
e,(r,) =—

1.54+ in(r, —'+ 100)

+4r,"'+1.142r, , (18)

which is an analytic fit to a rough graphical interpo-
lation between the high- and low-density results.

Since e, represents the average energy per electron,
the total correlation-energy correction for an atom is
normally taken to be the volume integral

E.=pegv = 4s. .pe,r'dr, (19)

where p(r) is the total electron density and e,(r,) is
found as a function of r from the definition r,=r,(p).
The correlation energy thus calculated from (18) and

(19) is generally found to be considerably larger than
that deduced from experiment. " One reason for this
is that (19) includes self-correlation terms, being, for

"M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957}.

's W. J. Carr, Jr. and A. A. Maradudin, Phys. Rev. 133, A3/I
(1964).

'~ L. Hedin, Phys. Rev. 139, A796 (1965).
3~ D. Pines, in Solid State I'hysics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1955), VoL I p. 3/5.
"R. D. Cowan and J. G. Kirkwood, Phys. Rev. I I, 1460

(1958).
'4W. J. Carr, Jr., R. A. Coldwell-Horsfall, and A. E. Fein,

Phvs. Rev. 124, '/4/ (1961).

0.0 I
O.I 0.2 0,5 I 2 5 Io 20 50 IOO

r, (BOHR UNITS)

Vio. 1. The average correlation energy per electron in a zero-
temperature, uniform free-electron gas. The plotted points are
theoretical values calculated in various high- and low-density
approximations, and the dashed line is the analytical fit of Kq.
(18). The solid line represents the modified function of Eq. (21),
suggested for use in calculating correlation energies of bound
electrons in atoms.

LThis reftnement is unnecessary in the free-electron.
case, because each electron is spread throughout a large
volume and the difference between p and p—p' is
infinitesimal. j

Even when the modi6ed expression (20) is used,
computed correlation corrections usually still prove to
be too large. This may be due primarily to a second
aspect of the difference between a free-electron gas and
the tightly-bound electrons in an atom: H we select a

specific electron i located at a specific position r in a free-
electron gas, the remaining electrons tend to stay away
from the point r because of their electrostatic repulsion
by electron i, and we have a decrease in potential energy
because of the lower interaction of i with the other
electrons; at the same time, these other electrons have
a large volume into which they can move and their
repulsion by i produces a negligible increase in electron
density in other parts of the volume, and therefore
negligible changes in the energies of the other electrons.
In an atom, on the other hand, the electrons are con6ned
to a very small volume; repulsion by a specidc electron
i cannot be so eGective as in a free-electron gas, and what
energy gain does result from the reduced interaction
between i and the other electrons may be largely lost
because these other electrons are forced closer together,
with consequent increases in their kinetic and Coulomb
energies. e'

Clearly this effect is smallest at low electron densities,
and the dashed curve in Fig. 1 will be asymptotically
correct as r, —+~. As r, decreases, the appropriate
value of e, for electrons in an atom will depart increas-
ingly further from the free-electron value. We estimate
the magnitude of this eQect with the aid of experimental
results, which indicate that for neutral atoms with
Z~18 the average correlation energy is about 0.08
rydbergs/electron (0.04 a.u. /electron). ss Thus we shall

"This same argument probably explains the fact that in the
exchange approximation (12} or (14} the required value of k& is
considerably smaller than the free-electron value $ (the exchange
energy being simply a partial correlation energy among electrons
of like spin, produced by eGects of the Pauli exclusion principle)—
as well as the fact that in the HFS and HFSL methods the value
k =1 gives better wavefunctions than does k, =$. At the same
time, it may indicate that Slater's original value k = g is better
for application to free-electrons in solids; see J. C. Slater, Bull.
Am. Phys. Soc. 11, 511 (1966); Solid State and Molecular
Theory Group MIT, 1965, Quarterly Progress Report No. 58
(unpubhshed)."E. Clementi, J. Chem. Phys. 38, 2248 (1963);39, 175 (1963);
42, 2783 (1965).
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replace (18) with the modi6ed function

(21)

shown as a solid. curve in Fig. 1, which is a convenient
(but arbitrary) interpolation formula between the low-

density free-electron limit and a high-density limit
e, —+ —0.0833 Ry; this function has been used in the
expression (20) for the calculation of all correlation
energies tabulated in this paper.

