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The Schrodinger exchange interaction for arbitrary spin is used to construct a Hamiltonian for a nearest-
neighbor model of ferromagnetism. The general high-temperature series for the low-6eld susceptibility is
developed, and the first three terms of the series, for arbitrary crystal lattices, are calculated. The Curie
temperature obtained from setting x '= 0 and taking the first two terms (molecular-field theory) or three
terms ("Heisenberg Gaussian" approximation), is given by

(25+1)k&Tc/ j=s or 4/f1 —(1—8/s) 'I']

respectively. The functional dependence on s (number of nearest neighbors) of the latter result, for arbitrary
5, is exactly the same as originally obtained by Heisenberg for S= —,. In general, the exchange model appears
to disorder at a lower temperature than the Heisenberg model, as could be anticipated from the higher de-

generacy of the ground state of a pair of spins interacting with the exchange Hamiltonian compared to the
Heisenberg Hamiltonian.

where the coefficients A typically have the values

Ap=2 Ay=2,

Ap ———1,

Ae ———67/32,

As ——11/18,

A2 ——1, A2 ——1,

A, = —9/8,

As=2/9,

for S=-',

for S=1

for S=—,'.
The general formula' from which the A„may be
obtained is given in the Appendix.

The operator P;, may be used to construct an inter-
action Hamiltonian. For the case S= 2 this Hamiltonian
is identical in form to that used in the Heisenberg
model of ferromagnetism. ' The connection between the
exchange-interaction operator and spin for this case
was first utilized by Baker et ul. ,

4 by Domb and Wood, s

and by Baker et u/. ,
' in conjunction with powerful

group-theoretic techniques to obtain a large number of
terms (10) in the low-field, high-temperature suscepti-
bility series for the nearest-neighbor Heisenberg ferro-

' P. A. M. Dirac, The Principles of Quantgm Mechanics (Clar-
endon Press, Oxford, England, 1958), Sec. 58.' E. Schrodinger, Proc. Roy. Irish Acad. 47, 39 (1941).' W. Heisenberg, Z. Physik 49, 619 (1928).

4 G. A. Baker, G. S. Rusbrooke, and H. E. Gilbert, Phys. Rev.
135, A1272 (1964) .

'C. Domb and D. %. Wood, Proc. Phys. Soc. (London)
BS6, 1 (1965).

'G. A. Baker, H. E. Gilbert, J. Eve, and G. S. Rusbrooke,
Phys. Letters 20, 146 (1966).
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I. INTRODUCTION

~

CONSIDER an operator P;; which has the property
& that it exchanges, or permutes, the spin coordinates

of two electrons, labelled i and j; this operator is called
the exchange-interaction operator. The connection
between this operator and spin was first extablished
for spin —,

' by Dirac' and later generalized to the case
of arbitrary spin S by Schrodinger, ' who showed that

2S

p,, = g A.(s,'s, )-,

We consider a system consisting of a lattice of E
sites containing atoms of spin S and gyromagnetic
ratio g, each atom having s nearest neighbors. The
Hamiltonian for the system in the presence of an
external magnetic field in the s direction H is taken to
be

2S
K= —jQ A„P„—gpHQ, (3)

where
p„= g (s,'s, )- (4)

and

' G. A. T. Allan and D. D. Betts (to be published).
R. I. Joseph, Phys, Rev. 138, A1441 (1965).We take this

opportunity to point out an error in this paper. Equation (7)
should read: b,s= —Xs(—4X'+SX—3)/9.
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magnet. More recently, Allan and Betts, ~ using similar
group-theoretic techniques, have considered the case
5=1 for a face-centered cubic (fcc) lattice and obtained
the first eight terms in the high-temperature suscepti-
bility series. The Hamiltonian in this situation is a
special case of the biquadratic Hamiltonian considered

by Joseph. ' As pointed out in Ref. /, the physical
relevance of such a Hamiltonian constructed from
P;; (for S)-', ) is limited. The calculations, however,
give added insight into the question of the nature of
the behavior of the susceptibility in the vicinity of the
critical temperature.

