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Magnetic Properties of Compounds with Singlet Ground State:
Exchange Correlation Effects
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Magnetic systems where the crystal-field ground state of the isolated ion is a singlet show no magnetic
ordering for exchange small compared to crystal-Geld effects. We consider the effect of exchange as it in-
creases from zero toward the critical value necessary for magnetic ordering with infinitesimal moment
at T=O. In particular, we have calculated the susceptibility, nonlinear magnetization, and critical ratio
of exchange to crystal-field splitting required for magnetic ordering for such systems, including exchange
correlation effects by use of the constant coupling approximation. Substantial deviations from the molecular-
field behavior are found at low temperatures as the exchange approaches the value required for magnetic
ordering. Also we critically examine the pertinence of using boson spin-wave-like excitations to discuss
thermodynamic properties in the paramagnetic case. While this formulation has certain inadequacies for
treating such properties, this point of view could be quite valuable with regard to low-temperature inelastic
neutron scattering experiments. Finally, the results are discussed with respect to the present experimental
situation and with respect to the most promising line of investigation for future experiments.

I. INTRODUCTIOH

r iHERK is much current interest' " in the mag-
netic properties of rare-earth compounds where the

crystal-field ground state of the rare-earth ion is a
singlet. For crystal-Geld eGects, large compared to
exchange, the ionic moment is completely quenched
and consequently there is no magnetic ordering. "This
situation occurs, for example, for the Tm and Pr com-
pounds' ' of NaCl structure with group V anions.
Such compounds have some quite interesting proper-
ties. The susceptibility at low temperatures is of a
Van Vleck type brought about by the polarization of
the singlet ground state. At high fields the magnetiza-
tion becomes nonlinear, and the present author" ~

predicted the development of a large anisotropy in the
nonlinear region. This has now been observed experi-
mentally" '4' in TmSb.

For compounds such as those of Tm and Pr, depar-
tures from the simple crystal-field-only susceptibility

'H. R. Child, M. K. Wilkinson, J. W. Cable, W. C. Koehler,
and E. O. Woilan, Phys. Rev. 131,922 (1963).

'D. P. Schumacher and W. K. Wallace, J. Appl. Phys. 36,
984 (1965).' G. Busch, P. Junod, F. Levy, A. Menth, and O. Vogt, Phys.
Letters 14, 264 (1965).

4 B. R. Cooper, L S. Jacobs, R. C. Fedder, J. S. Kouvel, and
D. P. Schumacher, J. Appl. Phys. 37, 1384 (1966).' G. Susch, P. Junod, F. Levy, A. Menth, and O. Vogt, Phys.
Letters 14, 264 (1965).' B.R. Cooper, Phys. Letters 22, 24 (1966).

~ B.R. Cooper, Phys. Letters 22, 244 (1966).
T. Tsuchida and %'. E. Wallace, J. Chem. Phys. 43, 2885

(1965).
QP. Junod, A. Menth, and O. Vogt, Phys. Letters 23, 626

(1966).' G. A. Smolenskii, V. P. Zhuze, V. K. Adamyan, and G. M.
Loginov, Phys. Status Solidi 18, 873 (1966)."S.Kern and P. M. Raccah, J. Phys. Chem. Solids 26, 1625
(1965).

+ K. H. J. Buschow and J. F. Fast, Z. Physik. Chem. 50,
1 (1966).

"G.T. Trammell, Phys. Rev. 131,932 (1963).
'4 O. Vogt (private communication) .
'4 O. Vogt and B. R. Cooper, in Proceedings of the Interna-

tional Congress on Magnetism, Boston, 1967 (to be published).

16$

and high-6e1d magnetization are often observed. It is
a simple matter to include exchange eGects on these
properties within the molecular-field approximation.
However, the molecular-field calculations often do not
explain the observed behavior. The question then arises
as to whether this lack of agreement reflects inadequa-
cies of the molecular-field model for treating the eBect
of a given exchange interaction, say of a temperature-
independent Heisenberg form, or whether the discrep-
ancies must be attributed to a change of the exchange
mechanism with temperature and high magnetic fields,
or to some other mechanism not yet considered. This
has led us to consider the question of corrections to
the molecular-field behavior arising from correlation
eBeets.

The theory obtained should also be useful in dis-
cussing experiments on magnetic systems where the
exchange increases so that the threshold value for mag-
netic ordering is approached and exceeded. Of those
rare earths having compounds of NaCl structure, Tb
and Ho also have singlet crystal-field ground states;
however, their compounds order magnetically. Thus,
clearly, the exchange for Tb and Ho is greater than
the threshold value for magnetic ordering. Then such
experiments could be done on mixed rare-earth com-
pounds with group V anions (e.g., mixed Tb-Ym or
mixed Tb-Lu compounds) .

Before discussing the corrections to molecular-field
theory, we first consider the susceptibility for zero
exchange and then the predictions of molecular-Geld
theory. We consider the crystal-field level scheme for
Tm'+ in an octahedral crystal field as shown in Fig.
1(a). This is the symmetry appropriate for the rare-
earth compounds of NaCl structure with group V
anions. This group of singlet state compounds is the
most thoroughly studied at present. (The same sym-
metry conditions also hold for the rare-earth com-
pounds of NaC1 structure with group VI anions. Stud-
ies of singlet ground-state members of this family of
444
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compounds have recently begun to be reported. 's) How-
ever, the Van Vleck.-type susceptibility is also observed
in other structures such as hexagonal compounds" and
cubic compounds of the Cu3Au structure. "We choose
Tm rather than Pr to treat in the numerical calcula-
tions, because for those materials investigated as yet
the effects of greatest interest, the Van Vleck-type
susceptibility at low temperature and the nonlinear
anisotropic magnetization, for experimentally attain-
able fields, are much larger.

As will be discussed below, exchange correlation
effects vanish with increasing temperature and mag-
netic field. Thus we can consider such effects quite
adequately by treating a two level model, shown in
Fig. 1(b), for each ion where the ground state is a F~

singlet and the excited state is a F4 triplet. (For the
Tm group V compounds 6, the energy splitting be-
tween the F~ and F4 states in zero magnetic field, is
about 100'K for TmN and about 30 to 40'K for the
heavier compounds. ) Then the theory we develop
could be used as part of an interpolation scheme for
real materials. The results of the present calculation
would be used at low temperature and field, while the
molecular-field calculation would be used at higher
temperature and field where the present calculation
indicated negligible correlation effects.

For Tm'+ in an octahedral crystal field, the crystal-
field Hamiltonian has the form"

V.=B4(04'+5)&04')+Be(Oss 21&&Os—'). (1.1)
Here 04', 04', 06', and 06' are specified operators for
given J. So only the fourth-order constant 84 and the
sixth-order constant 86 are necessary to completely
determine V,. It is convenient to define a parameter
x in terms of the ratio B4/Bs.

B4/Bs= (x/1 —
t
x [)LF(6)/F(4) j, (1.2)

where F(6) and F(4) are numerical factors speciGed
for given J. The level scheme shown in Fig. 1 is for
x= —1 (completely fourth-order anisotropy). As x
varies, the relative splittings of the levels change, and
for su%ciently great departures from x= —1 (for

X=V.-)eH J„ (14)
where ) is the Lande factor and S is the Bohr magne-
tron. To first order in H, the eigenvalues and eigen-
functions are

~1)=~r&+(xsa(r ) J, )r)/dE) ~r ),

)
2)=

)
r, ), E =6—xsa(r, ] J, [ r, )

)
3)= [ r„)—(xsa(r„) J, [ r, &/a) ] r, ),

] 4)=
[
r ), E.=~+xsa(r„) J. [ r„).

