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When the wave functions of two identical Anderson-type localized moments overlap, the moments tend
to align in either parallel or antiparallel configuration. The relative stability of the two configurations is
studied in the limit of very small overlap using the Hartree-Fock approximation. It is found that in the
highly localized limit, i.e., extremely small d-level width, the antiferromagnetic alignment is energetically
favored. A necessary condition for ferromagnetic alignment is to have partially occupied d states. Similar
consideration can be applied to the E-spin problem. If one expands the total energy of the system in terms
of the ratio of overlap energy versus intra-atomic Coulomb energy, the lowest-order spin-dependent term has
the form of a Heisenberg Hamiltonian. On the other hand, for a ferromagnetically ordered system, the Fermi
level is found to fall in the region where the s and d bands hybridize. This indicates that the Fermi surface
has strong d character. It will be shown that this model gives a qualitative and roughly quantitative fit to
all the important magnetic and electronic properties of iron and nickel.

I. INTRODUCTIOH

r 1HE historical development of the theory of ferro-.„magnetism in metals has followed two paraDel
paths, the localized-spin theory and the itinerant-
electron theory. In the former theory, the electrons
carrying the permanent magnetic moment are assumed
to be con6ned to the ion core. Rare-earth metals are
the best examples of this kind of material. In the
latter theory, the magnetization is regarded as arising
from the polarization of the conduction electrons. The
moment-carrying electrons are more or less uniformly
distributed throughout the metal. The antiferromag-
netism in chromium seems to Q.t this description very
well. In order to determine which model is applicable
to materials like iron and nickel, various experiments
have been conducted. The situation up to around 1964
is very well summed up in the monumental review
of Herring. ' He concluded that neither model in its
simplest form explains all the experiments, and that
re6nements of each model can duplicate many of the
features of the other, so that almost all experiments
can be crudely understood. Since then new evidence
has been accumulated and it tends to sharpen the
conQict. We review this evidence brieQy here.

It is well known that the initial susceptibility xo of
a ferromagnet diverges at the Curie temperature. Kovel
and Fisher' analyzed the susceptibility data of Weiss
and Forrer3 for nickel and found that

xo '"(~—~)"
just above the Curie temperature. The value of y is

*Work performed in the Ames Laboratory of the U.S. Atomic
Energy Commission. Contribution No. 2108.

' C. Herring, in 3fagnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. IV, Chap. 6,
pp. 118-145.' J.S. Kouvel and M. E. Fisher, Phys. Rev. 136, A1626 (1964).

s P. Weiss and R. Forrer, Ann. Phys. (Paris) 5, 153 (1926).
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1.35~0.02. This is in good agreement with the value

p—z~ for the Heisenberg model. 4' One may think that
it is possible to understand the critical Quctuation'of
the magnetic metal by including the correlation eHect
as done by Kubo et al. However, the Kubo theory
relies crucially on the Landau assumption that all
quantities can. be expanded in powers ot (T T,) just—
above the Curie point. This type of theory can only
give p= 1. Whether the Kubo theory can be improved
to give a diGerent value for 7 is not clear at the present
time. For this reason the critical Quctuation properties
are often discussed in terms of the localized model even
for transition-metal ferromagnets.

Neutron-diBraction experiments~ showed that the
spin density distribution in metallic ferromagnetic iron,
cobalt, and nickel can be accurately described by a
positive free-atom 3d contribution and a negative con-
stant. This indicates that the moment-carrying elec-
trons have wave functions which are not severely dis-
turbed by the metallic bonding and ferromagnetic cou-
pling. The assumption that the magnetic moment is
uniformly distributed in the metal is invalid.

The Fermi surfaces in iron and nickel have been
mostly mapped out. ' The results show that the d bands
are split and the spin-up and spin-down Fermi surfaces
are quite diferent. The difference in their volumes

e (a) C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962);
J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc.
(London) A275, 257 (1963); (b) T. Izuyama, D. J. Kim, and
R. Kubo, J. Phys. Soc. Japan 18, 1025 (1963).' C. G. Shull, Electronic Structure and Alloy Chemistry of the
I'ransition Elements (Interscience Publishers, Inc., New York,
1963), p. 69; R. M. Moon, Phys. Rev, 136, A195 (1964); H. A.
Mook and C. G. Shull, J. Appl. Phys. 3'7, 1034 (1966).

~ J. R. Anderson and A. V. Gold, Phys. Rev. Letters 10, 277
(1963); E. Fawcett and W. A. Reed, ibid 9, 336 (1962).; A. S.
Joseph and A. C. Thorsen, the. 11, 554 (1963); D. C. Tsui and
R. %. Stark, ibid. 17', 871 {1966);A. V. Gold, in Proceedings
of the International Conference'on IrIagnetism, Nottingham, Eng
land, 1064 (Institute of Physics and the Physical Society, London,
1965), p. 124; D. R. Stone, thesis, Iowa State University, 1967
(unpublished) .
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accounts for the magnetization per atom. As was
po', nted out by Herring, this is a definite proof that
the electrons are itinerant.

We would like to show in this paper that one can
understand both the localized property and the itinerant
property of the magnetic electrons if we regard nickel
and iron as a lattice of overlapping Anderson-type
localized moments. This type of model was erst put
forward by Friedel et ol.,' but many details of the
model were not worked out in the original article.
The basic idea is the following: The d states in tran-
sition metals act like scattering resonances of the
conduction electrons. They are occupied only part of
the time by an electron, so that over a long period
of time one 6nds partially occupied d states. The spin-
up and spin-down electrons in a particular d orbital
repel each other by the intra-atomic Coulomb force.
Depending on the position and the width of the d
states and the size of the Coulomb energy, the spin-up
and spin-down states may have the same or different
occupation numbers. In the latter case, one speaks Of

a localized magnetic moment. A quantitative theory
of the one-spin problem was erst worked out by Ander-
son. Hence, it has become customary to refer to this
model of localized state as the Anderson model. In
practice, the model has proven very helpful in under-
standing the magnetic properties of dilute alloys of
transition metals.

In a pure ferromagnetic metal we expect the d or-
bitals of near-neighbor ions to overlap, so that d bands
of 6nite widths appear. This makes it possible for the
neighboring ions to exchange their partially trapped
electrons and so a kind of exchange interaction takes
place. This interaction has been considered as a two-
spin problem by Alexander and Andersone and by
Moriya. ' In general they found that the interaction
may be either ferromagnetic or antiferromagnetic, and
its size agrees with what is needed to explain the ob-
served Curie temperature.