The calculations discussed in Refs. 4-7, while giving
large numbers of terms in the susceptibility series, are
restricted to special values of the spin and to specific
crystal lattices. The present calculation, while restricted
to only the first few terms in the series, is for arbitrary
spin and crystal lattices. It is hoped that some added
insight into the nature of series results will be obtained.

II. THEORY



524 R. I. JOSEPH

Here J is the magnitude of a nearest-neighbor exchange
interaction and p is the Bohr magneton. —gpIIQ is
the Zeeman-energy operator for the entire lattice,
while P„ is the sum for all first-neighbor pairs of the
operator (8,'S,) raised to the power e. The operator

Q commutes with all of the P„, but the P„ for various
m((25) do not commute among themselves. Typical
values of the A were given in Eq. (2), as obtained
from the formulas given in the Appendix. ' The formal
derivation of the susceptibility series is similar to the
generalization of the Rusbrooke-Wood' result as dis-

cussed previously by Wojtowicz and Joseph" and by
Joseph. ' The low-field susceptibility is given by the
following 2S-fold series:

2S

x=(C/T) L1+
m, l, ~ ~ ~,m2g~o

where

2S-"-.={3/NS(5+1)(Z ') l] 2 1' (IIP'"'Q'),
perm i~1

usual Hamiltonian

3'.= —2J Q S; S;—gp8 Q Sp„ (10)

y= (C/T) L1+s{J/k~T(25+1) }

+s(s—2) { J/ kg T( 25+1)}'+ ~ ], (11)

or equivalently,

x '=(T/C){ 1—s{ J/k~T(25+1) }

+28{ J/kiiT(2 5+1)}'+ ~ ]. (12)

The present results agree exactly with the results given
in Refs. 4—9 when the proper values of the spin, lattice,
and exchange parameters are substituted.

for arbitrary S, which will be referred to as the Heisen-
berg mode/. For S=~ the two model are, of course,
identical.

We have explicitely evaluated the first two correction
terms in the susceptibility series for the exchange-
interaction model. The susceptibility is thus given by

with

C =Ng'p'S( S+1)/3k', III. DISCUSSION

P=1/k~T.

Here C is the Curie constant, k~ is the Boltzmann
constant, and T is the thermodynamic temperature.
(0 ) stands for the normalized trace of the (25+1)N-
dimensional direct-product-matrix representation of the
operator 0 and the symbol F~f means "that part of f
which is proportional to N". P~„denotes the sum

over all permutations in the order of appearance of the
operators P~ through P2q and arises from their non-
communitivity. The prime on the summations excludes
the term m&= ~ ~ ~ ——m2s ——0. The first term of Eq. (6)
is Curie's law for noninteracting spins, while succeeding
terms represent increasing orders of the statistical-
mechanical perturbation of the nearest-neighbor ex-

change on the free-ion paramagnetism. The reciprocal
susceptibility may also be written as a 2S-fold series.

The general diagrammatic technique developed by
Rusbrooke and Wood' for the usual Heisenberg
Hamiltonian (for arbitrary S) may be extended in a
manner analogous to that discussed in Refs. 8 and 10
to evaluate the present coefficients. The details of the
evaluation of the coefficients will not be presented here.
In what follows, results obtained from using the
Hamiltonian given by Eqs. (3)—(5) will be referred
to as results of the exchange-Asteractioe model. These
are to be contrasted to any results obtained from the

9 G. S. Rusbrooke and P. J. Wood, Mol. Phys. 1, 2S7 (1958).I P. J. Wojtovricz and R. I. Joseph, Phys. Rev. 135, A1314
(1964).