Then

Eg =0

E3——6
(1 5)

pop ——(g M; exp( —E;/kT) )/(H g exp( —E,/kT) ),

where

This gives
~;=~S&s[ J, ~s).

(1.6)

x& —0.55) there are level crossings, and the Fq and
F4 states are no longer the two lowest-lying states for
Tm'+. However, the physical range of interest for the
rare-earth group V compounds is in the range of values
of x where the F~ and F4 states are lowest. Moreover,
since there is only one state of each of these symmetry
types present, the F~ and F4 wave functions are inde-
pendent of x. The matrix elements necessary for the
present study are then available from the calculated
wave functions. These are

(r, ) J, [ r„)=—',v2(r, )
J-

) r„)
=-,'V2(rg

i
J+

i F4,)=14'I', (1.3a)

(r.. j J. [ r..) =—&r ] J. (
I' )=-,'v2(r . [

J+
)
I' )

=,n(r..(
J-[ r„)=-,', (1.3b)

Here the labels F4, F4p, F4. denote the three F4 states
split by a magnetic Geld as shown in Fig. 1(b) .

It is a simple matter to find the susceptibility x&F
for our model system in the absence of exchange. For
each ion, the Hamiltonian is

Xop = /(2X'S'(r4$
~
J,

~
ry)'/dL) (1—exp( —6/kT) )

+(2X'S'(F4,
~
J, ) F4, )'/kT) exp( —6/kT) g/$1+3 exp( —d,/kT) $. (1.8)

The first term gives the Van Vleck-type susceptibility at T=0.
Before going on to the discussion of exchange effects, it is worth avoiding one possible source of confusion with

regard to (1.8) . This is that the high-temperature limit of (1.8) gives an apparent nonzero paramagnetic Curie
temperature,

as 2"—+, where
1/xop C(k T—8)

C=4/(2) 'S'(F s t J,
~
Fq)'+2K'Ss(F, ] J, (

I', )'),

3 (r ) J, )
r )'+2(r, [ J. [ r.)''t

2 (r.,
(
J, [ r, ) +2 (r„]J, ) r„)~
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incorporated in an efFective Geld H'.

Xi——V, )$—(H+sH') J.. (1.16)

We can find a magnetization per ion for this Hamilton-
ian, and this magnetization, 3', will be a function of
H+sH'. Next we consider a two-ion Hamiltonian for
ions u and b, where the exchange effects of all other
neighbors are given by the same effective field H'.

Xs——V„+V,b hS—[H+ (s—1)H']( J„+J,b)

Fro. 1. (a) Level scheme for Tm'+ in octahedral crystal
field with degeneracies of levels indicated; (b) model two-
level scheme.

Then

which gives

X =V,—(XSH+2eis J) J,.

M =xcF(H+2gs J/), S),

1/x = H/M = 1xcF—2eis/X'Ss,

(1.13)

(1.14)

where s is the number of nearest neighbors.
Thus the effect of exchange on the rn.olecular-field

basis is to shift the curve for 1/x for crystal-field-only

rigidly down (ferromagnetic exchange) or up (anti-
ferromagnetic exchange) .
5 We now wish to consider correlation effects on this
susceptibility behavior as well as on the high-field

magnetization to be discussed in Sec. V below. The
calculation we shall base most of our discussion on is
of a constant coupling type. '~' We consider nearest-
neighbor exchange, although for detailed consideration
of particular materials longer range exchange will prob-
ably be present. In Sec. IV below, we also critically
discuss the pertinence of boson spin-wave-like excita-
tions in treating the paramagnetic case.

The constant coupling approximation proceeds in
the following way. We Grst consider a single-ion Hamil-
tonian where the exchange effects of each neighbor are

~6B. Bleaney, Proc. Roy. Soc. {London) 27@A,, 19 {1963).
»P. %'. Kasteleijn and J. P. Van Kranendonk, Physica 22,

317 (1956}.
»J. S. Smart, Egediee Field Theories oJ 3Iagaetism iW. B.

Saunders Company, Philadelphia, 1966).

This apparent nonzero paramagnetic Curie tempera-
ture is an artifact of the two-level model. It would dis-

appear if we considered all 13 levels for Tm'+.
As discussed by Bleaney, " it is quite simple to

include the efFect of exchange on the susceptibility
within the molecular-field approximation. With nearest-
neighbor Heisenberg exchange, the Hamiltonian for
the system is

X= p (Ve, iXSHJ„)——2ei Q (J,'J,), (1.12)
&i,j)

where the sum over i and j is for nearest-neighbor pairs.
The molecular-field approximation consists of replac-

ing K by an effective Hamiltonian 3C for each ion.

—28J. Jb (1»)
Again we can find a magnetization per ion, 3f2, which
is a function of H+(s —1)H'. Then the condition

M(H) =Mi(H+sH') =Ms(H+(s 1)H') —(1.18)

self-consistently determines the effective fidd II' and
hence the magnetization. Before treating this proce-
dure in more detail, we first point out that to first
order in ei/6, the susceptibility obtained from the
constant-coupling calculation is identical to that from
a molecular-field calculation. It is obvious that this
must be so at high temperatures since the molecular-
field model gives the exact result for y to terms of
order 1/T', and the 1/T' term giving the paramagnetic
8 is the first-order term in ei. (Thus for any magnitude
of exchange the constant coupling result approaches
the molecular-field result at high T.) We now show
that to 6rst order in ei/6 the molecular-field and
constant-coupling calculations give the same value of
x at T=O. The proof for general T follows along the
same lines.

We regard the term —2' J Jb in (1.17) as a pertur-
bation on the remainder of the Hamiltonian. Then the
perturbed ground state for the two-ion system is

M„=-',)S(g
I
J,.y J,b

I g). (1.20)

To first order in ei this gives

Mos=) S(hi I J* I hi)(1 —48(hi I Je I hs)'/&i —&s)~

(1.21)
which becomes to first order in ei and H',

M„=(2)~'S'/a) LH+(s —1)H'](r.
I
J. I r, )'

+ (S) sSsHg/~s) (r„ I J, I r, )b. (1.22)

I g&=
I

hi, hi) —(28(hi I J. I hi)(hi I J.
I
hs)/a —&s)

x( I
I„h,)+ Ih„h, ))

—(g(h, I J. I h. )/I, , z.) Ih„h,)—
—

Lg (hi I
J+

I he) (hi I
J

I hs)/2(Z, —E,)]
x(Ih„h.)+ Ih4, h, )), (1.19)

where
I hi), I hs) I hs)

I
h4) differ from

I 4) by the replacement of H by H+(s 1)H'. The-
moment per ion at T=0 is given by



168 EXCHANGE CORRELATION EFFECTS

a'= 2g J/Xe. (1.25)

However, with this expression for H, the single-ion
Hamiltonian of (1.16) is the same as the molecular-field
Hamiltonian of (1.13) .

Thus to first order in g/5, the constant-coupling
approximation gives the same susceptibility as the
molecular-field approximation. This means that we can
expect correlation effects to become important only as
g/5 approaches the critical value necessary for mag-
netic ordering at T=O. Therefore, before proceeding
to a discussion of correlation effects on the suscepti-
bility and high-field magnetization, we first examine
what changes occur for the critical value of g/5 neces-
sary for magnetic ordering with infinitesimal moment
at T=O for the constant-coupling model as compared
to the molecular-field model. This is done in Sec. II.
In Sec. III, we discuss correlation effects on the sus-
ceptibility within the constant-coupling approximation.
In Sec. IV, we critically examine the pertinence of using
boson spin-wave-like excitations to discuss thermo-
dynamic properties in the paramagnetic case. While
this formulation has certain inadequacies for treating
such properties, we point out that this point of view
could be quite valuable with regard to low-temperature
inelastic neutron scattering experiments. In Sec. V,
we extend the discussion of correlation eBects to the
high-field region where the magnetization is nonlinear.
Finally, in Sec. VI we discuss our results both with
respect to the present experimental situation and with
respect to the most promising line of investigation for
future experiments.