The idea of treating the d band as a lattice of scatter-
ing resonances has also been applied to nonmagnetic
transition metals. In a recent paper, Heine" showed
that the structure of the d band in copper can be
quantitatively understood from this point of view. The
width of the d band is determined mainly by intra-
atomic interactions rather than interatomic overlap
integrals.

The present paper is a natural outgrowth of the
two-spin problem. In Sec. II we summarize the im-

portant results of the one-spin problem. In Sec. III
the two-spin problem is formulated and the conditions

~ J. Friedel, G. Leman, and S. Olszewski, J. Appl. Phys. 32,
325S (1961).

P. W. Anderson, Phys. Rev. 124, 41 (1961).
OS. Alexander and P. W. Anderson, Phys. Rev. 133, A1594

(1964).
'OT. Moriya, Progr. Theoret. Phys. (Kyoto) 33, 157 (1965)."V. Heine, Phys. Rev. 153, 673 (1967).

for ferromagnetic or antiferromagnetic coupling are
discussed. We also show that, in the limit of smali
overlap integral, the effective-spin Hamiltonian of the
two-spin system is of the Heisenberg form. The same
consideration is extended to the E-spin problem in
Sec. IV. It is found that, as far as the dynamics of the
spies is concerned, the Heisenberg Hamiltonian is valid.
In this respect the present model has the property of
the localized-spin model. From the band point of view
the spin-up and spin-down d bands are split by the
Coulomb interaction, and they hybridize with the sp
bands. For ferromagnetic metals the Fermi level is
found to lie in the region of s-d hybridization. Hence,
the Fermi surface shows d characters, as in the itinerant
model. It is therefore possible to understand both the
critical properties and the Fermi surface of nickel and
iron. Section V summarizes the results of a more physi-
cal but rather complex model involving many degener-
ate levels. Quantitative calculations are carried out for
the properties of nickel and iron, and the results are
shown to compare well with experiments and band
calculations.

+ Q $V,peg. tc.+V,g'c. tcg,7, (2.1)

where the erst term on the right-hand side is the total
energy of the conduction band, the second term the
energy of the d orbital, the third term the Coulomb
repulsion between the spin-up and spin-down electrons
in the d orbital, and the last term the coniguration
mixing between the plane-wave s electron states and
the d orbital. The operators labeled by ktT refer to the s
electrons and those labeled only by 0. refer to the d elec-
trons. In the Hartree —Fock (HF) approximation the
energy of the d electron in spin state r is given by

z.=z+U(~ ), (2.2)

and these quasiparticle states are broadened by the
s-d admixing by the amount

2~=2~& ' Z I
V d I'5(&—e~). (2 3)

Hence the density of the d state with spin 0- is given by

p (e) = (1/z') ~IL(e—&.)'+~'j (2 4)

The total number of electrons in this state is

p. (e) de

= (1/m ) cot '
( (1jh) (E. e&) I. —(2 &)

II. THE ONE-SPIN PROBLEM

We review here some important properties of the
Anderson model. The model consists of a d orbital irn-
bedded in a sea of s-like band. The Hamiltonian may
be written as

H= Q@ej,.+E(n++e )+Urn



Combining Eqs. (2.5) and (2.2) we find the self-consist-
ent equations for the d-state occupation numbers;

(n. )= (1/zr) cot 'I (1/b, ) (E e—p+U(n )) I. (2.6)

This set of equations may have one solution,

(n+)- (n-)~

to the Hamiltonian is

IIr = z--zB—B(n+ n—), (2.9)

E,.= E+U(n .) IzBBo—,
. (2.10)

where p~ is the Bohr magneton. The energies of the d
states become

(2)

(3)

'S+ —Sgp

(n+)= (n ),

(n+)=nz,

(n )=n„

S = 1'Ij,

or three sets of solutions,

1Z] Q'Sg) h =PBB/U; (2 11)

where 0-=~1 for the two spin states. Consider the
case where the moment is localized: The spin-up and
spin-down configurations will no longer have the same
energy in the magnetic field. The problem is easily
solvable when 8 is very small. Define a small parameter

depending on the sizes of E, U, and h. In the first case
the net spin of the d states is zero, so that it corre-
sponds to no localized moment. In the second case the
solution (n+)= (n ) is unstable. The other two solu-

tions correspond to the spin-up and spin-down con-
figurations of a localized spin with net moment

m @ISED)

'fbg — %g S2 o (2.7)

In a material where there is a set of uncoupled localized
states, the spin-up and spin-down configurations are
equally likely to occur, so that the material is para-
magnetic.

The condition for the localization of a spin is given

by, according to Schriefter and Mattis, "'
Up(ep) &1, (2.8)

where p(eB) is the density of the unsplit d states at
the Fermi level. This is similar to the condition for
the existence of ferromagnetism in the simple band
theory. ""SchrieGer and Mattis also showed that when

the correlation effect is included, the Anderson model
will never have a localized moment in the case of low
densities (n, )(0.3, or 1—(n, )(0.3. However, by in-

cluding the oribtal degeneracy of the d states as well

as the Hund's rule interaction, the localized moment
again may occur. It seems that although the Anderson
model is not adequate from a rigorous point of view,
it does give a simple physical description of a localized
spin. Hopefully, after taking into consideration the
correlation eGect and the degeneracy, the theory in

the next few sections will remain valid at least quali-
tatively.

In the following we present a not so well known

property of the one-spin system, namely, the Zeeman
splitting. It will be shown that the number of Bohr
magnetons as determined from the Zeernan splitting
is quite different from that determined from the local-
ized moment e,. To see this we apply a small steady
magnetic field 8 in the s direction. The additional term

" (a) J. R. Schrieffer and D. C. Mattis, Phys. Rev. 140, 1412
(1965); (b) See Ref. 1 and the review article of N. F. Mott,
Advan. Phys. 13, 325 (1964).

