
Q4 jonrnal of experimental and theoretical physics established by E. I, Nichols in 1SM

SzcoND Szzxzs, VOI, . 168, No. 3 15 NOVEMBER 1967

Linear Response of Nearly Free Electrons. II. Extreme Anomalous
Skin Effect in Layer Lattices
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On the basis of the linear response function, calculated in paper I, the transverse conductivity 0 (q,ao) for
electrons in a layer lattice is derived and applied to evaluate the surface impedance Z(0). If the Fermi
surface lies completely inside the erst Brillouin zone, we find only a very small correction to the free-electron
result. If the Fermi surface intersects the boundary, we again obtain approximately the free-electron ex-
pression for Fourier coefIicients Vi of the lattice smaller than 0.1 eV, and a different function, with a slightly
diferent power of the frequency and a sensitive dependence on Vi, if V& is larger than 0.1 eV. co is assumed
to be of the order of 10 4 eV.

I. INTRODUCTION
' 'HE linear response function has been shown by

many authors to be an important means to
describe the properties of a many-particle system in a
united way. '—' In paper I of this series' we studied the
linear response function for a system of electrons in a
weak lattice potential. Starting from free electrons, we
carried out a many-body perturbation treatment taking
into account diagrams up to second order in the lattice
potential. The resulting response function was dis-
cussed with respect to the dielectric constant, the pair-
correlation function, and the stopping power.

In the present paper we apply the response function
evaluated in I to the calculation of the transverse con-
ductivity of electrons in a layer lattice neglecting elec-
tron-electron and electron-phonon interactions, i.e.,
assuming car))1. A study of this type of lattice, aside
from mathematical simplicity, seems to be worthwhile
because for radiation incident perpendicularly on the
surface the Fourier components of the external electro-
magnetic field have an inhuence on the electrons which
is in a certain sense similar to that of the lattice. If the
Fermi surface intersects the zone boundary and the
Fourier coefficient of the lattice is not too weak ()0.1
eV for cu=IO eV), this lattice contribution can even
be comparable in magnitude with the free-electron
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contribution. The surface impedance obtained from the
lattice contribution alone is similar in structure to that
calculated by Reuter and Sondheimer, ' but has a
slightly different frequency dependence and depends
sensitively on the lattice potential.

Similar to layer lattices it is conceivable that also for
other types of crystals a more detailed study of the
higher-order lattice terms is required for a more com-
plete understanding of the properties of the electrons.
In this context, Harrison' points out that the discrep-
ancies appearing in the construction of the Fermi
surface of aluminum on the basis of experiments are
expected to be mainly due to our present difhculties in
understanding the anomalous skin effect.

II. ANOMALOUS SKI5' EFFECT

In the theory of the anomalous skin effect, one is
concerned with the transport properties of electrons
near metal surfaces under the condition that the "free"
path of an electron during one cycle of the external
field or between any two scatterings with phonons or
impurities is long compared. to the skin depth. If we
assume the metal surface to be in the x-y plane and an
electromagnetic wave (E,EI„O) of frequency ee incident
normally along the s axis, then this condition can be
written as ma&/qkr«1, where q is the wave vector of
the electromagnetic wave and jt~~ is the Fermi momen-

'G. E. H. Reuter and. E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).

6W. A. Harrison, I'seudopotentials in the Theory of Metals
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j(r,t) = rr (r r', t)E(r'—,t)d'r'

or
j(q,oo) = a (q,a))E(q,(o), (2)

turn of the electron. Now, taking q to be a typical wave
vector of the decaying fields near the surface, we can
put its reciprocal equal to the skin depth 8. Thus the
condition. reads 8((o~/oo, in agreement with the above
statement. A lower limit for the frequency is not re-
quired as we are going to consider scattering merely
at a rigid lattice and thus have an infinitely large bulk
conductivity and a vanishing normal skin depth.
Furthermore we will use the condition q((l ho I, which
simply means that we do not consider Geld components
which decay within a unit cell.