The expression for total correlation energy, together
with the variational principle, can be used to derive
a correlation pseudopotential'4'6 V,(r) analogous to the
exchange pseudo-potential V„(r) or V„'(r). However,
in this work we have preferred not to include V, in the
potential V' used in the radial differential equation for
the following reasons:

(1) The eBects of including V, are small compared
with those of V„', but would at the same time make
impossible direct comparison of HX with HF results,
thereby making it di8Rcult to distinguish eEects of V,
from effects due to (14) being a poor approximation to
the HF exchange terms.

(2) Because of the energy-minimum principle, in-

clusion of V, would have almost negligible eBects on the
energy E computed from (2) and on excitation or ioni-
zation energies hE.

(3) Inclusion of V, would produce a more negative
potential which wouM pull the electrons closer together,
thereby increasing the computed values of the inter-
action parameters F~ and G" (which are already nearly
always greater than indicated by experiment7), even
though physically the e6ect of correlation should be to
keep electrons apart and thereby reduce their mutual
interaction. (This paradox of course arises because we
are working with spherically averaged wave functions,
whereas the inherent nature of correlation eGects is the
introduction of local asymrnetries. )

XV. QUMEMCAL RESULTS

All numerical results (other than HF) quoted. in this
paper were computed with a zoRrRAN II program de-
veloped by the author for the IBM 7094. This program
is based on the one written by Herman and Skillman"
for HFS and HFSL calculations, with only minor modi-
fications in basic numerical methods, but with the added
possibility of the HX scheme (or sequential calculation
according to any two or all three schemes), and the
added calculation of all Ii", G~, f';, (r");, (i~ j), E',
E,', E,', E, and E,=E+E„+E,. —

I.ike the HF method, the HX scheme requires some
sort of initial estimate of the wave functions I'„r,, in
order to provide the densities p'=P, '/4~r' needed in
(10), (11), (14) for calculation of the potential energy
V'(r). These estimates are provided by erst performing
a HFSL calculation, which can be started. in the
Herman-Skillman manner using a universal input

potential function fe.g. , the function U(x) tabulated
by HS" for Ar, automatically scaled by the program
to the appropriate value —2Z at r=0$. After two or
three iteration cycles under the HFSI scheme, the
program automatically shifts to the HX scheme, and
the iteration proceeds very stably to a 6nal self-consis-
tent result in a total of about 12—18 cycles. Total time
requirements on the 7094, including calculation of the
Fk, G~, . on the 6nal cycle, are about one minute for
each 4 or 5 orbitals in neutral atoms Pe.g. , 1.3 min for
~gK (6 orbitals) and 5 min for 92U (17 orbitals) j, and one
minute for each 6 or 7 orbitals in highly ionized atoms.

In Table I are compared some results for Ar r 3p53d
computed by various methods (the Hartree results
having been obtained using the HX scheme with kq

——0).
The HFS and HFSL results (except for the eigenvalues
e') are signiicantly improved by using k,= 1.0 instead
of 1.5. Additional improvement is afforded by the HX
approximation, especially in the eigenvalues (from
which automatically follows better values of (r')).

The degree to which the HX results in Table I ap-
proximate HF values is typical of most configurations.
Total energies are quite accurate (because of the vari-
ational principle), and will be discussed in greater detail
below. Results for the Slater integrals are usually fairly
good, except that values of the G~ (with maximum k)
involving an excited electron may be 25 to 50% larger
than HF, especially when a considerable cancellation
between positive and negative contributions to the
integral is involved; this is not so serious as it may
sound, since even HF values are frequently 50%
greater than empirical values, for reasons already
referred to.~

For the outer electrons, HX values of (r 3) tend to
be too large by as much as 50%. Partly as a result of
this, values of the spin-orbit parameter computed from
the one-electron formula

(22)

are generally 10 to 50% greater than values computed
by Froese" using HF functions and the Blume-Watson
theory;" the latter values are much more accurate for
low Z, but the former usually agree better with experi-
ment for Z& 30.