Uh

(E+—.,)2+F2 (2.13)

and X2
——Up (ep). The solutions are

$1
——Xt (1+F2)/(1 —Xthz),

f2 )t2( 1+~1)/( 1 )11~2) ~ (2.14)

The Gibbs free energy of the spin-up configuration is

G+= (E—eB) («+)+(n-))+U(n+)(n-)
= Gp zzBBnB+0 (h') —.

Here

nB —nl n2 U [(E+ —ep)$+(E i —e )$].
(2.15)

Go is the free energy of the free spin, and E&, E& are
defined by

E &Pl =E+Un,
E2&'& = E+Uzzr.

The same thing can be done for the spin-down con-
figuration. The Gibbs free energy for this case is

G =Gp+ pBBnB+O(h2).

Hence, the total Zeeman splitting is

QG= 2p~ggg (2.16)

and the quantity e& is the equivalent number of Bohr

then for the spin-up state, the population of the two
d states are modified in the presence of the field to

(n+) = nt+h&1,

(n )=n2+h)2, (2.12)

with nt)n2. Putting Eq. (2.12) into Eqs. (2.10) and
(2.6) and expanding all quantities in powers of h, we
find that the zeroth-order terms cancel from both sides
and the first-order terms give the following equations
for $1 and $2..

51+)t1$2 )11

$2+)12)1 X2,

where
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tions for the d states satisfy the equationsmagnetons. The reason that we compare the Gibbs
free energies instead of the internal energies is that
the number of particles in the d states change with
the field. Since the total number of electrons in the
metal is fixed, a change be~ in the d states brings about
a change —be~ in the number of conduction electrons,
so that the energy of the conduction electron system
changes by —e&&s&. The change in energy of the entire
metal is 8Ed —e&be&, which is just the change in Gibbs
free energy of the d states.

At a finite temperature T, the magnetic moment of
a collection of E noninteracting localized moments is
given by

(e—E„.+id) G,,'(e) —VG;; (e) =1,

(e—E;.+id) G;,'(e) —VG; (e) =0,

The solution is

i, j= 1,2. (3.2)

e—E,,+i6
G,; e =

(e E,.—+id) (e E&';.+—iA) —V' '

G "(e)= . . (33)
V

(e E,.+i—D) (e E,,+—ih) —V'

M =plllVn, tanh(pr&Bnll/k T) .
where E;,= E+U(n;, .). The self-consistent condi-

(2 l7) tions are

For kT&&IJ~Be~, we can define a paramagnetic suscep-
tibility

(n,.)= p&«(e) de&

x = Epgsn, nrl/k T. (2.18) p,.(e) = —(1/lr) ImG;; (e). (3.4)

let ex be the number of Bohr magnetons determined The off-diagonal Green's functions are related to the
by the susceptibility measurement; we find the relation e~ ectation values

Sx S2=

It is true, in general, that
(c 'c )=-2r-' ImG, ,~(e) de. (3.5)

so that
e~& e,,

ex& e,.

(2.20) We shall discuss the coupling energy in the limit of
very small V. The Green's functions may be approxi-

(2 21) mated by

The Bohr-magneton numbers of many materials are
listed by Rhodes and Wohlfarth. " From their data
and the assumption that the localized spins of nickel
are best represented by S=—2, one can deduce that
e,=0.61 and ex=0.93. Hence, the above-mentioned
inequalities are verified.

III. THE TWO-SPIN PROBLEM

When there are two spins with their wave functions
overlapping, the Hamiltonian may be written as, with
a proper choice of phase,

H= Q eking. +E Q (nl.+n2.)+U(nl+nl

+n2pn2 )+ g VLcl."c2.+c2.tcl.l

+ Q I V,gLcl,.'cl, exp( —il, Rl)

V2

(e—E,.+id)2(e E;.+id) —'

G, ,'(2)=V/(2 —E,.+id) (2—E;.+id) . (3 6)

Consider first the spin-parallel configuration. By sym-
metry, we must have

(n,+)= (n,+)=nl+g, v',

(nl )= (n2 )=n2+272V' (3.7)

Substituting into Eq. (3.6) a,nd expanding again in
powers of V', we obtain

G,; (e)=(e— .E ~el+id) —'+ ggV'U

(e— .E' (+lid)'

+V'/(e — .Ecol+id) ',

+cl„c2,exp( —il, R2) j+H.c.I. (3.1)
G, ; ( ) = V/( E.&'&+26)', — (3.8)

The quantity V is the overlap integral between the
two orbitals. We define the Green's functions as in the
work of Alexander and Anderson. If the indirect ex-
change e8ect is ignored, "the one-particle Green's func-

"P. Rhodes and K. P. Wohlfarth, Proc. Roy. Soc. (London)
A273, 247 (1963).

' The indirect-exchange eQ'ect in the Anderson model has
been discussed by D. Kim and Y. Nagaoka, Progr. Theoret.
Phys. (Kyoto} 30, 743 (1963}; and recerltly by B. Caroli, J.
Phys. Chem. Solids 28, 1427 (1964).

E+&ol =- E+Un2,

E isl = E+Unl (3.9)

ril+}ll'92 721&

212+~291 122& (3.10)

The self-consistent condition, Eq. (3.4), gives the fol-
lowing equations for q& and q2.
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(~ -E)/U
F

Also, Eq. (3.5) gives

(cg.tcs. )= (cs.tct. )=- —V/U.

The Gibbs free energy is found to be

G.=2Gp+2V'[(E t» ep—) t t+(E '" e~—)l's 2/—Uj
= 2Gp —2V'/U. (3.18)

0
U

We can define the exchange energy J as

(3.19)
Fro. 1.The figure shows one-half of the region on the (es F) /—U

and n/U plane in which a localized spin is stable according to the
Anderson one-orbital model. This region is subdivided so that
in the area marked by F the coupling between two identical
localized spins is ferromagnetic and in the area marked AF the
coupling is antiferromagnetic.

where Xt, Xs are defined in Eq. (2.13) and

a(E,t» —.,)
s.[(E+tsl —ep) '+6']' '

d, (E tP& —ep)

z-[(E tP' —ep)'+LV]'

Hence,

(3.11)

(c;+tc,+)= —(V/U) 4,
(c; 'c; )= —(V/U)Xs. (3.13)

The'. Gibbs free energy of the two spins can be easily
found to be

G.=(E-")Z& ..&+UK( && )
io' g

+V Z [&c-".)+(c-".)j

m= (~t—~t 2)/(1 —lttlts) )

rf, = (p,—4p, )/(1 —X,&,) . (3.12)

Similarly, Eq. (3.5) gives

so that the sign of J will determine the relative stability
of the two-spin configurations.