As the electric Geld changes considerably over the
skin depth, the changing inQuence of the Geld along the
mean free path of the electron has explicitly to be
taken into account. This can quite generally be expressed

by the relation

where e is the electron density, 0 the volume, I%'p)

the ground state, and j„the p component of the current
density operator. Equation (7) is equivalent to the
zero-temperature Kubo formula for the electrical con-
ductivity. For the Hamiltonian of the electrons we write

where
IIo=g pkax &v

&i= E &xo+~+xe~, (&x= &-x*,&o= o) (1o)

VK is the Fourier coefhcient of the periodic lattice and
&~ is the free-electron energy. Here we neglect the fact
that the wave functions of the electrons vanish at the
surface. This has been studied by Van Gelder, " who
showed that the resulting error is only of the same order
of magnitude as the effect of the surface irregularities.

We are especially interested in the real part of 0„,
which we denote by o-..

where j is the current density and 0 is the transverse
conductivity. We symmetrize our problem in the usual
way by introducing a current sheet at s=0. From
Maxwell's equations we then obtain by a simple
calculation~

a = (1/ooQ) Re e-'"'(q
pl j,(—q, o)j,(q, t) le, &dt

—q'E(q)+( /c)'E(q) = —(4 i /c') j(q)
+ (2/vr)"'(dE/ds)+o, (3)

which can be solved. to give

e '~'ds2/dE
E(s,t)=-l — — — . (4)

or ( ds +, p
—q'+ooo/c'+ (4orio)/c')a(qp&)

Thus for the surface impedance defined by

4nioo E, (0)
Z(0) = (3)

c' (aE/as). ,o

'

we have
SM dg

Z(0) =-
ic' o q' —(a'/c' —(4~iv)/c') a(q,M).

The main task is now to calculate a (q,co), the transverse
conductivity with respect to the incident light beam.

e '"'(q'plLj. (q, t) j.(—q,0)ll'1'p)«, (&)

III. GENERAL REAL CONDUCTIVITY

Omitting local field eRects, ' the general conductivity
tensor is given by'

8B
o„„(q,oo) =i

/AM QQ)

e-'"'(apl j,(q, t)j,(—q,0) lqp)dt . (11)

Taking t in the Grst integral into the Grst operator we
can write

where
a = (1/coQ) Re(F(q, a)) —F(—q, —&u)), (12)

e'"('&o
I j*(—q t)j*(q 0) I

q'p&dt (13)

dt e'"(q pl p,+(t)p, I&'o& (14)

evaluated in I. We merely have to compare the current-
density operator with the density-Quctuation operator:

j(q) = (e/m)Q k.a&+a& „

Equations (12) and (13) can be verified by using the
fact that matrix elements with an even number of con-
tractions —as those in which we are interested —contain
the imaginary unit i and times only as products of the
two. Furthermore we put ReF*(q,&u) =ReF (q,a&).

As we expect from the relation between the transverse
and the longitudinal dielectric constants, our expression
for a in (11) is closely related to that derived for the
linear response function

'C. Kittel, Quumtlm Theory of SoQds (John Wiley 8z Sons,
inc. , New York, 1963).

S. L. Adler, Phys. Rev. 126, 413 (1962).' M. L. Glasser, Phys. Rev. 129, 472 (1963).
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to obtain an explicit expression for the transverse con-
ductivity o (the).

By this choice there are no contributions of the re-
ciprocal lattice vectors to k, in the current density
(15), which arise from the contractions in (13).

Now from the zero order term R calculated in I, we
can immediately write down the free-electron contribu-
tion to o (q,&o):

tr'(q, to)= (ere'/co&ms)Q k,stt(os ea+—,+sa)na na~-,+, (17)

IV. SECOND-ORDER CALCULATION OF THE
CONDUCTIVITY OF LAYER LATTICES

In the following we consider a layer lattice, the layers
in the x-y plane, and electromagnetic radiation imping-
ing perpendicularly on the layers, i.e., we assume

K= (O,O,K) and ri= (0,0,q) .
where n& =1—n&+=8(kt s—k'). Carrying out the sum

(16) over k we find the well-known result' for o'(q, to):

0, when 2mto) q'+2qkt

0, when q) 2k~ and 2m~& q' —2qkg

3g S8 1 q tto

1— —,when q& 2ktp and 2m'&
I
q' 2qktr I—

4 m qadi 4kJ' q'eg'

3sr ne kg M

Iq' —2qk~I &2m&& Iq'+2qk~I.
i6 m q~ qep 2&I&

These formulas were erst obtained by I.indhard. "The erst term in the third region is the Reuter-Sondheimer-
Pippard expression for free electrons.

o (q, to) is a nondiverging real conductivity in the zero-frequency limit, though there is no energy-absorbing
scattering mechanism. This is due to the "ineffectiveness, " introduced by Pippard, ' according to which the in-
crease of a mean free path is compensated by a decreasing number of eQective electrons.