II. CRITICAL VALUE OF EXCHANGE FOR
MAGNETIC ORDERING

It is a simple matter to find the threshold value of
g/b. necessary for ferromagnetic ordering with infini-
tesimal moment at T=0 on the molecular-held picture. "
This is done by using the self-consistency condition for
magnetic ordering at O'K.

(2 1)

where
I

1 ) is the ground state of X given in (1.13)
to first order in J for H=O.

I
1-&= I

r &+(2as~(r I ~. I
r )/~) I

r ) (2.2)

This then gives the condition for ferromagnetic order-
ing with infinitesimal moment at T=0.

1=4.g(r„ I z,
1
r, ) /~. (2.3)

From the single ion Hamiltonian of (1.16), we obtain

M„=(2li's'/5) (H+sII') (r i, I J, I r, )'. (1.23)

Then the condition 3IIpj ——3fp2 leads to

EP = (4g/6) (r b I
J. I

I' )'H. (1.24)

To first order in g, this is

This result also could be obtained from (1.14) by re-
quiring 1/zoi ——0 at T=O. The condition for ordering
with an antiferromagnetic interaction is the same as
(2.3), replacing g by its absolute value, when the
magnetic lattice is of a type where none of the nearest
neighbors of a given ion are nearest neighbors of each
other. (This simple situation pertains to the rare earths
in the Au~Cu structure, or if second-neighbor exchange
interactions are dominant, for the NaCl lattice. )

Next we consider the critical value of g/6 with ferro-
magnetic exchange for the constant-coupling model.
First, consider the two-ion Hamiltonian of (1.17) when
H=0.

X2=X20+X2', (2 4)

Xso= &..+&.i —2gJ. Jb, (2 5)
X2'= —XS(s—1)H'(J„+J,i). (2.6)

We treat X2' as a perturbation since we are interested
in the case where H'—&0 at T=0.

First we need the eigenfunctions and eigenvalues of
X20 in (2.5). While to determine the critical value of
g/6 necessary for magnetic ordering at T=0 we only
need the ground-state two-ion wave functions and
those wave functions mixed with the ground state by
3C2', for later use we will need all 16 two-ion wave
functions. This is made easier by noting the symmetry
properties of 3C2p. First, 3C~p is symmetric under inter-
change of ions a and b. Thus the wave functions are
symmetric or antisymmetric under interchange of ions
a and b. Second, X2p has F~ syrrnnetry. The two-ion
crystal-field wave functions are then of three types.
First is that wave function where both ions are in F~
states. This wave function has F& symmetry and is
symmetric in interchange of ions u and b. Second, are
those wave functions with one ion in Fi and the other
ion in F4. These two-ion states have F4 symmetry and
are symmetric or antisymrnetric on interchange of ions
a and b. Third, are those wave functions with both
ions in F4 states. These two-ion states have F„F„F4,
or F5 symmetry and are symmetric or antisyrnmetric
under interchange of ions u and b. Then 3C~p mixes
only two-ion states that belong to the same class of
the cubic group and that are both symmetric or both
antisyrnmetric under interchange of ions a and b. Use
of these properties allows us to find the 16 wave func-
tions for X2p without dealing with any secular deter-
minant larger than a 2&(2. The 16 wave functions and
energy eigenvalues for X.p are listed in the Appendix.

The ground-state wave function for BC&p is

I,&=+, I r„r,)—(x.../6(r. , I J, I
I' )'A)

x(lr... r,.&-lr„, r.,)- lr.„r..&), (2.7)

where K~ is the normalizing factor. . This state has en-
ergy p~ where

.,/~=1+2(r, . I
J.

I
r„.) a —,'(4+16(r„

I J.
I
r,.)'a

+I 16(r ~ I ~* I r")'+4g(r
I

~* I
r &'3~')'" (2 g)
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TABLE I. Values of A =g/6 for magnetic ordering at T=0.

12

Ferromagnetic molecular 6eld
Ferromagnetic constant coupling
Antiferromagnetic molecular 6eld
Antiferromagnetic constant coupling

2.976X10 '
3.663X10 '

—2.976X10 '
—3.654X10 '

2.232X10 3

2.584X10 g

—2.232X 10-3
—2.579X10-'

1.488X10 '
1.632X10 '

Next we consider the critical value of A for anti-
ferromagnetic ordering restricting ourselves to the
situation where nearest neighbors of a given ion are
not nearest neighbors of each other. Again we con-
sider the two-ion Hamiltonian of (1.17) when H=O.
Now rt is negative. Instead of (2.6) we have

Here we define
A =g/h. (2.9)

The perturbation BC2' has F4 symmetry and is symmet-
ric in interchange of ions a and b. The function

I n&)
has F& symmetry and is symmetric in interchange of
a and b. Thus X2' mixes only symmetric functions under
interchange of u and b of F4 type with

I
n, ). In particu-

lar, the only function mi~ed with
I nt) is

I
a4).

x,'= —),$(s—1)B'(J. —J.b) (2.16)

since we are looking for the value of A for which the
(2 10) moments of ions a and b are aligned antiparallel. Now

X2' is antisyrnmetric for interchange of a and b. Hence,
Xs' mixes

I
rrt) with

I
ns) and

I mrs) which are given in
the Appendix. Then by the same sort of procedure as
for the ferromagnetic case we obtain the equation
determining the critical value of A in the antiferro-
magnetic case

I,)=-;~2(
I F„F..&+ I

F.„F,&

with energy ../~=1 —2A&F., I
~,

I
F,&.

The ground-state function to first order in H' is

Ag 2= Nj

—L~i~~(s —1)&'(~4
I ~*.+~.s I ~t &/(» —v4) j I ~4»

(2.12)

(1+2(F4s I J, I
Ft)'A —v )

12(F., I ~.
l
F,) A

s KtXs Pj

which gives the value for Js, i.e., J at T=O for the s ("s vt) ( 4s I
~

I
Ft)'A

two-ion Hamiltonian, as

Js ——PSH'(s —1) (n4 I J,.+J,s
I
nt)'/(v4 —vt) i.

(2.13)

The corresponding expression for the single-ion Hamil-
tonian of (1.16) is

J =2XSEPz(F
I J, I F,)'/d. (2.14)

Then the condition J~——J2 leads to the transcendental
equation giving the critical value of A for ferromagnetic
ordering at T=o

s/s 1=LOU'/(v4»)](1 (»/6(F4t I
~

I
Ft&'A) )'.

(2.15)

Solving this equation using the numerical values of
metrix elements given in (1.3), gives the critical values
of A shown in Table I As can be seen, the value of A
necessary for magnetic ordering is signiGcantly in-
creased from the molecular-field-model value. Essen-
tially, the increase can be attributed to the fact that
the constant-coupling model allows for the possibility
of short range as well as long-range magnetic order.
This is in contrast to the molecular-Geld model which
allows for only long-range order. As would be expected,
the percentage increase in the critical value of A is
greatest for the smallest number of neighbors. The
percentage increase changes from just over 23% for
s=6 to just under 10% for s=12.

Otr'Ots' (1+2(F s I J, I
Ft)'A —vs)

( — ) 2(F
I
J IF)(F„le+IF )A

„(1+2&F„IS,
l
F, ) A —„)

24(F
I ~. IF.&'(F.

l ~. IF.&A'

.,(F,.le, IF„) '
3(F„I Z, I F, )sA

'

Solving this equation, using the numerical values of
matrix elements given in (1.3), gives the critical values
of A shown in Table I. The absolute value of the
critical value of A is slightly smaller for the anti-
ferromagnetic as compared to the ferromagnetic case
in the constant-coupling approximation.

