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is expected to exhibit the qualitative features of the
Cr-group metals; whilst the spin-up Fermi level is
placed near the top of the band and, according to
this model, the relevant portions of its Fermi surface
are expected to consist of hole pockets around 8 for
three bands, and other more or less spherical hole re-
gions around F for two bands.

As mentioned above, the Fermi surface is very sensi-
tive to the details of the E(k) curve, and thus to the
approximations assumed. The s-d mixing, for instance,
certainly induces some modihcation; but this effect is
hard to evaluate, principally because of the uncer-
tainty in the relative positions of the s and d bands,
which, as pointed out above, depend critically on the
assumed potential. Nevertheless, a comparison between
the results obtained by tight-binding and APW cal-

culations' ' in FEB plane for the Cr-group transition
metals, for instance, shows the same qualitative features
of the Fermi surface and suggests that, at least in some
regions of the Brillouin zone, even such a simplified
model can give some useful suggestions.
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The self-energy of an electron in a ferromagnetic transition metal due to the virtual emission and absorp-
tion of magnons has been calculated. It was found that the mass correction due to the electron-magnon
interaction may be as large as that due to the electron-phonon interaction. Furthermore, it was noted that
singularities in the density of states should occur at ep&~0, where coo is the frequency of the magnon emit ted
or absorbed when electrons or holes forward-scatter from the Fermi surface of one spin band to the other spin
band.

EXPERIMENTAL studies of the ferromagnetic
& transition metals may soon indicate the extent to

which the electron mass at the Fermi surface is re-
normalized by the electron-magnon interaction. "The
purpose of this paper is to report some results of a
theoretical calculation of this mass correction and other
eGects associated with the self-energy of an electron
due to the virtual emission and absorption of magnons.

We take the interaction Hamiltonian in second
quantized form to be

exchange constant is J, and Qo is the volume of a unit
cell. We introduce magnon creation and annihilation
operators in a fashion similar to Kittel's':
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E1;„,=JOE d'r s(r) ~ S(r),

where s(r) =-,'pt(r)dp(r) Lp(r) is the electron field
operator and o, is a Pauli spin matrix, trt =1j and S(r)
is the net spin polarization per unit volume. The
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(& is the volume of the crystal. ) In the ground state,
S,(r) =S/&o, where S is the net spin polarization per
atom.

The electron energies are e, (k) =e(k)+(o/2) JS, so
that the exchange splitting is JS. We assume that the
magnon or spin-wave frequencies co(q) are known.

' C. Kittel, Quantum Theory of Solid's (John Wiley @ Sons,
inc. , New York, 1963).



504 L. C. DA VIS AND S, H. LIU

(a3

(b)

(c)

FIG. l. (a) Approximation for self-energy
(the solid line represents an electron and the
wavy line, a magnon); (b) 6rst-order vertex
correction which is forbidden by spin conser-
vation; and (c) lowest-order allowed vertex
correction.

maximum wave vector or Debye cutoff. If we were to
include umklapp processes, we should take account of
the q dependence of J.

Z, (k) is the self-energy of Green's-function theory'
Z, (e, k) evaluated at e.(k). In Fig. 1(a), we show
diagrammatically the approximation in which we cal-
culate the self-energy. In Fig. 1(b), we show the first-
order vertex correction of the corresponding problem in
the electron-phonon interaction. Because of the conser-
vation of spin, Fig. 1(b) is, however, identically equal
to zero in the magnon problem. The lowest-order al-
lowed vertex correction is shown in Fig. 1(c). We do
not include any vertex correction in this paper since
1(c) is presumably quite small.

Let us rewrite Eq. (4) as follows:

~F+D

Zo(k) = de dro
2E „D

Although the conduction electrons and S(r) are
intimately related in an itinerant ferromagnet, the
magnons are well-de6ned excitations and we do not
inquire further into the calculation of co(q) or of the
dynamics of S(r) . The portion of the interaction which
concerns us, H~, is that in which a magnon is emitted
or absorbed. The remainder of the interaction gives
rise to the exchange splitting, to contributions to the
magnon frequencies, or to higher-order processes. We
have, then,

Z (cg—qt cgtbq+cg+qt t kPq ) (3)
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where c~,t and cI, are the electron creation and annihila-
tion operators and E=Q/Qs.