The stability analysis is done numerically and the
results are plotted in Figs. 1 and 2. Figure 1 shows
one-half of the region in (e~ E) /U —and the 6/U plane
where the spin is localized. The region is subdivided so
that in the area marked by F the exchange energy J
is positive and in the area AF the quantity J is nega-
tive. Figure 2 shows the same region mapped on the
Nq, n2 plane. There is a localized moment everywhere
i~ the square except along the diagonal e~——e2. The
various curves in the drawing are the contours of con-
stant J with the values of J marked beside them. The
unit of J is V'/U. It can be seen that in the strictly
localized case n~=1, F2=0 or vice versa, the coupling
is always antiferromagnetic. This is consistent with the
electron-spin alignment in a hydrogen molecule. The
ferromagnetic coupling becomes possible when both e~
and ~ are less than unity, i.e., when the moments are
partially localized. The solid curve on the bottom part
of the diagram is the boundary under which the quan-
tity e&&1. Experimentally we 6nd that n, and nx are
not too much different. This implies that m& is nearly
unity for one loca1ized electron. It is clear from the
diagram that the region around n&—j. is mostly ferro-
magnetic. For an order-of-magnitude estimate of J,

= 2Gp+2V'[(E„&P~ —ep) rjt+(E &» —es) res

—(1/U) (At+As) $, (3.14)

where 260 is the free energy of the two noninteracting
splns.

For the antiparallel spin case, we put in

& .&=&~ &= +l..V,

(et )= (~&=~+|;Vs.
A similar treatment gives

(3.15)

where

t y= (pt —Xyvs) /(1 —Xths),

fs= (ps —Xspt)/(1 —XyXs),

vt ——(4—1)/Us (nt —n,),
s s= (Xs—1)/U'(Ns —et) .

(3.16)

FIG. 2. The contour lines of constant exchange energy on the
n~, n2 diagram as derived from the one-orbital model. The thick(3 1") curve on the bottom of the diagram is the contour line for ye=1.
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we take
X=V'/U.

For nickel, we estimate that V—0.2 eU from the width
of the d band, and we take U'—5 eV. These give
J—0.01 eU, and a Curie temperature of about 600'K
for a face-centered cubic (fcc) lattice. The model pre-
dicts the correct order of magnitude of the Curie tem-
perature for nickel.

The criterion for the relative stability of the ferro-
magnetic versus antiferromagnetic coupling was dis-
cussed from the physical point of view by Alexander
and Anderson. In the well localized case, the energy
can be gained by virtual transfer of an electron in the
filled spin-down level on one ion to the empty spin-
down level on another ion. This is just the super-
exchange mechanism, ' and it favors antiferromagnet-
ism. On the other hand, in the partially localized case,
energy can be gained by real transitions of electrons
of one spin back and forth between the two ions. This
interaction favors ferromagnetism and is most strong
when one level has a high density of states at the
Fermi level.

It will be shown in the following that if the two
spins are quantized along different axes making an
angle 8, the exchange energy between them is modified
by the factor cos8. The implication is that the effective
Hamiltonian between the spins is the Heisenberg Ham-
iltonian

the lowest order in V, we obtain

V' cos~-'8
n (e) (e I.+2) +( +. )( ~+. )

V' sin2-'8

(e EI—.+id)2(e E2—, .+id) '

V cos-,'8""=(-E..+' )(:-a.+' )

V sin28
G21 "(e)=

(e—EI.+i 5) (e—E2, +ih)
(3.23)

'$1+~1/2 Pl COS 28+Vi Sill 28,

rl2+X22n= p2 COS 28+Vs S111 28. (3.25)

The Green's functions G22", G~2, and G2~ are given
by similar expressions. Again from the basic symmetry
of the problem, we assume

(221+)= (222+) = nl+rlIV2,

(221 )= (222 )=212+IhV2,

EI~—E~—E+(s)+U2n Vs

E, =E2 =E &'&+Ug2V2. (3.24)

Using the same procedure as the derivation of Eq.
(3.10), we obtain

II,= —2JSg S2, (3 20) This gives

where S~, S2 are spin- —', operators. For this problem the
overlap term in the Hamiltonian of Kq. (3.1) is of the
form

VLcl+ c2+ cos28+cr+ c2—sin-,'8 —cl c2+ sin-, 8

+cl tcs cos2'8+H. c.). (3.21)

pl Xi/2 . i Vl XlP2
rir

——COS'28 +Sin'-', 8
1—XyA2

' (3.26)

and a similar expression for q2. Similar to the derivation
of Eq. (3.13), one 6nds

(cl+tcs+ )= —VXI cos-,'8/U,

(cl tcs )= —VX2 cos-', 8/U,
The equation for the Green's functions are

(e—El@+2+)Gll (e) V cos28G21 (e)

—V sin-2'8G21~ (e) = 1,

(e—EI, ,+id) GII (e) +V sin-', 8G21' (e)

(cl tcs+)= (cl+tcs )= —V sin28/U.

The free energy of this state, G&, is found to be

Ge =Gv cos 28+Gg sill 28

= —', (Gv+G, ) —-', J cos8

(3.27)

(3.28)

—V cos-'28G21~ (e) =0,

(e E2~+Zk) G21 (e) +—V Sln28GII (e)

—V cos128G11"(e) =0,

(e—Es, +ih) G21 (e) —V cos28GII '(e)

—V sin-', 8G11"(e) = 0,

and other four similar equations with indices 1, 2 ex-
changed. Solving for GII"(e), GI2" (e), and G12 '~(e) to

IP. W. Anderson, Solid State Phys. 14, 99 (1963).

This shows that the equivalent spin Hamiltonian is
that given by Eq. (3.20).

Although the derivation of the spin Hamiltonian
given here is semiclassical, it seems that a fully quan-
tum-mechanical treatment is possible if the Green's
functions are solved in a rotationally invariant way
rather than the HF decoupling scheme. This remains
to be worked out.