III. CORRELATION EFFECTS ON THE
SUSCEPTIBILITY

From the discussion of Sec. I we expect correlation
effects on the susceptibility to become important at
low temperature as A approaches the critical value
necessary for magnetic ordering. We now investigate
this point in more detail.

First we consider the two-ion Hamiltonian of (2.4)
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with Kse as given in (2.5) and

3.'&' ———)iffIEH+ (z—1)EPg( J,.+J,s) . (3.1)

We should note that we use this form of X2' whether
the exchange is ferromagnetic or antiferromagnetic.
This is because we are considering the case where the
magnitude"of A is below the value for magnetic order-
ing. Therefore, the moments of all ions are parallel
even for antiferromagnetic exchange. Then it is a
straightforward procedure using the unperturbed states
of %20 given in the Appendix to calculate the perturbed
wave functions

~
8;) and energies E; to Grst order in

3'.2'. The magnetic moment per ion for the two-ion
Hamiltonian is given to first order in Z+(z —1)&' by 00

I

0.2

-3
Z=6, Ae-3.654xl0

I

0.6
I

0.4
T/I

gR-re/jo-+Iz l~g

I

O.S
I

I.O

3f=''2=
16g exp( —E;/kT)

FIG. 3. Inverse susceptibility versus temperature for z=6 and
(3.2) A equal to the constant-coupling antiferromagnetic critical

value.

This gives 3f2 of the form

Des ——$H+(z —1)H')G(b/ T5, A). (33)
Here G(h/T, 6, A) is a rather cumbersome function so
we will not give the actual expression. However, as out-
lined above, the procedure for obtaining G(h/T, 4, A)
from the eigenfunctions of X2p in the Appendix is
straightforward.

On the other hand, from the single-ion Hamiltonian
of (1.16) we have to Grst order in P+zEP,

SI,= (a+zan') xcp(a/T, S),
with xcz given by (1.8). Then the condition Ms ——Mr

' ()———ZERO EXCHANGE

—————CONSTANT COUPLING

MOLECULAR FIELD

I t I i I i I i I

0.2 0.4 0.6 0.8 I.O

T/h

(b)———ZERO EXCHANGE
—————CONSTANT COUPLING

2
N

I

ca

I i I ~ I

0 0.2 0.4 0.6 0.8 I.O

Fro. 2. (a) Inverse susceptibility versus temperature for
z=6 and A equal to the constant-coupling ferromagnetic critical
value; (b) inverse susceptibility versus temperature for 3,
equal to half the value in (a).

determines

&'=&(G—xcp)/Lzxc~ —(z—1)G3 (3 5)

This gives the susceptibility

GXCF/LzxcF —(z—1)G$ (3.6)

Figure 2(a) shows plots of 1/x (normalized to the
crystal-Geld-only value at T=O) versus T/6 for z=6
and A =3.663)& 10 ', the constant-coupling critical
value for ferromagnetic ordering at T=O. Curves for
1/x using both the constant-coupling and molecular-
field calculations for this z and A are shown as well
as a curve for zero exchange. At T=O, the difference
between the constant-coupling value of 1/x and the
zero exchange value is about 19% less than the corre-
sponding diGerence for the molecular-field calculation.
As the number of nearest neighbors increases, continu-
ing to take A as the critical value for ferromagnetic
ordering at T=O, this percentage difference between
constant-coupling and molecular-Geld shifts from the
zero exchange value of 1/x at T=O decreases and is
about 9% for z=12. For given z as A decreases from
the critical value, the difference between the molecular-
field and constant-coupling shifts from the value of
1/x for vanishing exchange decreases more rapidly
than linearly with A. (As pointed out in Sec. I, the
molecular Geld shift of 1/x from the value for vanish-
ing exchange is linear with A.) This is illustrated in
Fig. 2(b) for z=6 and A = 1.831X10 s, half the critical
value. Here at T=0 the shift of the constant coupling
1/x from the crystal-Geld-only 1/x is reduced by only
about 10% from the molecular-Geld shift for the
same A.

We can also consider antiferromagnetic coupling. In
Fig. 3, we plot 1/x versus 6/T for z =6 and A = —3.654,
the critical value for antiferromagnetic ordering. Here
the shift of the constant coupling 1/x from the crystal-
Geld-only 1/x is greater by approximately 22.4% than
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the molecular-field shift. Thus the effect of correlation
is to shift the curve of 1/x at low temperature upward,
regardless of the sign of exchange. Correlation effects
always make the plot of 1/x versus T "look flatter. "

IV. SPIN-WAVE-LIKE BOSON EXCITATIONS

In this section we critically discuss the pertinence of
boson spin-wave-like excitations to the magnetic be-
havior of induced moment systems in the paramagnetic
region. Following work of Van Vleck" in a somewhat
different context, Trammell' " originally developed
the idea of such spin-wave-like excitations for those
rare-earth group V anion compounds where the ex-
change is large enough to have magnetic ordering.
Grover"-' also treated the case of magnetically ordered
materials, and in addition, discussed the excitation
spectrum and specific heat for small exchange where
the compound is paramagnetic at T=O. While Grover
did not include effects of applied field and therefore
could not discuss the magnetization in the paramag-
netic region, the idea of a treatment of correlation
effects on magnetization within a spin-wave-like treat-
ment, is attractive. (The difference from the usual
spin-wave spectrum would be the presence of an en-

ergy gap, i.e., the spin Aip occurs from the singlet
ground state to a crystal-field excited level. ) Unfortu-
nately, this concept suffers from several difhculties,
both conceptual and in calculational detail. However,
the questions involved are sufficiently fundamental to
warrant a discussion in some detail to make clear the
problems. Also, on a more hopeful note, there is one
very basic type of measurement for which the idea of
spin-wave-like excitations is fruitful. This would be
neutron inelastic scattering at low temperatures. Here
even as correlation e6ects become important for in-
creasing exchange, the basic dispersion behavior for
the excitations would be pertinent. Indeed such obser-
vations would, among other things, give very valuable
information about the range and nature of the exchange
interactions.

The calculation proceeds as follows, where through-
out we consider the two-level problem of Fig. 1(b).
We first rewrite the Hamiltonian given in (1.12) fol-
lowing the procedure of Trammell and co-workers""
adapted to the case at hand.

X=Xs+Xi, (4.1)

xo= Z (i'- —C)~If+28(0) (J )jJ*')+1l'A(0) (J )',

(4.2)

X = —Za';j'. j, (4.3)
s tg

3 =J—(J)& (4 4)
» R. M. Bozorth and J. H. Van Vleck, Phys. Rev. 118, 1493

(1960).
'0 G. T. Trammell, J. AppL Phys. 31, 362S (1960)."Y.Kitano, F. Specht, and G. T. Trammel, in Proeeediags of

the International Conference on Magnetisrl) Xottinghum 1964 (In-
stitute of Physics and the Physical Society, London, 196$), p. 480."3.Grover, Phys. Rev. 140, A1944 (1965).

where &, denotes a unit vector in the s direction. Here
(J) is the expectation value of I, at T=o in the
molecular-field approximation.

with
(J)=C2~~a(r,

I J, lr.,&/~(1-, )~, (4.5)

,=4g(0) (r, I
f,

I
r.,)/A.

~1'a=~ig ~ia)

+ac =dig dec)

~t'a =dna dig)

CSC —dtc dl'g.

Then the unperturbed Hamiltonian BCO is the molec-
ular-field Hamiltonian at T=O. The perturbation 3C~

represents the difference between the true exchange
energy and the molecular-field approximation at T=O.
Here the exchange interaction has been generalized to
arbitrary range and r((0) =g,g,,

The Hamiltonian of (4.1) is used to treat the mag-
netization at low temperature. The first stage of ap-
proximation is to replace the spin operators in (4.1)
by fermion operators.