It is interesting to note that as far as the present
calculations go, one may define a reduced expansion
coefficient

g —= J/kii T(2S+1) (13)

such that the coefficients in the x- or y '-versus-T series
are explicitly independent of the spin S. The results of
the exchange-interaction model {Eqs. (11) or (12)]
are to be compared to the comparable results for the
Heisenberg model'.

x= (C/T) { 1+s{2JS(5+1)/3k' T}

+sLz —(1+3/4S(5+1) )]{2JS(5+1)/3k~T}'

+" ] (14)
or

x '= (T/C) { 1—s{2JS(5+1)/3k~T}

+s{1+3/4S(S+1)]{2JS(5+1)/3k~T}'+~ ~ ].
(15)

y '=(T To)/C, —(16)

No such reduced expansion coefficient as given by Eq.
(13) may be defined in this case.

The result of a "molecular-field" treatment is
equivalent to retaining only the first correction term
in the susceptibility series. In this approximation we
then find that



HIGH- TEMPERATURE SUSCEP TIB ILITV

where

Tc=sJ/kn (25+1), (1"/)

TABLE I. Comparison of calculated values of k&Tc/J based
on the exchange and Heisenberg models, for a fcc lattice. The
numbers in parentheses are the percentage difference between
that value of ksTc/J and the relevant "exact" value.

for the exchange-interaction model, which is to be
contrasted to the usual Heisenberg-model result

Tc=2sJS(5+1)/3k'. (18)

If one uses the "enlarged" susceptibility series (en-
larged to include the term T '), the critical temperature
obtained from setting x

—'=0 is given by

4Tc/J
S=-'

Exchange
or S=1

Heisenberg Heisenberg Exchange

16.0 4.00Molecular-Geld theory (a = 1) 6.00

for the exchange-interaction model and

J[1+~5(5+1)]/knTg—
1—(1—(4+3/5( 5+1)]/s) 'I' (20)

"Exact"

Tc= L4 J/k& (2S+1)]/(t1 (1—8—/s) 'I'] (19)

(1=2)

(47%)

4.73

(16%)

4.07

(33%)

13.9

(16%)

12.0

(2 6%)

3.07

for the Heisenberg model. The result for the exchange-
interaction model PEq. (19)] is identical in its de-
pendence upon s, for arbitrary S, to the result originally
obtained by Heisenberg for the case S=—,'based upon
his Gaussian approximation to the energy levels of the
system. ' That is, the exchange-interaction model differs
only by a spin-scaling factor from the original Heisen-
berg Gaussian result for S=-,' and hence, for arbitrary
S, suBers from the same flaw that result did, namely,
failure to predict a real Curie temperature for a&8.
For SWsr the Heisenberg-model result $Kq. (20)] does
not have this Qaw, i.e., it does predict a real Curie
temperature for all three-dimensional lattices. Com-
parison of Eqs. (17) and (18) Lsince,

1&-',S(S+1)(2S+1)]
and/or Eqs. (19) and (20) Lsince,

3—2 S& s 5(5+1)(25+1)

These results can be anticipated from the general form
of the respective Hamiltonians.

It is interesting now to compare the numerical values
predicted for Tg based upon the first few terms of the
series with the extrapolation results obtained from
the much lengthier series. This is done in Table I for
the fcc lattice (s=12) and for 5=—,'and. 1. For the
exchange model, the values of kiiTc/J seem to ap-
proach the "exact" result more rapidly than for the
Heisenberg model, and, within the context of the
exchange model, this approach seems to be more rapid
as S increases. Indeed, if for the exchange model one
plots kiiTc/J versus 5 for m=1 and for ran=2 and
compares it to the exact result (for S=si and 1), a
smoothed curve through the exact points and the curve
for v=2 appear to be indistinguishable for S & ~.