Alexander and Anderson showed that the overlap
between two orbitals also influences the stability of the
localized moments. In fact, the region of stable moment
in Fig. 1 is significantly reduced even with a rather
small amount of overlap. Thus, the model developed,
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FIG. 3. The schematic band
structure of a ferromagnetic
metal based on the one-orbital
model. See text for the meaning
of the symbols.

sites. Hence, to the lowest order in V/U we may ignore
all G; except the nearest-neighbor ones. When i and

j are nearest neighbors, the sum on l in the second
term of Eq. (4.3) consists of next-neighbor Green's
functions except the one with l=i. Following the above
argument we keep only this term. Then the above
equations form a closed set and the Green's functions
are found to be

p2
G; (e)—e —E;,+id

e—E;,+id

here for ferromagnetism is only stable when the d bands
are narrow. This may be the reason that ferromagnetism
is only observed in 3d transition metals but not in 4d
and 5d elements.

IV. THE X-SPIN PROBLEM

Now we consider a pure metal in which there is a
whole lattice of localized moments. The Hamiltonian
for such a system may be written as

a= g e,~,.+E g~;.y U g ~„~;

+ Q V[c~ cjr+cjn c,e]

+ g [V,dc', zc;, exp( —zk R,)+H.c.], (4.1)
k, i,o

where the overlap term is summed over nearest neigh-
bors only. The various properties of the system will be
discussed in the following subsections.

A. Equivalent Spin HamQtonian

We erst establish the result that when the energy is
expanded in powers of V/U, the lowest-order term
which depends on spin orientations consists of sums
of energies for pairs of spins. Assume that all the
localized moments are quantized along the same direc-
tion and the particular spin condguration to be studied
has a number of up spins and a number of down spins
in a definite spatial distribution. In the same approxi-
mation as in Sec. III, the Green's functions are found
to satisfy the coupled equations

(e E,.+id)G; (e) ——V Q G, ,'(e) =1, (4.2)

(e E;.+z&) G;,'(e)——V Q G(,'(e) =0) (4.3)
l

where i, j, and l label the lattice sites, the sum on j is
over the nearest neighbors of i, and the sum on l is over
the nearest neighbors of j. From past experience we
know that G~f is of the order (V/U) G;; if i and j are
nearest neighbors. From Eq. (4.3) we can readily see
that G;f is of the order (V/U)pG;;~ if i and j are next
neighbors, and in general (V/U) "G,, if the shortest
route between i and j connects (zz 1) other l—attice

=V/(e E;.+id)—(e—E;.+id) . (4.5)

The sum appearing in Eq. (4.4) is over nearest neigh-
bors only.

The rest of the discussion follows the same path as
the two-spin problem. Assume that the central spin i
is in the up state, and among its s nearest neighbors

y of them are in the spin-up state and (»—y) in the
spin-down state. For the occupation numbers, we as-
sume

(zz~ )= zzz+gz V',

(I ) ~,+»=Vz (4.6)

Then together with the self-consistent condition, Eq.
(3.4), we Gnd

Thus,

zll+X1$2 =ypl+ (»—y) Vl

'gz+Xpgl yZzp+ (» y) vz.

»—4~p&

(1—XX 1—XXj '

(4."/)

(4.g)

and a similar expression for q2. For the off-diagonal
correlation functions, we 6nd

(c~zc;+)= —A,z/U

for parallel spin pairs, and

(4 9)

(c~ c+)=—V/U (4.10)

for antiparallel spin pairs. The spin-down correlation
functions have similar expressions. When we calculate
the free energy of the central spin, it is rather straight-
forward to obtain

G;= Gp+ V'[(E+&" ez )»+ (E &P& —ep)qp]—
—(»/U) [y(~+~)+( -y)]

= G,+y(G„—G,)+(»—y) (G.—G.). (4.11)

If we carry out this calculation for aO spins and add

(e—E;,+iA)

P2

(e—E;,+id)'(e —E;,+i 6) ' 4.4

G, (e)=(V/e —E;.+id)G, ,'(e)
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up the result, keeping in mind that the mutual inter-
action term is to be divided by 2, we obtain

G= XGo+ Q (G„—Go) + Q (G —Gp), (4.12)
P1 y2

where g» is over all parallel spin pairs and g„,
over all antiparallel spin pairs. The expression for 6
may be rewritten in a more illuminating manner:

G=~Go+a»(Go+G. 2Go)+—z Z (—~)+z Z (~).

This in turn suggests the spin Hamiltonian

H, = —2J Q S,'S; (4.13)

—U g (n~)(n; )+ g V(c "c;,+c;.tc,,)
o',i'

+ P LV,acq.zc;. exp(zk R,)+H.c.). (4.14)
kai

The lrst term gives the plane wave like s (or p) band.
For the second and third term we make a transforma-
tion to the Bloch states

b~.= 1/(Ã)-', g c;, exp(zk R;). (4.15)

Then these terms give the split d bands in the tight-
binding approximation

g E,.n,.', (4.16)

where

+kg Skag ~ka)
I

Eg.= E~ e1+s Vy( )k,

1
y(k) =- Q exp(zk 5). (4.17)

The last sum is over all nearest neighbors of an arbi-
trary lattice point. The band splitting is

AE= Ez, Eg+ U(nz —nz), —(4.18——)
which is proportional to the total saturation moment.

summed over pairs of nearest neighbors. One can justify
the Heisenberg form of the Hamiltonian in detail by
assuming arbitrary axes of quantization for all the
spins. But this is hardly necessary because to the order
of V/U that we have expanded the energy, the con-
tributions from various pairs simply add. The Heisen-
berg Hamiltonian must therefore follow on the basis
of the two-spin calculation of Sec. III.

B. Energy Bands and Fermi Surface

Ke consider the energy bands at O'K when all spins
are in the up state. In the HF approximation the
Hamiltonian for the system, Eq. (4.1), may be ap-
proximated by

H= going. + g (E+&'&n~+E &o'n )

Finally, the s-d admixing term causes the s and d bands
to hybridize near their crossing point. The hybridized
bands are given by

e„.''=-,'fez+El, .&[(el,—E&.)'+4K
~

V,a )'g't'I (4.19)

where the superscript 1 refers to the positive value of
the square root and 2 refers to the negative value. A
schematic diagram of the bands is shown in Fig. 3.
The various bands are identified by the superscript
defined above and the spin state. The finite width of
the d band is ignored because, as observed by Heine, "
the structure of the d band is largely determined by the
s-d hybridizatioii. We choose to represent nickel by a
point on Fig. 2, where the spin-up state is almost
completely filled and the spin-down state about half-
filled. This gives rise to a Fermi level at the position
shown in Fig. 3. Since the width of the localized d
states corresponds to the region where the s-d hybrid-
ization takes place, the Fermi level must go through
this region for both baiids. The Fermi surfaces are
represented by the points A and 8 on the band scheme.
For the majority spin band, the Fermi surface at A is
largely of s character. This piece has been observed
experimentally to resemble very much the Fermi sur-
face of copper. ' For the minority spin band the Fermi
surface 8 shows strong d character.