Xs——Q e„d, td; +1VQ(0) ('J &'. (4.7)
sfn

Here d;„and d;„are fermion creation and annihilatjon
operators, respectively. The fermion operators create
or annihilate particles in the single-ion states;

I c&=
I
ri)
+C() 5lH+28(0) (f)) (ri I

f
I

r4s&/~l I r4s»

I
e)= Ir4s)

—C() 5la+ 2P(0) (I)) (r, I
f

I r4s)/i1j I ri»

I
c&= Ir4»

(4.8)

with energies

e = —
C (ri

I
J,

I
r4s )'(xsH) '/A (1—rl) 'j,

e, =A+C(ri I J, I
r4s)'()0la)'/Z(1 —~)'j,

..=~puca(r„
I I, I

r,.)/(1 —g),

e =6 )i(BH(r4
I
J

I
r4 )/(1 r)) . (4.9)

The sum over e in (4.7) is then over the four single-ion
states of (4.8), while i is summed over 1V sites in the
crystal. The perturbed Hamiltonian becomes,

X,= — Q g,, (si I j; I
sis&

s, j,n, tn, n, )n

(~'
I js I

m'&d, „td,„d,„.td;„., (4.1o)

with e, m, e', m' summed over the four single-ion states.
It should be noted that the use of Fermi statistics is
justified only at low temperatures. At high. tempera-
tures the fermion representation admits states with
more than one of the single-ion states of (4.8) occupied
for a single ion.

One then goes further with the low-temperature ap-
proximation by introducing operators

~ie=dig d~e) ~ie =die d~g)
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The commutation relationship for the a;„t and a;„ is 0.9—

[+imp iJja ] f&ij f&amgiig f&ijdja dim ~ (4.12)

At low temperature, e;, 1 and the second term on
the right is negligible. Thus the a;„t and a; obey boson
commutation relations at low temperature. We can
then rewrite (4.7) and (4.10) in terms of these boson
operators. Consistent with the low-temperature ap-
proximation involved in treating the u;„as boson op-
erators, one takes e;,=1 and considers only matrix
elements in 3C~ involving the ground state. This gives

0.8—

el

—0.7—

0.5—

Z=5, A

BCg=Ngg+Nei(0) &
J)'

+ P (geiiqe irqe+gaiiqa iiqa+geirqe ice), (4 13)

a =N 'I' Q a„exp( —iq r;), (4.14)

where the c~„etc., are the Fourier transforms of the a;,

I

O. l

0.5—'
0 0.40.2

T/a

FIG. 4. Inverse susceptibility versus temperature for boson
spin-grave-like calculation compared to molecular 6eld and
constant-coupling curves for same A and s.

and

x,= g y(q) 2—
&e I

z,
I g)

Here ei(q) is the Fourier transform of the exchange
energy per ion.

X (2iiqe ice+ iiqeii' qe+i—iqe ii qe )—
g(q) = g g;; exp(iq r,;). (4.16)

—(c )
J+

) g)'a, .'a, .—&u )
J-

~
g)'a,.'a,.

—
&~ I

~'
I g) &~ I

~
I g)(~q-~-"+~"'~-. ') ] (4»)

The technique for diagonalizing the quadratic boson
Hamiltonian is standard and gives, omitting zero-point
motion terms,

X=N(gg+g(0) & J)')+ g (gi„F.q+n. qE.q+n„E„), (4.17)

4J(q) &r4~ I
~* I r, )2 2(XI1lH)2&r, ~ ) g,

~
r, )2 4g(q) (XeH) g &r.,

~
g,

i
r, )4»2

Q2(] —~)2 gg(1 r1)g
(4.18)

4g(q) &r.,
I
s,

I
r, ) 4g(q) (&QH)'&r„~ J, [ r, ) &r„) J',

( r„)
1—— (4.19)

iV(1—g) ' J

&r., ) y. ) r„)l~mH 4g(q) &r„~ z, ) r, &'

(1—n)

egIe)0'~l~ Ig&' 4 g()e»(g)'0' eI~. I»& OI 1 I&.'&''
)~

"'
dP(1 —g)'

Then the e,q, m, ~, e,~ are occupation-number operators for spin-wave-like states, where there is a gap from the
ground state to the spin wave of lowest energy. In the ordinary ferromagnetic case, the maximum of ei(q) occurs
at q=0. Then the condition (2.3) for infinitesimal ferromagnetic ordering at T=O corresponds to the condition
that the q=O spin wave have zero energy with H=O.

From the Hamiltonian of (4.17), it is a straightforward procedure to find the susceptibility

x= (fiT/H) (8/BH) I ln g exp( E„/kT) }. — (4 21)

In (4.21) the sum is over all eigenvalues of (4.17) . Then X is given by

X XO+Xi+XR+X3i (4.22)
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where

xo= —(x/&) (8/BH) (e,+g(0) (J)') =L21v(r4l,
I
z. I

rl&'l~'(8'/A(1 —g) ]
oo , BE,~ —eE,~'I

n 1 Bz ~ kT

(4.23)

(4.24)

co

x~=—
(2~)'n, =l BZ

, 8(E.,+E.,) —I(E.,+E.,) (4.25)

X3= , 8E3~ —I 3~), 4~

(24r)' n=l Bz 8H kT j BH I, kT

E8.= L« I ~* I
r &»&/(I —~) ](I—(4g (q) (rl I

~
I
r ~&'/~) )+~(1—(4g(q) (rl I ~

I
r ~&'/~) )'", (4 27a)

E,= —
I «„I ~, I r„)»a/(1 —~)](1—(4g(q) (r, I

~ I r4&&&/a) )+a(1—(4g(q) &rl I ~* I
r„&2/a) )1I2

(4.27b)

Here X1, X2, and X3 are evaluated in the limit H—+0.
Note that the integral over q in (4.24), (4.25), and
(4.26) is restricted to the Grst Brillouin zone.

In the numerical calculations, we evaluate the inte-
gral over the first Brillouin zone of the fcc lattice by
using the common practice" of evaluating the inte-
grand at 2048 values of q in the Brillouin zone (actually
89 distinct points properly weighted for z'8 of the
Brillouin zone) . Then

V
dqF(q) = g F(q;), (4.28)

with q; summed over the 2048 values distributed within
the Brillouin zone.

Before proceeding further we should note, putting
aside the question of the conceptual correctness of the
present treatment for T&0, that spurious results will

be obtained for various thermodynamic properties if
the sum over q is not restricted properly to the first
Brillouin zone. In particular, Grover following Bozorth
and Van Vleck finds an enhanced specific heat C, in
the paramagnetic region. However, the enhancement
occurs only because Grover uses the long wavelength
expansion for g(q), i.e., J(q)~Cq' and extends the
integral over q out to ~. Referring to Bozorth and
Van Vleck, one sees that the proposed enhancement
occurs because the effective number of nearest neigh-
bors

(4.29)

is quite large, 30 or so. This occurs if the curve of g (q)
is quite Bat, i.e., initially almost constant for substan-
tial values of g as occurs with a long-range Rudermann-
Kittel exchange interaction. However, when this is the
case, it turns out that the contribution that leads to
great enhancement of C, or X over the values appro-
priate to uncoupled ions comes from integration over
values of q outside the first Brillouin zone.