HX wave functions of equal I but di6erent n are not
necessarily orthogonal. However, unlike Hartree wave
functions in certain cases, the departures from ortho-
gonality are not serious, overlap integrals being usually
less than 0.01 for inner orbitals and seM.om reaching
values greater than 0.05 for outer incompletely-filled
orbitals. No serious error has been observed to result
from considering the HX functions as though they were
exactly orthogonal.

Some additional comparisons between HX and HF

3 M. Blume aIld R. E. VVatsoIl, Proc. Roy. 3oc. (Lorldon)
A270, 127 {1962);A271, 565 (1963); M. Blume, A. J. Freeman,
and R. E. Watson, Phys. Rev. 134, A320 (1964).
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TAsLE III. HF and HX total binding energies (Ry)'.

Atom

He ism

I.i 2s
Se 2s'
C 2p2

0 2p4
06+ is'
Ne 2p'
Na 3$

Mg 3$
Al 3p
Ar 3p'
Kr 4p'
Xe Sp'
Pb 6p2

HFb

—5.7234
—14,8655
—29.1461
—75,3197

—149.539
—118.222
—257.095
—323.720
—399.230
—483.755

—1053.637
—5504.114

—14464.300
—39047.992

—5.7233
—14.871
—29.157
—75.327

—149.536
—118.222
—257.078
—323.705
—399.222
—483.758

—i053.678
—5504.153

—14464.375
—39047.963

E.
—0.000
—0.002
—0.006
—0.033
—0.112
—0.097
—0.291
—0.441
—0.644
—0.912
—3.732

—71.605
—399.613

—2306.665

-0.134
—O.157
—0.254
—0.415
—0.582
—0.158
—0.749
—0.782
—0.870
—0.943
—1.353
—2.789
—4.216
—6.490

j~ ]

—5.857
—15.030
—29.416
—75.775

—150.230
—118.477
—258.118
—324.928
—400.736
—485.613

—1058.763
—5578.547
—14868.204
—41361.118

exp'

—5.808
—14.957
—29.338
—75.670

—150.156
—118.387
—258.12
—324.8g
—400.689
—485.3g

—1058.620

& Values are for the center of gravity of the ground configuration.
b C. Froese, Ref. 20; E. Clementi, J. Chem. Phys. 38, 996, 1001 (1963);41, 295, 303 (1964); Pb from J. B. Mann, Jr., Ref. 22.' C. E. Moore )Atonzzc Enet'gy Levels (U. S. National Bureau Standards, Circular No. 467, U. S. Govt. Printing Office, Washington, D. C., 1949-1958,

3 vols. g; supplemented with theoretical values from J. D. Garcia and J. E."Mack t J. Opt. Soc. Am. 55,:"654 (1965)g and (for Ne and Ar) from Ref. 24.

TABLE IV. HF and HX ionization energies (Ry).a

HFb
hE

HX
AA",- b,E, exp'

0 2p4

Al jp
Si 3p'
S 3p'
Ar 3p'
Ca 4s'
Sc 3d4s'
Sc+ 3d4s
Ss~ 3d
Cu 3d"4s
Cu+ 3d'0

Ge 4p'
Ag 4dzo5$

Sn 5p'
Xe 5p'
Cs 6s
Au 5d"6s
Pb 6p'

1.071 1.067
0.404 0.412
0.524 0.526
0.786 0.791
1.086 1.088
0.376 0.379

1.287 0.889
1.756 1.745
0.466 0.467
1.322 1.285
0.508 0.516
0.435 0.419
0.483 0.465
0.849 0.860
0.254 0.255
0.385 0.426
0.457 0.465

—0.001
—0.001

0.000
—0.001
—0.001

0.001
0.003
0.006

—0.012
0.015

—0.012
—0.003

0.037
—0.004
—0.002

0.008
0.109

—0.010

0.069
0.054
0.057
0.064
0.067
0.059
0.055
0.043
0.069
0.049
0.069
0.057
0.050
0.056
0.064
0.026
0.052
0.055