The erst-order contribution vanishes because of momentum conservation around the corresponding polarization
loop.

In second order we again take over the expression for the response function calculated in I and insert there a
factor k,'. We obtain

tris&(qM) = (tres/comms) p I
Vz!'kesna (I li(ea ea+a+rr+oo)nk+a+x+ &(sk sk+—a+A)na+, +)

k, K

&&I ("+s+x—"+s) ' —(ca+I—") 'j'+&'(ea —ca+a+~)»+'L("+s+K—ca+a) '—("+I—sa) 'j} (19)

This expression can be greatly simpli6ed by noting that tl and K are parallel. Using

and
(says+I ca+a) (ea+K ea) '= (q-m/E) (q+k, +—E/2) '(k.+K/2)

h(e„e,~,+K+to) =—
I m/(q+E) I bDmos/(q+E)) (q+E)/2 —k,j—,

(20)

(21)

we can take the energy denominator out of the k sums and obtain

/4qm 1
~t &(q,~)= (~e'/~nm')P! Vx!' —

I
kes( ea ea+,+~—)n„n,+,+-

(K+2 /mq)tsoqsJ—
tr4qm 8 4qm
! P ke h(ea —ca+a+I+to)na»+s+K ——
4 K I 2mto/(q+E)]s q' & — Bto K (E+2mt»/q)' —q'

Xg k,sb(es —e„„,+co)»-na+s+ . (22)

"J.Linhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd. 28, 1 (1954)."A. B. Pippard, The Dyrtoraecs of Jrtectrorts (Gordon and Breach Science Publishers, Inc., New York, 1964).
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FrG. j.. Fermi surface
for 2hz)E.

Expressing the k sums by o, we can write

where we ignored values of q which are smaller than ~
(in atomic units). This factor no longer has a singu-
larity and may be of the order 1 if o&= Vz'.

The imaginary part of the conductivity can be ob-
tained by means of the Kronig-Kramers relations. It
turns out that it is small compared to the real part, "
once the singularity in the second term is removed as
described above.

For 2k')E, where the Fermi surface intersects the
zone boundaries, as shown in Fig. 1, we find that the
main contribution to o &'&(q, o&) comes from the second
term in (23):

I
VxIs

o) &'& (q,o&) = Q — o'(E,0) .
q2 & E2

(25)

4' 2

o"&(q,m)=XI VxI' — — — —, , o'(q, ~)
IC (K+2 mo/&q)' q'—

4' 2

os (K+q,o&)

Z
I 2mo&/(q+E)]' —q'

4q&n
——o"(q,o&) . (23)

e&o& E (K+2m~/q)' —q'

Now the following equations are deduced under con-
ditions of the extreme anomalous skin eBect, mo&/

qkp«1, q«k~.
For 2ks (E, the second term of (23) vanishes and

thus we obtain only a small correction to the free-
electron result, as one would expect.

o(&s&(q,o&) =16msa'(q, 0)P I VI I s/E'.

V. SURFACE IMPEDA5CE

Now we insert o (q,0) into (6) to calculate the surface
impedance of the layer lattice. To this end we have to
estimate the relative magnitudes in the denominator
of Z(0).

q' —o&'/os —47rio&o (q,0)/c'. (26)

8 gk @GAL
1/3

Z((0) =
3eS 3eee'e'O+16ee'Zee

~

V
~

'/r'&)

X(1—sV~), (2r)

which is very close to the free-electron value.
For 2k') E, we estimate the intersections q~ and q2

in Fig. 2 in atomic units:

471M 3' 118

(1) qr'=-
c2 4 m q~Vp

which gives

First we neglect the second term, since e~&&c. The
remaining terms are displayed qualitatively in Fig. 2.