There is some indirect experimental confirmation to
our prediction that the Fermi surface for the minority
spin band in nickel is in the s-d hybridization region.
In the baird calculations of Phillips and Hodges et cl.' '~

the ordering of the d bands is chosen to resemble that
in copper, i.e., they put I2' above L3. This band scheme
explains the Kerr eGect in nickel, as shown by Cooper. '
According to this scheme, there should be a small hole
pocket centered at the point I.on the reciprocal lattice.
Experimentally, this piece was not observed. "Krinchik'
pointed out that one can understand the Kerr effect
equally well if the d bands are in an inverted order,
so that L32 lies above I-2. The band structure he sug-
gested shows that the copper-like neck in the majority
spin band is given by the L» level and the hole pocket
at I no longer exists. Recently, Hodges" repeated the
interpolation calculation using the inverted band order
and confirmed the postulated bands of Krinchik. In
this new band scheme the Fermi level for the minority
band passes through the middle of the hybridization

' J. C. Phillips and L. F. Mattheiss, Phys. Rev. Letters 11,
556 (1963);J. C. Phillips, Phys. Rev. 133, A1020 (1964)."L.Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev. 152,
505 (1966).

'8 B. R. Cooper, Phys. Rev. 139, A1504 (1965); B. R. Cooper
and H. Ehrenxeich, Solid State Commun. 2, 171 (1964); B. R.
Cooper, H. Ehrenreich, and L. Hodges, in ProceeSings of the
International Conference on Magnetism, Nottingham, England,
1964 (Institute of Physics and the Physical Society, London,
1965), p. 110.' D. C. Tsui and R. %'. Stark, Ref. 6. D. R. Stone, Ref. 6.

'0 G. S. Krinchik and E. A. Canshina, Phys. Letters 23, 294
(1966)."L. Hedges (private communication) .
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band gap at I. as a dramatic verification of our pre-
diction.

If we roughly divide the electrons as localized and
free according to whether they have any appreciable
d character, we 6nd that in the majority spin band
the free electrons 611 up the k space to the point C in
Fig. 3; and in the minority spin band they 611 up to
the point D. It is evident from Fig. 3 that there are
more free electrons in the spin-down state than in the
spin-up state. This negative polarization of the con-
duction electrons was first derived by Anderson' using
the localized-spin picture. Schriefter and WolfP showed
that the s-d admixing leads to a spin-dependent s-d
interaction which is antiferromagnetic. One may re-
gard the negative polarization of the free electrons as
the result of this effective exchange force."

At finite temperatures two things happen to the d
bands. If we denote the reduced magnetization by m,

m= M(T)/M(0), (4.20)

then the average occupation number of the spin-up
a,nd spin-down states will be

(4.21)

Hence, the d-band splitting becomes

hE= U((e+)—(e )) = Vm(ey —~). (4.22)

Eventually, when the temperature is above the Curie
point, the d bands become degenerate in spin. On the
other hand, the Quctuation in occupation numbers of
the localized states gives rise to a Gnite width of the
Bloch states. The disruption of the perfect periodic
lattice produces the temperature-dependent spin dis-
order resistivity and other related transport properties.

As in the previous section, if we take U—5 eV,
e~—~—0.5, we obtain the d-band splitting for nickel,

hE—2.5 eV,

which is much too large compared with the band-
calculation result hE—0.5 eV.'9'~ It will be shown in
Sec. V that better agreement may be achieved by
including the orbital degeneracy of the d states in the
analysis.

C. Elementary Excitations

We have derived a localized spin Hamiltonian H,
and demonstrated a band structure. It is important to
determine which type of description one should use to
discuss the various types of excitations. The key to
the answer lies in the lifetime of the localized d states
~d ——5/A. Since 5—1 ev, we estimate v~=10 "sec. We
first examine the spin waves. The typical spin-wave
energy is of the order kT,—0.05 eV, so that over one

"J.R. SchrieGer and P. A. Wol8, Phys. Rev. 149, 491 (1966).' For a discussion of other mechanisms of conduction electron
polarization, see Ref. 1, pp. 259-267.

period of the spin-wave oscillation, the d states are
filled and emptied a large number of times. As a result,
only the average occupation numbers of the localized
d states play a role in the spin-wave excitations, and
it is correct to treat the spin waves by using the Heisen-

berg Hamiltonian, Eq. (4.13). (The indirect-exchange
effect, which has been ignored in the present discus-
sion, may significantly modify the spin-wave spectrum. )
The same criterion applies to the critical-Quctuation
problem. Hence, it is understandable why the critical
parameter y is close to the value ~ for a Heisenberg
model.

The spin waves have also been discussed by many
authors'4 on the fully itinerant model. A spin wave is
pictured as a collective motion of an electron in the
spin-down state and a hole in the spin-up state. How-
ever, from the d-state lifetime criterion, one can see
that such an electron-hole pair must undergo many
changes of identity between s and d characteristics
during one spin-wave period. Any discussion of spin
waves on a single, unhybridized band model is incom-
patible with the present model.

We now turn to the single-electron excitations. Since
the energy of this type of modes is of the order of
t.p=5 eU, so that the concept of average occupation
numbers of d states has no meaning. Instead, the d

electrons must be treated as a part of the band. In
band calculations the d-band splitting is determined

by the occupation numbers of the Bloch states. How-

ever, since

g m~.
' S' P——P c;.tc;. exp( —sk R;;) = g m,

the present calculation of d-band splitting in terms of
the occupation numbers of the localized d states is

entirely equivalent to the usual procedure.
The specific heat of the material is determined by

the spectra of the elementary excitations. The elec-

tronic contribution depends on the density of states
at the Fermi level, so that the d character of the
Fermi surface will give rise to a larger density of states
and a larger speci6c heat than s-band metals. The
spin-wave contribution can be calculated in the familiar

way from the eGective spin Hamiltonian.