From second-order perturbation theory, it can be
shown that the second-order correction Z, (k) (there is
no first-order correction) to e, (k) is given by

&.(k) = (1—ft(k+q) )4
eI(k) —et (k+q) —~(q)

fl(k+q) B.t

et (k) —«(k+q)+~(q)
where f (k) =f(e,(k) ) is the Fermi distribution func-
tion. In Eq. (4), we take q&q, where q„ is some
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where

dsq
F, (e, co, k) = B(e—e,(k+q) )8(co—co(q) ). (6)

In Eq. (5), the principal value of the integral is to be
taken, and 2D is the bandwidth. (ep is chosen at the
center of the band only for convenience. ) The important
contributions to Eq. (5) Lor to (4) $ come from small q
and e, (k) near ep so we take

eg ——k'/2rm, m =some band mass,

MF.(e, ai, k) =, &&1,
4m'ep

XO,

Cvna) e0) ro(q ),

otherwise,

where to =co(q ) and e~q'=
~

e —e (k) ~.

Substituting Eq. (7) into Eq. (5), we have

oi(q) =q'/2M and e.(k+q) =e.(k)+ei,q cosg.

The angle between v(k) and q is 8, and we ignore
anisotropies in e, (k) and o~(tl). With these approxi-
rnations, we can evaluate F,(e, &o, k) .
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We are primarily interested in BZ,/Be, (k), which can. be easily evaluated for e,(k) near ez..

8Z,
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FIG. 2. The enhanced den-
sity of states (in units of the
one-electron density of states)
near the Fermi energy
Singularities at ~g&hcoo are due
to the forward scattering of
electrons or holes from one
spin band to the other with
emission or absorption of a
magnon.
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where rds=re(JS/vs). We neglect e.(k) —es comp»ed
to JS.The density of states in a unit cell at the Fermi
energy is ps=Qsrwps/2v'. The effective mass at the
Fermi surface for both spin bands is given by4

m*/m =1 $BZ,/—Be,(k) ]„(k),r
=1+(JS/es) Jps(M/Snz) ln

~
re /res ~. . (10)

1

From estimates of the parameters involveds

(IS~1eV, es 5 eV, Jp 1, M 10m),

it is not unreasonable to expect corrections as much as
50% or more, i.e., ns*/m 1 5, depend. ing upon what
we take cu /~s to be. We cannot take ru too large since
if we were to include a q dependence in J, J would
surely drop off significantly by q=ps. In view of the
fact that the electron-phonon contribution to m*/m
is 0.2 in Cu, ~ it would appear that the electron-
magnon enhancement may be as significant as the
electron-phonon enhancement in ferromagnetic transi-
tion metals. The size of the correction is consistent
with that suggested by Phillips and Mattheiss for Ni.

' C. Herring, 3fageet~sns I tj, edited by G. T. Rado and H. Shul
(Academic Press Inc. , New York, 1966) .' E. D. Thompson and J.J. Myers, Phys. Rev. 153, 574 (1967).' E. I. Zornberg and P. M. Mueller, Phys. Rev. 151,557 (1966).

8 C. J. Phillips and L. F. Mattheiss, Phys. Rev. Letters 11,
556 (1963).

It should also be noted that a singularity occurs in
BZi/Bei(lr) when ei(lr) =ss+~s and in BZt/Bet(k)
when et(k) =es —res. These conditions correspond to
the forward scattering of an electron or hole near ep
from one spin band to the other with the emission or
absorption of a magnon. For example, when a J, elec-
tron with energy ep Qips its spin, it must give up
momentum JS/vs in the forward direction, say, to
remain near es in the f band. This is accomplished by
emitting a magnon of momentum JS/vs. However, the
magnon also carries away energy ~a=a&(JS/vs) so that
the spin-flipped electron scatters into the 1' band at an
energy coo below ep. This is the physical origin of the
divergence at et (k) =es —

&es in the t' band, and a similar
process occurs in the J, band at c J, (k) =ep+~e. There
results a kink (in a sense, a Kohn anomaly) in the
electron energy spectrum. ~0 corresponds to an energy
of 5 mV or a temperature of 60'K.

Since the correction to the density of states goes
as —BZ,/Be, (k), one should see a singular enhancement
of the density of J, states at es+ces and a singular en-
hancement in the density of /states at es —~s. (See
Fig. 2.) In real systems, the singularities will, of course,
be replaced by finite peaks due to thermal scattering
and the Gnite lifetime of the magnons. Anisotropies in
e,(k) and ot(q) will reduce and broaden the peaks,
and possibly give rise to other peaks.