Returning to the evaluation of X given by Eqs.
(4.22) through (4.27), this proceeds in a straight-

28 G. A. Burdick, Phys. Rev. 129, 138 (1963).

forward way using the summation indicated in (4.28)
and the usual summation over e for boson statistics;

ge nx (@ 1)—1

n=1
(4.30)

In Fig. 4, we show the inverse susceptibility calcu-
lated for the boson model. Here we have taken an fcc
lattice with second-nearest-neighbor exchange only.
Thus s=6. The magnitude of the exchange constant
has been chosen so A is half the critical value for infini-
tesimal ferromagnetic ordering at T=0 in the molecular-
field approximation. The corresponding curves for the
same s and A are also shown in the molecular Geld

and constant-coupling approximations. We see that
the boson excitation value for 1/x is the same as the
molecular-field value at T=O, but does not rise as
sharply for increasing T. Matching the molecular-field
curve at T=O is "built into" the boson calculation.
This is because at T=O, the energy is given by Xo of
(4.2) which is just the molecular-field Hamiltonian.
As discussed in Sec. I, correlation effects giving de-
partures from the molecular-field behavior come from
contributions greater than Grst order in g/A. Such
contributions come from the effect of Xl of (4.3) in
the boson treatment. Since the effects of BC1 come into
play only as the spin-wave states become occupied,
correlation effects enter only as T departs from zero.
This is why the boson curve for 1/x is flatter than the
molecular-field curve. The effects of 3.'~ are higher
than first order in g/6 because Kl is treated as a
diagonal perturbation on Ko which is already first order
in g. It is very dificult to attach any detailed meaning
to the behavior of 1/x for increasing T in the boson
approximation since all the approximations involved
in this calculation break down as the excited states
become occupied. Numerically, the largest effect caus-
ing 1/x to remain flat as temperature increases to a
significant fraction of 6 is the neglect of the depopula-
tion of the singlet-ion ground-state implicit in the boson
treatment. As already remarked above, the constant-
coupling curve for 1/x approaches the molecular-Geld
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curve at high T and is thus "Ratter" than the molecular-
6eld curve. The boson treatment indicates that a more
exact treatment may show the "Qattening" becoming
significant at lower temperatures than given by the
constant-coupling approximation.

To summarize, the bosonlike treatment suGers from
two fundamental difficulties in treating situations where

g/5 is smaller than the critical value necessary for
infinitesirnal magnetic ordering at T=O. First, it in-
cludes only first-order effects in g/b, at T=O and
therefore does not include correlation effects at T=O.
Second, for increasing T the various approximations
involved break down so that 1/x does not approach
the molecular-field value at very high T. We should
point out that the first objection loses its signi6cance
as g/b, increases and one obtains large ordered mo-
ment at T=O. In this ultimate limit of very large ex-
change, the boson treatment becomes the usual spin-
wave treatment which treats the correlation e6ects
correctly at low T. Also, various interpolation schemes
such as the random phase approximation (RPA)
Green's function method can be used to go to the
high T molecular fieM limit in that case. On the other
hand, we know that as crystal-6eld effects become
insignificant. the constant coupling approximation does
not give the correct answer at T=0 for the Heisenberg
ferromagnet, i.e., the moment per ion is slightly less
than that for full alignment. Clearly, the most difEcult
region to treat is that for g/3, substantially greater
than the value for ordering, but where g/5 is still too
small to give values of ordered moment at T=O close
to the free ion value. The difhculty for the induced
ferromagnet (or induced antiferromagnet) problem as
opposed to the usual ferromagnetism by alignment of
ionic moments is that the ground state and its moment
are not intuitively evident. In this respect the induced
ferromagnetism problem is more like the ordinary weel
antiferromagnetism than like ordinary ferromagnetism
by alignment.

As already indicated above, while the boson approxi-
mation is inadequate for calculating thermodynamic
properties in the paramagnetic region where g/6 is
less than the critical value, the dispersion law of (4.17)
should still be quite fruitful for low-temperature neu-
tron inelastic-scattering studies. Such studies would
be quite informative on the range of exchange inter-
actions present. There is also the interesting possibility
of doing low-temperature inelastic-neutron-scattering
experiments on mixed Tb-Y or Tb-Lu compounds
with group V anions. One could vary the composition
to go toward the critical value of exchange for mag-
netic ordering. One could watch the change in nature
of the excitation spectrum as the energy gap decreased
and as correlation efI'ects became important.

The most hopeful way of correcting the inadequacies
of the quasiexcitation treatment wouM be to return
to the fermion formulation of (4.7) and (4.10) . Clearly,
if one could solve the fermion Hamiltonian exactly,

the breakdown of Fermi statistics at higher T would
present no great problem. In calculating thermody-
namic properties, one could restrict traces to exclude
unphysical states. Unfortunately, this does not repre-
sent a practical program. However, for the two-level
problem, i.e., excited state a singlet rather than a
triplet, one might be able to include much of the
correlation effects using an equation-of-motion tech-
nique. (In practice, this would apply, say, for Pr'+ in
a hexagonal environment as in PrF3. For the two-level
system, the constraint that one is either in one state
or the other at a given site limits one to one fermion
creation and annihilation operator per site. ) The lowest-
order equation of motion wouM involve terms in three
fermion operators, coming from the commutator of a
fermion operator with X~. Truncation at that stage
by reducing the equation to one linear in fermion
operators by replacing products of two fermion opera-
tors by expectation values would presumably give the
molecular-field approximation. However, proceeding to
the next highest-order equation of motion before trun-
cating would include some correlation eGects. It is not
clear whether this would represent a tractable calcula-
tional program. '4

Pote added in proof. Y. L. Wang and B. R. Cooper
have now succeeded in treating the two-singlet-level
problem using a pseudospin formalism. Applying the
techniques which are familiar in standard spin prob-
lems, an improved collective excitation spectrum is
found with a gap which decreases as the exchange
increases. The critical strength of exchange interaction
necessary for ferromagnetic ordering at T=0 is greater
than that obtained from molecular field theory, but is
close to the value calculated by the constant-coupling
approximation.

V. CORRELATION EFFECTS ON THE HIGH-FIELD
MAGNETIZATION

It is clear that for increasing magnetic fields the
magnetization cannot increase linearly with applied
6eld inde6nitely. For the Tm'+ ion, the magnetization
evantually saturates at 7 Bohr magnetons per ion;
while for the two-level model the magnetization satu-
rates at X(Pi ) J,

~
I"4i,)=4.365 Bohr magnetons per

ion. As has been pointed. out by the present author" 7

and observed experimentally, ""' the magnetization is
anisotropic in the nonlinear region. However, our two-
level model does not include such anisotropic eGects. At
O'K the anisotropy for the complete Tm'+ level scheme
occurs, because in the nonlinear magnetization regime,
for the (111) direction the I'St'& state is significantly
mixed into the Fi ground state. For the (100) direc-
tion. there is no such mixing. Thus, by neglecting the
presence of higher excited states, we eliminate con-
sideration of anisotropy e6ects. Actually, the two-level
calculational does give a very good approximation to

' We have had an interesting discussion of these possibilities
vrith Dr. Y.-L. Wang.
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IrG. 5. Constant-coupling magnetization versus applied field
at T=o compared to molecular-field magnetization for A equal
to the molecular-field ferromagnetic critical value.

the (100) magnetization at low temperatures for the
complete Tm'+ level scheme as shown in Fig. 1 for an
appreciable range of magnetic field. The departure
comes only at quite high fields where the 6rst excited
state crosses the ground state. For such high fields
correlation effects are quite small. Thus, in the crossing
region, a molecular-field treatment is adequate.

Before including exchange effects, we first consider
the high-field magnetization when only crystal-field
effects are present. To 6nd the magnetization for all
values of H involves diagonalizing the Hamiltonian
of (1.4). This is quite simple since the only states that
mix are

I Fi) and
~

&4i, ). Then the magnetization is
given by

magnetic ordering with infinitesimal moment at T=O
for the molecular-6eld model, the molecular-6eld mag-
netization is as shown in Fig. 5.