1.135
0.465
0.583
0.853
1.154
0.439
0.465
0.937
1.802
0.531
1.342
0.570
0.506
0.517
0.922
0.289
0.587
0.511

1.164
0.439
0.572
0.854
1.163
0.449
0.488
0.942
1.819
0.568
1.499
0.554
0.557
0.516
0.924
0.286
0.678
0.501

& Measured between centers-of-gravity of the ground configurations.
b E. Clementi, J. Chem. Phys. 38, 996, 1001 (1963);41, 295, 303 (1964);

J. M. Wilson, Ref. 21.
o C. E. Moore, Atomfc Energy Levels (U. S.National Bureau of Standards

Circular No. 467, U. S. Govt. Printing Office, Washington, D. C., 1949-
1958), 3 vols.

's The error for Itr=2 is doe to the fact that Eq. (20) really

values of total energy E are included in Table III.
However, this table is primarily intended to illustrate
the accuracy which can be expected for correlation
energies computed from (20) and (21), as indicated by
a comparison with experiment of the total energy

K=E+E.+Ec
The errors in E, are rather large for small E, but on the
vrhole results are probably about as good as can be
expected from a statistical calculation. "

Similar comparisons for ionization energies rather
than total energies are given in Table IV. Agreement of
theory with experiment is quite good, except for cases
involving full (or nearly full) d shells near the outer
edge of the atom. (The comparatively very large corre-
lation energies existing in these cases have been dis-
cussed, by Clementi. )"

For atoms with Z greater than about 45,
~
E ) becomes

greater than 10000, and on an 8-significant-figure
computer values of hE cannot be calculated to 0.001 Ry
without being affected by roundoff error. However, in
such cases the innermost orbitals (q, say, in number)
can be considered identical in both atom and ion. %e
then deflne an energy E' computed as in (2), except
with the sununation over i extended only over electrons
in orbitals q+1 to q,„.If suflicient orbitals q are thus
deleted to keep tE'~ (5000, say, then values of hE'
will be arithmetically signiftcant to three decimals, and

TABLE V. HX excitation energies (Ry) in Ar I.

Config.

Ar 1 3p'
3p54s

3p'4p
3p'3d
3p'4f
3p 5C

Ar n 3p~

0—0.002
—0.001
—0.001
-0.001
—0.001
—0.001

0
0.043
0.056
0.059
0.067
0.067
0.067

0
0.845
0.956b

1.030b
1.093
1.116
1.156

exp'

0
0.856
0.968
1.035
1.100
1.123
1.163

counts the correlation energy twice. Indeed, nearly all the results
in Table III can be improved by deleting the correlation energy
of one of the is eiectrons (=—0.0/ Ry).

C.E.Moore /Atomic Energy Levels (U. S.National Bureau of Standards,
Circular No. 467, U. S. Govt. Printing Office, Washington, D. C. 1949-
1958), 3 volsg; and C.J.Humphreys, E. Paul, Jr., R. D. Cowan, and K. L.
Andrew (J.Opt. Soc.Am. , 57, 855 (1967)j.Energy differences are between
configuration centers of gravity.

& The HF values, using the above values of hZ& and AE&, are 0.956 Ry
and 1.027 Ry. {J.B.Mann, Jr., Ref. 22).
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TAnLE UL Energies (in Ry) of excited configurations of the
noble gases, measured relative to the ions.

Config.