D. Neutron Scattering Form Factor

The velocity of thermal neutrons is estimated to be
of the order 10s cm/sec. Taking the diameter of the
magnetic ion to be 1 A., we And the neutron scattering
reaction time to be 10 " sec, which is two orders of
magnitude longer than the d-state lifetime. Therefore,
the neutron detects only the average occupation of the
d states. If the orbital wave function of the d state
at the ith ion is f(r R,), then the form —factor for the

~A comprehensive list of references on the spin waves of
itinerant electrons is given in the review article of C, Herring,
Ref. 1, p. 367, T'able X.
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d electron with spin o is given by

f (q) = (N. &f exp(za r& If(i) I'd'r. (423)

The total form factor is

f(q& f+(——q) f(—q) (Ni =—a) J e~((q r) I gr) l»r.

(4.24)

In the tight-binding case, f(r) is the same as the
atomic orbital wave function, so that the neutron form
factor in the metal is identical to that in the free atom
except for a numerical factor. The observed negative
background is perhaps due to the negative polarization
of the s-like electrons as discussed earlier in this sec-
tion. There is no essential difference between our dis-
cussion of the form factor and those of Kubo et el.4'

and Hodges et al.'~

V. PROBLEM OF MANY DEGENERATE LEVELS

Since the d states are degenerate even in the pres-
ence of crystalline 6elds, a more realistic model of the
localized moments should include the orbital degener-
acy and the Hund's rule interaction between the de-
generate levels. In the original work of Anderson, ' he
solved the one-spin problem in the HF approximation
using the following Hamiltonian:

a= P~,n„+Eg~ +U
ke mo mme, m&mi

+(U—J')

+ Q (V,gc 'c&,.+H.c.), (5.1)

where J' is the exchange energy between the degener-
ate orbitals, assumed to have the same value for all
different pairs of orbitals. The sums on m and m' are
over all the X degenerate levels. It was found that the
condition for the existence of a localized moment is

LU+(&—1)J']~( ))1 (52)

Schrieffer and Mattis~ showed that it is possible to
6nd a localized moment in this model even when the
correlation effect is considered. However, the present
discussion is limited to the HF approximation. All the
calculations in Secs. II, III, and IV can be carried
out for the present model although the algebra is more
tedious. %e shall only outline the highlights of the
results.

If we study the case when the orbital angular mo-
mentum is completely quenched, all orbitals must have
the same occupation number in the same spin state.
The occupation numbers are given by

(m )=s. ' cot—1L(E.—ep)/rQ) (5.3)
where

E,= E+KU(m .)+(K 1) (U—J') (e ).—(5.4)

j= J'/U,

—K9,pe, (5.11)

(5.12)

and S is some equivalent spin number. If we quantize
the two sets of spins along two different directions in
space, we 6nd again that the interaction energy de-
pends on the cosine of the angle between the two spin
axes.

Let the solutions of Eq. (5.3) be n& and ~, then the
moment of a localized spin is

m= y~eep

n.=x f ei—N2 i.

The number of Bohr magnetons for Zeeman splitting
can be found, from the energy separation between the
spin-up and spin-down states. As before, if we de6ne

Xi= m i'/L(E —cp) ~+lP] (5 6)

and a similar expression for X2, we can calculate the
fractional change of the occupation numbers $i and $2

which are given by identical expressions as Eq. (2.14).
Then the number of Bohr magnetons is found to be

sQ —K{NQ Ã2 U '((E~ ep) P&+—(E=es) &2]I . (5.7)

The energy 2IJ,&e&8 is the separation between the high-
est and the lowest Zeeman levels. We cannot calculate
the number of intermediate levels in general. In the
one-orbital problem there are only two Zeeman levels.
In the strictly localized case when the occupation num-
bers are integral, Hund's rule may be applied. to deter-
mine the total spin. When the occupation numbers
are fractional, as in a partially localized spin of many
orbitals, there seems to be no simple way to extend
Hund's rule. Perhaps the rapid Quctuation in electron
numbers gives rise to a corresponding fluctuation in
total spin and in the number of Zeeman levels. This
situation must await further theoretical and experi-
mental clari6cation.

For two spins with overlapping orbitals, the overlap
term may be written as

V g L(:;,tc;,+H.c.]. (5.8)
mmie, m&mi

Using the same method of calculation as in Sec. III,
we 6nd the expression for the exchange energy to be

2 JP= —K'V'{"(E+—e) )gg+ (E=e) ) gal]

+K'V'(Xg+X2)/U+X'V'/LU+ (K—1)J'], (5.9)

where Xi and X&) are defined in Eq. (5.6) and

g&
——{pg{ 1+X2(ot—1) (1—j)]—KA~2)/D,

g2
——{&((g(1+Kg(x—1) (1—j)]—KX2pgI/O, (5.10)

with p& and p2 given by identical expressions as Kq.
(3.11),
D= L1+(K—1) (1—j)X&]L1+(X—1) (1—j)4]



with
det[(E.—E) 8„„.+V„]=0,

V =sVy(k). (5.13)

This description of the d bands is similar to but more
simplified than that of Heine. " The splitting between
the corresponding spin up and spin-down bands is
again given by

An equivalent Heisenberg Hamiltonian may be found.
for the S-spin problem as was done in the previous
section. It is difficult to write down the Hamiltonian,
however, because the equivalent spiv number S is not
known in general. This difhculty does not arise in
either the localized model or the band model because
Hund's rule may be applied in the former case, while
in the latter case the electrons are entirely in the band
and there is no need to worry about the internal struc-
ture of the ions. In the present model the knowledge
about S is important because it determines the entropy
of the spin system.

The d bands before s-d hybridization are given by
an XgX determinant of the form

bands. As a result, the Fermi surface of at least one
spin band should have a strong d character.

In the following we would like to make some numeri-
cal estimates for Ni and Fe. The parameters U and
J' are estimated by Herring to be U—5 eV, J™1eV.
We choose %=5 for 3d levels. For these values of the
parameters the exchange energy, Eq. (5.9), as a func-
tion of the occupation numbers e~ and e2 is depicted
in the contour diagram Fig. 4. Compared with the
one-orbital case, Fig. 2, the dependence of the exchange
energy on the occupation numbers is more gradual in
the present case. This indicates greater stability of the
coupling between the spins.