Now we wish to consider exchange correlation effects
on the magnetization within the constant-coupling ap-
proximation. First, we must find the magnetization,
3I~, corresponding to the single-ion Hamiltonian of
(1.16) as a function of H+sH'. This is given by the
crystal-field-only magnetization curve as in Fig. 5
where now the abscissa is H+sH' rather than H.
This gives the value of 3SIj, for any value of H&, where

Hi H+zH—'—. (5 3)
Next, we must calculate the magnetization M2 for

the two-ion Hamiltonian of (1.17). This requires solv-
ing for the 16 exact eigenfunctions and eigenvalues
of X2. The largest secular determinant that must be
solved is a 4)(4. In particular, there is one 4&(4 secular
determinant (mixing

~
ni),

~
n2),

~
a3), and

~
a4) given

in the Appendix), five 2&&2 determinants (mixing
~
n5)

and
) n6), ( a7) and

( a8) I ag) and ((xM) I
(x12 and

~
ui3),

~
ni4) and

~
niq)), and two 1&&1 determinants

Then the magnetization 3I/2 can be found for any
value of H2 with

H2 ——H+ (s—1)H' (5.4)
from expression (3.2) where now ) 8,) and E, are the
exact eigenfunctions and eigenvalues of BC2 to all orders
in Hg.

Thus we have two curves available, Mi(Hi), and
3II2(H2) . For any particular value of magnetization M
from &i,=M, H~ is equal to some value Ci, and from
3f2=M, H2 is equal to some value C2. Then the value
of H' and of H for that value of magnetization are
given by

MoF=IZ M, exp( — E/k )Tj/Lg exp( E;/kT) j, —
C]. C2 p

H =Ci(1—z) +zC2.

(5.5a)

(5.5b)

(5 1)

where M; is defined in (1.7). The only change is that

I 1) and ) 3) differ from the expressions in (1.5) by
using the exact expressions to all orders in H. Typical
behavior for the magnetization so obtained is shown
in Fig. 5 for T=O. (As a typical value for the numeri-
cal calculations of this section we use 6 appropriate
to Tmsb. )

It is also a simple matter to include exchange effects
within the molecular-field approximation. This is most
easily done by regarding the crystal-field-only magneti-
zation curve sho~n in Fig. 5 as a plot of magnetization
versus H, qq with

H, ii =H+ (2gsM/VS') (5 2)

Then for specified g and s, for each value of M on the
crystal-fieM-only curve, the applied field H is obtained
fl'QI11 (5.2) by regarding the abscissa in Fig. 5 as H, ff.
For s=6 and J equal to the critical value for ferro-

LLI

CO

C)
W

2

l50 2000 50 IOO

H (IIoe)

FIG. 6. Constant-coupling magnetization versus applied 6ekl
at T=0.756 compared to molecular-Md magnetization for 3
equal to the molecular-6eld ferromagnetic critical value.
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Fio. 7. (a) Magnetization versus applied field at T=O for 3
equal to half the constant-coupling ferromagnetic critical value;
(b) Magnetization for same parameters as (a) for T=0.7SA.

Specification of II for each value of M then gives
the curve for variation of magnetization with applied
field JI.

A magnetization curve obtained in this way at T=O
is also shown in Fig. 5 for the molecular-field critical
value of A for z=6. (By restricting A to the molecular-
field critical value or less, we avoid confusion from
having to deal with any ordered state for any of the
magnetization curves. ) In the linear region the mag-
netization is, of course, shifted downward with respect
to the molecular-field curve by the same percentage
as the susceptibility discussed in Sec. III. As the mag-
netization approaches saturation, the difference between
the molecular-field and constant-coupling magnetiza-
tion becomes negligible. For increasing temperature,
the correlation effects become more complex. This is
illustrated in Fig. 6 for the same parameters as Fig. 5
with T=0.758. Here, for increasing field, the constant-
coupling magnetization crosses the molecular-field-mag-
netization curve. Increasing complexity of correlation
effects also occurs in the behavior for decreasing ex-
change. Figure 7(a) shows the magnetization at T=O
for ferromagnetic exchange decreased, by about 40%
from the value in Fig. 7, to half the constant-coupling
critical value. As follows from the susceptibility be-
havior, the effect of decreasing the exchange is to
decrease the difference between the molecular-field
magnetization and the constant-coupling magnetiza-
tion more than proportionately. The effect of increasing
temperature is shown in Fig. 7(b) for T=0.756. Here
the constant-coupling curve crosses the molecular-field
curve at relatively low field. At intermediate field values
the correlation effects, while still small, are more im-
portant than at T=O.

50
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16'K, A=-2.976 x IO ~-

T=0
ZERO EXCHANGE
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FzG. 8. (a) Magnetization versus applied field at T=O for 3
equal to the molecular-field antiferromagnetic critical value;
(b) magnetization for same parameters as (a) for T=0.7SA.

The effect of correlation on the high-field magnetiza-
tion with antiferromagnetic exchange is illustrated in
Fig. 8. Here A has the molecular-field critical value
for antiferromagnetic ordering with infinitesimal mo-
ment at T=O. Just as for the corresponding ferro-
magnetic case at T=0, the constant-coupling mag-
netization curve falls below the molecular-field curve.
As shown in Fig. 8(b), for increasing temperature the
correlation effects become quite small, and the constant-
coupling curve crosses the molecular-field curve to lie
slightly higher for increasing fieM.

VI. DISCUSSION, EXPERIMENTAL SITUATION

Comparison of the results of the preceding sections
with the currently available experimental data suffers
from one great difficulty. This is that our discussion
has proceeded on the basis that the values of crystal
field and exchange parameters are available independ-
ent of the magnetization measurements. In fact, for
most of the materials studied as yet, data determining
these parameters independent of the susceptibility data
are not available. If such is the case, one is typically
faced with the following situation. If the data for 1/7f
extend to sufficiently high temperature, one deduces
the exchange parameter from the presence of Curie-
Weiss behavior. This then leaves the determination of
the two crystal-field parameters, "x specifying the ratio
of fourth- to sixth-order anisotropy, and 8' giving the
absolute scaling of the crystal-field level scheme. Usu-
ally the magnetization is sufFiciently insensitive to x so
that one can choose a reasonable value for that param-
eter. For example, for the Tm group V anion compounds
any choice of x between —0.6 and —1 gives much the



BERNARD R. CoapER 16$

CP

E
C-

us
E

CD
CD

CIP

Cs

(a)
0,4 CONSTAN

(a, =25.6
MOLECU
(A= 5I.5

0.2-

O. I—

f

2 4 8 IO I2

ED

CD

C&

E
C

C)
CD

CI
E

(bj
2.9 CON STA

(b, =25
MOLEC
(aa S22.8c

2.T-

C)
2.6-

2.5 2 4 6 8
T('K)

IO
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exchange.

same susceptibility behavior' once the susceptibility
is Gxed at T=0. Then the value of 1/x at T=0 is used
to determine H/'. This means that to compare the suscep-
tibility including correlation effects to the molecular-
Geld value involves a situation such as that shown in
Fig. 9. In Fig. 9(a) we have chosen a situation with
ferromagnetic exchange where 1/x equals zero at T=0,
i.e., the critical condition for inhnitesimal ferromag-
netic ordering. %e take the same value of exchange
constant for both the molecular-field and constant-
coupling calculations. Then the high-temperature sus-
ceptibility is also the same for both cases. To match
1/y both at T=O and at high temperature involves
taking a larger value of 6 for the molecular-field case.
(As a convenient scale for typical values of d, , we
choose 6 in the constant-coupling case to give 1/x = 10s

Oe/Bohr magnetions per molecule for vanishing ex-
change. ) Doing this, the molecular-Geld curve for 1/g
is Qatter than the constant-coupling curve for low T.
This is in distinction to the situation discussed earlier
(see Fig. 2) where for the same 6 and J the constant-
coupling curve for 1/x has smaller change in going
from low to high T. This contrast comes about because
for the same 6, as shown in Fig. 2, the approach of the
constant-coupling curve for 1/x to the molecular-Geld
curve occurs for T appreciable compared to 5. In
matching 1/y at T=O for both constant-coupling and
molecular-Geld curves one gets diferent 6's. At low
temperatures the Qattening effect of correlation on
1/x is not enough to compensate for the decreased A

in the constant-coupling case, so one gets the situation
shown in Fig. 9(a). For the antiferromagnetic case

shown in Fig. 9(b) taking g the same and matching
1/x at T=O also gives a Ratter curve in the molecular-
Geld case. (Here g has been chosen as the constant-
coupling critical value for infinitesimal antiferromag-
netic ordering at T=O.)

