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Transverse Magnetoresistivity of a and y Plutonium*
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Argonne Xationa/ Laboratory, Argonne, Illinois

(Received 15 June 1967)

Transverse magnetoresistivity measurements have been made on pure, polycrystalline u and P plutonium.
The magnetoresistivity of both phases is negative at 5'K and low applied fields, and becomes positive at
fields greater than 2000 G. The negative effect decreases with increasing temperature and is not dependent
on sample texture. The higher-field results follow the H dependence found in "normal" metals. It is con-
cluded that the negative eBect is due to magnetic ordering, which results from s-f exchange, and the Neel
temperatures are near 20-30 K for both phases. The high-Geld data are consistent with earlier models in
which the electrical conductivity is dominated by a small number of holes in the 7s band.

I. INTRODUCTION

EXISTENCE of maxima in the resistivity-versus-
& temperature plots for ot, ' p,s s and b' plutonium

(see Fig. 1) led to the proposal of low-temperature
antiferromagnetism in these materials. ' Direct con-
firmation of this hypothesis has not been obtained from
magnetic-susceptibility 4,mao neutron-diQ'raction u or
speci6c-heat" measurements. Those property measure-
ments which have indicated a magnetic transition are
radiation damage" " Hall eGect, "~ thermal expan-
sion, "' and thermoelectric power. ' "The latter set of
properties give indirect indications of magnetism by
means of similar behavior for known magnetic metals,
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e.g., e manganese and the rare earths. The general
conclusion has been that the possibility of magnetic
transitions does exist, but the magnitude of the mag-
netic moment must be very small. 20

The present study was made to see if the magneto-
resistivity of pure, polycrystalline u and P plutonium
would indicate the presence of magnetic order. The
results were found to give the strongest evidence, to
date, of magnetic transitions in these allotropes. Some
general conclusions about the band structure of plu-
tonium have also been drawn from the data.

II. EXPERIMENTAL

The equipment and techniques used here were
described previously. ' Most of the potential across the
resistivity leads was bucked-out with a Honeywell
6-dial potentiometer, and the remaining signal was
amplified with a Keithley model-149 millimicrovolt-
meter and displayed on a Leeds and Northrup Speedo-
max W recorder. The ampli6er was adjusted to give
the greatest sensitivity consistent with the signal noise
generated by vibrations of the glovebox system. Most
measurements were made with the recorder full-scale
equivalent to 1 or 3 p, V. Data were taken in increasing
and decreasing magnetic 6elds, with the sample current
and 6eld in each of their two possible directions. The
potentials were found to reverse with current but
not with 6eld, and were therefore due to the usual
magnetoresistivity.

The plutonium had been puri6ed by fused-salt
electrore6ning. " Total impurity content, exclusive of
americium, was 140 parts per million (ppm) by weight
Samples containing 400 and 600 ppm of americium were
used, and no observable di6'erences were found. Sheet
samples of cr plutonium (monoclinic structure) were
prepared by cross-rolling or by reverse-rolling. The
latter procedure is known to introduce a large amount
of preferred orientation in the samples, " and the re-
sistivities were measured parallel and perpendicular to
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not possible to obtain curves at diGerent temperatures.
The reduced Kohler plot for p plutonium is about the
same as for arsenic. " This normal behavior of the
higher-field data for cr and P plutonium supports the
separation of the results into abnormal, negative, and
normal, positive contributions.

metals" "or ultrapure samples having electronic mean
free paths comparable to sample dimensions. ~ The high
residual resistivities of the samples used here, none less
than 16 pQ cm, rules out the latter possibility. The
negative effects have been explained by s-d or sf-

958.0

IV. DISCUSSION

Magnetic Transition

The negative magnetoresistivities of a and p plu-
tonium are the strongest evidence for a magnetic transi-
tion found thus far for these materials. Negative mag-
netoresistivities have'been found only in magnetic
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FJG. 3. Resistive potential of n plutonium versus magnetic Geld
at 5.0'K (current parallel to the rolling direction).
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FIG. 4. Resistive potential of 0! plutonium versus magnetic
6eld (current perpendicular to the rolling direction): (a) 12.7'K;
(b) 20.9'K.
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exchange interactions in dilute magnetic alloys and in
rare-earth metals. '""Rocher considered the possibility
of sf magnetic electrons in virtual bond states in plu-
tonium, which are in resonance with the conduction
(s-d) electrons. ' "He was able to account for the large
magnitude of the resistivity above the magnetic transi-
tion with only a small difference in the occupation of
the spin-up and spin-down virtual states. The small
difference between n$ and e$ explains the lack of
confirming evidence in the magnetic susceptibility.
Although Rocher's method of determining the spin-
disorder contribution to the resistivity is slightly
arbitrary, his general conclusions are probably valid.

The present work does not establish the exact Neel
temperatures for the two phases. In view of the rapid
drop of the negative part of the magnetoresistivity with
temperature, it is likely that the Neel temperature
cannot lie far above 27'K for n and 21'K for P plu-
tonium. This conclusion is in agreement with the earlier
choice of Neel temperatures based on the temperatures
of a maximum or minimum in the Hall effect. ' Thus, as
before, it is concluded that the resistivity maximum for
a plutonium at 100'K is not due to the antiferromag-
netic transition and that Smoluchowski's treatment of
phonon-assisted, interband scattering must be con-
sidered. "The Neel temperature for P plutonium occurs
above the temperature at which the interband scattering
starts to saturate, and thus the magnetic transition is
seen as a maximum in the resistivity-temperature
curve. A break is not seen in the resistivity-temperature
curve for 0. plutonium at its Neel temperature because
the rate of change due to the interband scatter is too
great at that temperature.
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Fro. 6. Resistive potential of P plutonium at 5'K.

No attempt has been made to calculate exact, two-
band parameters from the combined Hall and magneto-
resistivity results because of the limited applicability
of such an approach even for simple metals. "Qualita-
tively, however, the fractional numbers of electron
holes calculated for the 7s band from Hall data' are
consistent with the magnetoresistivity results, which
group n and p plutonium with other high-resistivity
metals, such as arsenic and antimony. Recent tight-
binding and augmented-plane-wave calculations for 8
plutonium (fcc) show that 5f67s' or Sf~"6d"7sm con-
figurations can account for the observed magnetic
susceptibility and electronic specific-heat term. "These
models are similar to the Sf~7s2~ or (Sf 6d)'+*7—s2 '
configurations deduced from the Hall data. Measure-
ments of posititron annihilation in uranium" yield a
(5f—6d) "7s" band structure, which agrees with the
structure for uranium obtained from the Hall-coefBcierit
data. Despite the assumptions used in the two-band
model of conductivity, the model appears to be useful
qualitatively for the actinide metals.

It is concluded that although the detailed band struc-
tures of n and p plutonium are not known, a unified
picture is evolving, with a high density of states at the
Fermi surface; a nearly full is band; a very narrow split
Sf band due to spin-orbit coupling; gross similarities
in electron-transport properties in various allotropes,
and therefore, little change in properties from Brillouin-
zone boundary effects; and general similarities of band
structure among the actinide elements.
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FIG. 5. Kohler plot of "positive" magnetoresistivity for
n plutonium.
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