For Ni the number of localized spin per ion is e,=0.6.
Using Eq. (5.15) we find the d-band splitting to be

AE= 1.1 eV.

This value exceeds the band-calculation result by al-
most a factor of 2. The inclusion of correlation tends
to reduce U, ff and to bring the agreement somewhat
closer. There is no unique way to determine separately
the values of e~ and e2. We choose for convenience

= $U+(Jt 1) J'j(e—,—e,). (5.14)

eg ——0.92,

g2= 0.80, (5.18)
In terms of e, defined in Eq. (5.5)

Dk —Uef fS8)
where

(5.15)
which give a total number of electrons in the d state

5(ni+e2) = 8.6.

U, ii = fU+ (K—1) J'j/K. (5.16)

If we compare this with the one-orbital result in Eq.
(4.18), we find that there is a smaller band splitting
in the many-orbital model. The reason for this is that
the electrons are dispersed among the many degenerate
orbitals. Therefore, the Coulomb repulsion, which de-
pends on the product of particle occupation numbers,
is also reduced. This effect was discussed on the itiner-
ant-electron model by Kanamori. "His result for U,ff

reduces to Eq. (5.16) in the HF approximation.
It is interesting to note that in Schrieffer and Mattis's

discussion of correlation effect in the Anderson model,
they found the localized moment to be stable when

This should be compared with the value 8.85 estimated
by Hodges et al. on the basis of their band calculation.
In order that Eq. (5.3) should have the above set of
solutions we must have

6/U = 0.086.

This requires 6=0.43 eV, or a band gap due to hy-
bridization 26=0.86 eV. The band gaps are calculated
to be about 1 eV near the Fermi energy and 2 eV at
lower energies.

U,ffp(eF) & 1, (5.17)

where their U,«has exactly the same expression as
that of Kanamori. This further demonstrates the close
resemblance between the present model and the itiner-
ant model for ferromagnetism.

Just like the one orbital problem, the s-d hybridiza-
tion plays an important part in determining the band
structure. The Hamiltonian for the entire bands has
the same structure as that proposed by Hodges et al.'
For ferromagnetic coupling the Fermi level must cut
through the region of s-d hybridization for both spin

"J.Kanamori, Progr. Theoret. Phys. (Kyoto} 30, 275 {1963);
C, Herring, Ref. 1, Chap. 4, pp. 223-22/.

FIG. 4. The contour lines of constant exchange energy on the
n&, e& diagram as derived from the five-degenerate-orbital model.
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The number of Bohr magnetons e~ is found to be
1.3. If we assume that the localized spin for Ni is well
represented by 8= —',, the relationship Eq. (2.19) should
hold. Then we find

ex= 0.88

which is in close accord with the value 0.93 estimated
from the data of Rhodes and Wohlfarth. "

The exchange energy is found to be

We may estimate the value of V from the width of
the d band. In the tight-binding approximation, the
total d bandwidth is 2sVX, where s is the number of
nearest neighbors. For Ni with fcc lattice, we have
s= 12. The total bandwidth is taken to be 4 eV. Hence,
for S=-'„we find

J=0.016 eV.

The Curie temperature as estimated from the molecu-
lar-field theory is

T,= 1100'K,

compared with the experimental value 631'K.
The total density of the d states at the Fermi level

is given by

Ne(eF) = K(Xy+X2)/U=20. 4 Ry '

for the chosen set of e's in Eq. (5.18). The total
number of s electrons is

N, = 10—5(eg+e2) = 1.4.

Assuming a parabolic s band with ~p—0.6 Ry, we find
the density of s states to be

1V,(er) =3N./2ep=3. 5 Ry '.
The total density of states calculated in this way is
23.9 (Ry) ', compared with 27.1 (Ry) ' calculated
by Hodges et al. The specific-heat coefficient p may
be found from

y=a'k'1V(e~)/3=0. 99X10 a cal/mole deg'

This is about 70% lower than. the experimental value. "
The discrepancy is likely to be due to phonon and
magnon enhancement eGects.

Since much less is known about the various energy
parameters for Fe, it is dificult to achieve more than
an order-of-magnitude estimate. We choose

e) =0.93,

F2= 0.49.

The following numerical results are then obtained. The
eGective number of Bohr magnetons from Zeeman
splitting is

ng= 2.89.

The size of the hybridization band gap is

2k= 1.8 eV.
IJ. A. Rayne and W. R. G. Kemp, Phil. Mag. 1, 918 (1956).

The d-band splitting is

AE= 4.0 eV.

The Curie temperature is

T,= 1500'K.

The specific-heat coeKcient is

y= 1.32X10-' cal/mole deg'.

Except for the band splitting, which seems to be much
too large, the other quantities are in reasonable agree-
ment with our present knowledge. The band splitting
may be substantially reduced by including the correla-
tion eGect.

VI. CRITERION FOR FERROMAGNETISM

We conclude our discussion by reiterating qualita-
tively the criterion for ferromagnetism according to
the present model. The necessary conditions are that
the moment carrying electrons must be localized in
the Anderson sense, and that the localized states must
have a high enough density of states at the Fermi
level. These conditions imply the followiog require-
ments:

(1) The magnetic electrons are tightly bound to the
ions, so that there is small but finite overlap between
nearest-neighbor wave functions. The bands of these
electrons are narrow.

(2) There are many degenerate orbitals for the local-
ized state and sizable Coulomb and Hund's rule inter-
action between them.

(3) There must be significant admixing between the
localized state wave function and the conduction elec-
trons, so that the localized levels are broadened.

(4) The Fermi level is at the region of s-d hybridiza-
tion at least for one spin band.

Based on these conditions, one can see that s- and
p-band metals cannot be ferromagnetic. Ferromagnet-
ism is not found in 4d and Sd metals perhaps because
of the wide bands. Direct exchange interaction dis-
cussed here plays no role in the ferromagnetism of 4f
elements.

Note added in proof. The angular dependence of the
interaction between two spins was discussed previously
by Alexander LS. Alexander, Phys. Letters 13, 6
(1964)).
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