The difhculty in using this procedure (matching 1/x
at T=O and at very high T for determining exchange
and crystal-Geld parameters) in practice is that the
shift in 1/x involved in going from the zero-exchange
case to the case of inGnitesimal ordered moment at
T=O is quite small compared to the high-temperature
values of 1/X. For the antiferromagnetic case for exam-
ple, if the exchange is near the critical value, this shift
is approximately half the value of 1/x at T=O. In
this connection, it is worth pointing out that for a
given 1/x at T=O, 6 for antiferromagnetic exchange
is smaller than that for zero exchange which in turn is
smaller than that for ferromagnetic exchange. Thus
matching 1/x at T=O, one obtains the fastest increase
of 1/x with T for antiferromagnetic exchange, and the
slowest for ferromagnetic exchange.

The largest body of magnetic measurements cur-
rently available for singlet —ground-state systems is on
the rare-earth compounds of NaCl structure with group
V anions. In particular, the Pr and Tm compounds do
not order magnetically and show Van Vleck type sus-
ceptibilities at low temperature. Matching 1/x at T=O
for their PrN measurements, Schumacher and Wallace'
obtain a zero-exchange theoretical curve falling o6
more slowly than experiment. Following the same pro-
cedure for PrP and PrAs, Tsuchida and Wallace' get
the reverse result, zero-exchange theory for 1/x falling
oG more rapidly than experiment. Since one expects
any exchange to be ferromagnetic for PrN and anti-
ferromagnetic for PrP and PrAs, as discussed in the
preceding paragraph this behavior is opposite to any
effect expected for exchange. Actually, at the moment
the experimental situation for the Pr compounds is
not very well deGned. For Prw, Busch et ul. ' get values
of 1/x at low T quite different from those of Schu-
macher and Wallace. Junod ef aLs have also done
susceptibility measurements for PrP and PrAs. They
do not present their data, but do say that they get
good agreement with crystal-Geld-only calculations of
1/x

The Tm compounds TmP, TmAs, TmSb experimen-
tally' all give slightly Ratter 1/x curves than are ex-
plained by a crystal-field-only calculation' matching
1/x at T=O. Again, if exchange is antiferromagnetic,
this is the wrong direction for discrepancies in 1/x be-
tween crystal-Geld-only theory and experiment caused
by exchange effects. In any case, the discrepancies are
rather small, especially for TmSb, and the published
data of Busch et al. give no evidence of Curie-Weiss
behavior. For both the Tm and Pr compounds, as
already indicated above, the difference between a Curie
law and a Curie-Weiss law for 1/x for exchange close
to the critical value would be small. A most careful
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Am. Phys. Soc. 11, 15 (1966).

'6 B. R. Cooper, R. C. Fedder, and D. P. Schumacher (to be
published).

examination of the high-temperature 1/y would be
warranted in light of the present discussion. It would
be even better to have independent determinations of
the exchange and crystal-field parameters.

There are a number of types of experiments that
would independently help to determine the crystal-6eld
and exchange parameters. Among these are speci6c
heat measurements, inelastic neutron paramagnetic
scattering, nuclear magnetic resonance, far infrared
optical absorption, and Quorescence experiments on
dilute magnetic systems.

One of the most promising such experiments is para-
magnetic resonance " on one of the excited triplet
states. As yet this experiment has been performed
and analyzed only for TmN. As described below, the
magnetization behavior for TmN is anomalous. It is
possible that this arises from chemical difIiculties, or
there may be some more fundamental reason. In any
case, the rare-earth nitrides are much more chemically
unstable than the heavier compounds, and this makes
them more dificult to deal with experimentally. Actu-
ally, of the Tm compounds, the most promising for
resonance studies is probably TmP. This is much more
stable chemically than TmN. Also TmP is not so
metallic as the heavier compounds, and this makes
resonance experiments more practical.

For the sake of completeness, we here give the results
expected for TmN for the susceptibility and high-6eld
mlgnetization using the crystal-field and exchange
parameters obtained from paramagnetic resonance. (In
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FIG, 11. Magnetization versus applied field for Tmw.

~ D. P. Schmacher (private commumcation).

comparing theory and experiment, it should be borne
in mind that the experimental susceptibility at T=O
was used in conjunction with the resonance data to
determine the parameters. ) The values of the crystal-
field parameters from resonance" are x= —O.990, g =
—3.47'K. The exchange is given by rI(0) J(/+1) =
11.4'K. (This exchange is ferromagnetic, and therefore
the possibility of antiferromagnetic exchange previously
considered is eliminated. ) For the molecular-field model,
this exchange is only about 15% of the value necessary
for ferromagnetic ordering with in6nitesimal moment
at T=O. Since the exchange is so much less than the
critical value for ferromagnetic ordering at T=O, the
molecular-field approximation should be quite adequate
for calculating the susceptibility and high-6eld mag-
netization.

The molecular-field susceptibility is shown in Fig. 10
compared to experiment. "The experimental behavior
is quite anomalous. The experimental results actually
give good agreement with the theory for vanishing
exchange down to about 20'K. Then the curve for
1/x has a kink and continues downward for samples
SB-15 and SB-16 made by Schumacher. The measure-
ments of Busch et a/. for 1/x also continue downward
below 20'K, perhaps without a kink. If the anomalous
behavior is a chemical eRect, it is larger than would be
anticipated for the method of preparation used. '~ The
comparison of high-pulsed-field magnetization experi-
ments4 with theory as shown in Fig. 11 does not clarify
the situation. Here the sample was a powder. Under
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appropriate conditions, a polycrystalline sample gives
the easy axis magnetization for high pulsed fields. This
was seen from the measurements on Tmp, TmAs, and
TmSb. However, it is not completely certain that the
TmN sample would give the easy axis magnetization
under the experimental conditions used. This may ac-
count for some of the discrepancy between experiment
and the theoretical easy axis magnetization. More
puzzling is the difference between experiment at 4.2
and 20.4'K. Theory would indicate a negligible diGer-
ence in magnetization between these two temperatures.

While the puzzling behavior of TmN is quite inter-
esting, a detailed study of the heavier Tm compounds
of NaCl structure with group V anions is much more
promising because of their greater chemical stability
and ease of preparation. For TmSb a very detailed

experimental study on single crystals is currently in
progress and will be reported separately together with
the pertinent theory. More generally, it would seem
that the most promising line of approach to examining
the importance of correlation e6ects as exchange ap-
proaches and exceeds the critical value for infinitesimal
magnetic ordering at T=O is to work with mixed rare-
earth crystals. Tb'+ also has J=6, and hence has the
same crystal-field symmetry properties as Tm'+. The
Tb compounds order magnetically. Thus mixed Tb-Y
or Tb-Lu antimonides would seem to be a very promis-
ing material for investigation.
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APPENDIX
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sign gives the second eigenvalue.
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