For 2k'(E, we expand the integrand with respect to
krro

I
o(~'&

I
and obtain after a short calculation

This is different from Pippard's result, where o 1/q.
In the following, we confine our attention mainly to
this case.

The singularities in the second term of (23) and in

(25) with respect to q arise from the fact that transi-

tions to and from intersections of bands are only poorly
described by the response function calculated in I
(If they are not forbidden by conservation laws or the
Pa,uli principle). These intersections are not resolved

in our calculation to give a band gap, if they occur.

behind the expansion parameter V~.
We remove this difhculty by replacing the free-

electron energies for q(. qs ——mVx/K by an energy
expression which tak.es the band gap and the eRective
masses explicitly into account. For k,= E/2, we- '

write ea'= s Kls&VK&(K/2+4)'/2m*, etc. Carrying
out this procedure for q(qo we obtain for the factor in

the second. term of (23)

eolith
gOP
correction

3m' mo&)'&s

13'7s t» )

(m=1, os=1, ro=3X10 ')' (28)

qo

FjG. 2. Estimate of the order of magnitude of the various
contributions to the integrand of Z(0).

&' 5, Nakajima, Progr. Theoret. Phys. (Kyoto) PB, 694 (j960).



L I NEAR RESPONSE OF NEARLY F REE ELECTRONS 531

4nco16m22I VxI2
-(K,O),

c' g
' E'

which gives

/96m'

(3) qo=
I
Vx I

LK=1, (K', O) =3n/4] (29)

(30)

Sco

Z)(0)=-
ZC

From Fig. 2 and the estimates of q~, q2, and qo, we
6nd the following results: For q2&q~, that is, when the
energy gap 6=2I VxI is smaller than 0.1 eV and
co=10 4 eV, we have the well-known free-electron
surface impedance. Then, for 6 about 0.1 eV and
somewhat larger we expect the pure lattice contribu-
tion o.&( ) to be dominating without much inhuence of
the gap. For still larger values of 6, the surface im-

pedance finally will be mainly determined by the gap
correction and the free-electron term. %e are essen-
tially interested in the intermediate range, i.e., in the
influence of the pure lattice part. Inserting now (25)
into (6), we obtain

turns out experimentally for a layer lattice to be +4,

then (32) can be used as ameans for determining
I VxI.

This result could be of interest for a number of layer
lattices, as, for instance, Au$n, which was studied by
several authors. '~"

We expect that our results (27) and (32) still hold.

if we include electron-electron interactions, since it has

been shown"~ at least for free-electron gas that these
interactions do not contribute to the transverse con-

ductivity in the zero-frequency limit and thus to the
surface impedance.
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APPED'DIX

In a private comiliunication, Glasser pointed out that
it is possible to obtain 0 (q,~) for a layer lattice exactly
without expanding it with respect to the lattice po-
tential. One starts from the following expression for the
conductivity':

0 (il,a&) = (2s//m. 'coo)g k,'8(Eg+& fg M—)nk-n&+, +, (33)

(31)
q' 64mim—'~c 'q. 'Qrr

I
Vx

I

'0 (K,O)/K'

Small and large values of q apparently do not con-
tribute to the integral. Evaluation of the integral gives

~

~

3Q) lg 1/4

g (0)— ~ 3m i/8 —
(32)

c'mrna I
VxI'0. (K,O)/K'

Our formula for the surface impedance of layer
lattices for 2k'&E and 6&0.1 eV is similar in structure
to that obtained by Reuter and Sondheimer. The order
of magnitude of the impedance is expected to be the
same as for free electrons. The frequency dependence of
(32) is slightly different, which could be a good criterion
in an experimental investigation. If the power of co

and inserts eq=k, /2m, +0„'/2m„+F(k, ). In the zero-

frequency limit, expansion of (33) with respect to small

il in general yields a 1/q dependence of 0, which is in

agreement with Pippard's expression. But in the case of
nearly free electrons (2k+&K) and for certain types of
nonmonotonic shapes of the band structure (regions
6lled with electrons at the center of the zone and,
separated from that, at the boundaries) a 1/q' depend-
ence is expected, which gives rise to the peculiar be-
havior of the surface impedance as discussed in Sec. V.
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