Let us assume that Tz is rigorously given by Eq.
(19). We can then solve this equation for s in terms
of Tg, i.e.,

and 1&xS(5+1)]shows that s-' =gc(1—2gc), (24)
Tc(exchange) & Tc(Heisenberg), (21)

that is, the exchange model is expected to disorder at
a lower temperature than the Heisenberg model. This
could have been anticipated from the higher degeneracy
of the ground state of a pair of spins interacting with
the exchange Hamiltonian compared to the Heisenberg
Hamiltonian. This result is in agreement with the
conclusion of Ref. 7 based upon many more terms in
the series (for S= 1 and a fcc lattice) . In the "classical"
limit, that is for S~~, the exchange model predicts
that

where gc is defined by Eq. (13) but with T replaced
by Tc. Substituting this into Kq. (12), we then find
that

x '=(T/C)L1 —(1—28 ) '(8/8 )+" ] (23)

Denote the coeflicient of r(/gc in Eq. (25) by f,

x '=(T/C)D ~(g-/g. )+" ]=(T/C)

L1—v(Tc/T)+" ]. (26)

Tc 1/5~0, (22) In general,

(27)v = T~/Tc,which is to be contrasted to the Heisenberg model
which predicts that

1g~S2—+fx).
where T~ is the Curie temperature predicted by a

(23) molecular-field treatment and Tc is the "exact" Curie
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Exchange
7 7 T

Heisenberg
v 7 v

Tanr, r. II. Comparison of numerical values of y LEq. (29) ]
and f' PEq. (27)j for both the exchange and Heisenberg models
for the fcc lattice for various values of spin.

by using either the Rushbrooke-Wood' mnemonic for-
mula for Tc (in this case, 1.27—768/605) or from the
more recent results of Stanley" (=1/0.792}. Results
comparable to those shown in Table II can also be
given for the Ising model. "

Finally, if we write the susceptibility in the form

1.47

1.30

1.43 +0.04

1.27 +0.03 1.33 1.38 —0.05

1.47 1.43 +0.04
(30)

(1.27~)

1.30
it can be shown"" that if x is to diverage with a

1.36 power law as T~T~+, then for /O,rge &s,

1.27~(?) 1.27 1.33 —0.06 a„/cia„ i=y '[1+(y —1)/rr]. (31)

a Based on Gaussian approximation for Tg; 1.27—3-V3.
If we rraively set rr= i into Eq. (31)[as =—1], we find

that f=p, which is certainly not foo far from the truth.

temperature. For the present situation we have

v = (1—2gc) '=-'z[1 —(1—8/z) 'f'] (28)

which is independent of S, but not of the lattice.
Substituting z=12 for the fcc lattice into Eq. (28),
we have f=3—v3—1.27, which is iderrtical to the value
of p, de6ned by
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APPENDIX: THE COEFFICIENTS A„

From Schrodinger'- we have
(1—Tc/T) ~ for T~Tc+, (29)

P' =[(25) .] 'LM —(25—1)25]
obtained by Allen and Betts7 for the exchange model

( S= 1, fcc lattice) . Whether this numerical agreement
is pure coincidence or has real signihcance, we cannot
say.

In Table II we compare the computed and known
values of y and y' "for the fcc lattice and various spin
values for both the exchange and Heisenberg models.
We see that when the "exact" value of T~ for 5=1
for the former model is used, the equality between

y and y disappears. A reasonable estimate for the
infinite spin value of f for this model is 1.27 (if the
Gaussian approximation gets to be asymptotically
better as 5-+~). It is then interesting to note that
this would agree quite closely with the corresponding
quantity for the Heisenberg model which was obtained

&& [M—(2S—2) (2 S—1)] ~ ~ [M—2]M

—[(2S—1)!]'[M —(2S—2) (2S—1)] ~ [M—2]M

+[(25—2) I] '[M —(2S—3) (25—2)] ~ ~ [M—2]M

where

M = (S,+S,)'='2[S(S+1)+S;S,]. (A2)

For any particular value of 5, the coefficients A„may
be directly obtained by substituting Eq. (A2) into
Eq. (A1), expanding, and comparing the coefficients
of the various powers of (S,' S,) with Eq. (1).

2M. E. Fisher, J. Math. Phys. 4, 278 (1963). Note that
"H. E. Stanley and T. A. Kaplan, J. Appl. Phys. 38, 977 p—=0, ' in the notation of this paper.

(1967);H. E, Stanley, Phys. Rev. 158, 546 (1967). "C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961).

. ' rratum

/
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