Ne 2P'4f
Ar 3p'4f
Kr 4p~4f
Xe Sp'4f

Ne 2p'5g
Ar 3p'Sg
Kr 4pe5g
Xe Sp'5g

—0.06250
—0.06251
—0.06252
—0.06256

—0.04000
—0.04000
—0.04000
—0.04001

—0.00004
—0.00018
—0.00032
—0.00056

—0.00000
—0.00000
—0.00001
—0.00002

Cale Expb

—0.06254 —0.06255
—0.06269 —0.06277
—0.06284 —0.06292
—0.06312 —0.06325'

—0.04000 —0.04001
—0.04000 —0.04003

0 0400' 0 04005c
—0.04003 —0.04009'

a The hydrogenic values are B4f = —0.0625 Ry and Zg& =0.04 Ry. The
HF values (J. M. Wilson, Ref. 21) for the 4f configurations are identical
with the HX values to four significant figures.

b C. E.Moore, Atomic Energy Levels (U. S.National Bureau of Standards,
Circular No. 467, U. S. Govt. Printing Office, Washington, D. C., 1949-
1958), 3. vols; C. J. Humphreys, E. Paul, Jr., R. D. Cowan, and K. L.
Andrew, J. Opt. Soc. Am. , 57, 855 (1961).

o Measured between the centers-of-gravity of the levels with ji =s, as
the j& =$ levels have not been observed experimentally.

will still include the eGects of relaxation of the outer
orbitals upon ionization. The values of dE given in
Table IV for heavy atoms have all been computed in
this way.

The most critical. test of the accuracy of energy
calculations lies in values of excitation energies. Some
computed results for argon are given in Table V; the
good agreement between calculated and. experimental
energies indicates that the variation of hE, with con-
figuration is given fairly accurately by the statistical
calculation.

In the case of excited states of heavy atoms involving
very nearly hydrogenic orbitals, such as the con6gu-
rations p'4f and p'5g in Kr and Xe, even the previously
mentioned values of b,E' (in place of b,E) cannot be
depended, on for high-accuracy values of ionization
energy. However, the fact that the 4f and 5g eigenvalues
are nearly hydrogenic means that these electrons pene-
trate the core only slightly so that their removal pro-
duces little change in the core wave functions. The con-
ditions of Koopmans's theorem are then well satis6ed,
and the one-electron binding energy becomes a valid
measure of E, , measured downward from the ground-
con6guration (center-of-gravity) energy of the ion.
Energies determined. in this way for the noble gases are
shown in Table VI. Relativistic corrections are negli-
gible, and correlation corrections AE, are computed.
relative to the ion. Elimination of the self-correlation
energy through use of (20) )rather than (19))is essential
in cases such as these, where the excited electron barely
penetrates the core. The fairly good agreement with
experiment shows that at large r, the free-electron corre-
lation energy (the dashed, curve in Pig. 1) is applicable

without modihcation to electrons in atoms, as assumed
in Eq. (21).

V. SUMMARY

The Eix scheme, equivalent to Hartree's original
SCP method plus the additional potential term (14) as
a statistical approximation to the exact quantum-
mechanical exchange terms, does not of course provide
radial wave functions identical with the HF ones.
However, it does seem fairly satisfactorily to have
provided a calculational method which: (a) is compu-
tationally much simpler than HP; (b) is almost com-
pletely free of iteration-instability problems; (c) requires
no accurate nor elaborate parameters to start the ca1cu-
lation (the only requirements being a universal starting
potential function plus specification of the conigura-
tion of interest —though moderately accurate estimates
of the orbital eigenvalues will save some computer
time); (d) is free of the HPS method's inadequate
binding of excited orbitals, and. of the HFSL method's
incorrect ionization energies of excited configurations;
(e) gives eigenvalues approximately equal to the quan-
tum-mechanical one-electron binding energies, and total
energies which closely satisfy the virial theorem; and
(f) gives values of energy, interaction parameters
(&',G', |';) and, (r"}which agree with experiment about
as well as do HF values. For problems in which HF
accuracy is required, the HX method may still be
useful for providing starting information for HF calcu-
lations, and it has in fact been used for this purpose
with considerable success. It seems clear that a practical
unified three-stage program could be written which
would begin a calculation with two or three iteration
cycles under the HFSI scheme, continue with a few
HX cycles, and conclude with iteration to a self-con-
sistent HF result.

Calculation of correlation energies based on statis-
tical free-electron results requires introduction of certain
modiications for application to bound electrons in
atoms. The results are only moderately accurate, but
are worth computing for many-electron atoms where
more accurate methods are computationally impractical.
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