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It is found that five distinct distant-neighbor interactions must be considered in order to characterize
adequately the Heisenberg energy in normal cubic spinels having diamagnetic A-site ions. The classical
theory of the ground spin state is presented in terms of these interactions, which span a five-dimensional
parameter space. It is demonstrated that the ground state consists of a spiral spin configuration
withe = (0, 0, t) if and only ii the parameter values fall inside a limited region, which is determined rigorously
by means of the Luttinger-Tisza method. Because of the circumscription of this spiral ground-state region,
agreement with the experimental findings for ZnCr2Se4 requires that at least one of the distant-neighbor
interactions be ferromagnetic. Furthermore, these interactions can be analyzed into their constituent super-
exchange terms, which can in turn be related by standard superexchange theory. The resulting criteria for
physical reasonability place additional limits upon the acceptable range of values for the interactions. This
range is found to exclude those sets of interactions which have previously been proposed in the literature.
A simplified superexchange model is used to illustrate the determination of physically reasonable fits to the
data and to study their dependence upon the degree of A-site covalence.

I. INTRODUCTION

EXPERIMENTAL studies of zinc selenio-chromite
& have been made by several workers. Lotgering

found ZnCr2Se4 to be an antiferromagnetic cubic spinel
with a positive asymptotic Curie temperature of
115'K,' Allain found that its spins could be realigned
ferromagnetically at 4.2'K by the application of an
external field of 64 kOe, ' and Plumier found its ground
spin state to be a (0, 0, l) spiral with a turn angle of
42'.' Lotgering was able to account for his findings on
the basis of a strongly ferromagnetic nearest-neighbor
Cr-anion-Cr interaction, together with relatively weak,
antiferromagnetic second-, third-, and fourth-nearest-
neighbor exchange couplings through two anions.
Plumier considered only three interactions and, there-
fore, was able to evaluate them uniquely from the
above data. According to his calculations based on
these assumptions, the first- and second-nearest-
neighbor interactions are both ferromagnetic and
only that between third-nearest-neighbors is anti-
ferromagnetic.

However, zinc selenio-chromite is not an isolated
material; several other chromium chalcogenide spinels
having diamagnetic A-site cations have also been in-
vestigated. Some of these are ferromagnetic, such as
CdCr2Se4. 45 It has been pointed out that the marked
dependence upon the A ion indicated by comparison
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of the properties of zinc and cadmium homologues does
not require the A site to be directly responsible for the
exchange mechanism. ' However, the theory for the
ferromagnetic materials recently developed by Baltzer,
Wojtowicz, Robbins, and Lopatin is based upon the
presupposition that distant-neighbor interactions occur
exclusively via the A ions, and hence must all be anti-
ferromagnetic. ' They rejected Plumier's findings (which
contradict their model), but their grounds for this re-
jection are shown to be in error in Sec. IV of this paper.

Nevertheless, the restriction of Plumier's analysis to
three interactions does leave room for equivocation.
We find that an adequate characterization of the
Heisenberg energy requires the consideration of five
distinct more-distant-neighbor interactions. Each of
these interactions is analyzed in terms of their con-
stituent superexchange terms' ' in Sec. II. This decom-
position also serves to clarify the possible effects of
covalency.

In order to reach more definitive conclusions about
the interactions in such materials, we have investigated
theoretically the ground spin states of normal cubic
spinels with diamagnetic A ions. The mathematical
treatment outlined in Sec. III employs the method of
I.uttinger and Tisza' to delineate rigorously both the
ferromagnetic and the spiral ground-state regions in
a five-dimensional exchange-parameter space. In Sec.
IV, two relations among the five exchange ratios are
obtained from the experimental results for ZnCr2Se4.
This step su%ces to prove that at least one of the more-
distant-neighbor interactions must be ferromagnetic,
no thermodynamic approximations being involved.

P. K. Baltzer, P. J. tA'ojtowicz, M. Robbins, and E. Lopatin,
Phys. Rev. 151, 367 (1966).' P. W. Anderson, Phys. Rev. 115, 2 (1959).' J. B. Goodenough, Magnetism and the Chemical Bond (Inter-
science Publishers Inc. , New York, 1963), pp. 165—184.

9 J. M. Luttinger and L. Tisza, Phys. Rev. 7'0, 954 (1946);
81, 1015 (1951).
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Fro. 1. Types of nearest-neighbor superexchange through an
intermediary anion.

Although Plumier's values constitute a mathematically
valid solution, they are shown to be physically un-
reasonable in Sec. V by the application of the standard
rules of superexchange. ""Finally, a simple model is
advanced both to illustrate the procedure for obtaining
physically consistent solutions to the mathematical
problem and to investigate the effects of covalency. It
is thereby shown that the heretofore neglected inter-
action is important, that the deduced values for the
exchange interactions are rather insensitive to the
internal parameters of the model, and that the per-
missible covalent effect is limited.

II. ANALYSIS OF EXCHANGE INTERACTIONS

Consider a normal, cubic spinel whose A sites are
occupied by nonmagnetic ions. The classical Heisenberg
energy is given by

Q Av, mpSs, Sms
nv, mp

J' g oily, mpSev' Smyth (&)
nV, 777'

where S„„is a unit vector in the direction of the spin
on the depth site, n and m run over the unit cells in the
sample, v and p run over the four crystallographically
different J3 sites within a unit cell, the J„„,„are the
exchange constants (positive when ferromagnetic)
multiplied by the magnitudes of the spins, and the g„„
are the ratios of these interactions to the dominant
nearest-neighbor interaction J. In the insulating ma-
terials under consideration, these interactions arise
from various superexchange linkages connecting pairs
of 3d orbitals. Each superexchange linkage consists of
a sequence of overlapping ionic orbitals, starting from
a 3d orbital at the eath site and ending with a 3d orbital
at the myth site, and makes a contribution (of the order
of the product of all the overlap integrals encountered)
to the transfer integral connecting those two particular
orbitals. ' In turn, each interacting pair of orbitals

contributes to the exchange J„„,„an energy propor-
tional to the square of its transfer integral, multiplied
by factors dependent on ionization energies, electron

configurations, etc.~' The usual classification of the
resulting J„„,„ into second-nearest neighbor, third-
nearest neighbor, etc., based upon the separation be-
tween interacting cations yields little insight into their
relative strengths, and can even be misleading. Rather,
a detailed examination of the individual superexchange
terms contributing to each J„„„is required for the
determination of a physically reasonable set of exchange
parameters g„„, „.

The crystal-Geld splitting of the 3d manifold gives
rise to two varieties of overlap of a cation 3d wave
function with a given anion p orbital, as illustrated
schematically in Fig. 1. The e, orbitals of cations A
and A' each overlap the p orbital a1ong its axis, forming
so-called 0- bonds. The off-axis overlaps of the t2, or-
bitals of cations 8 and 8' with the anion P form vr bonds.
A pair of such bonds is involved in each nearest-
neighbor superexchange linkage, which can therefore
be of three types: 0--0, as between A and A'; x-~, as
between 8 and 8'; and f7-m, as between A and 8'. If
o- and m. represent overlap integrals, then the respective
transfer integrals will vary as 0.2, ~2, and o-m., and the
resulting exchange constants as o4, vr4, and (as)', apart
from other factors.

The case of more distant neighbors is illustrated in
Fig. 2. Again there are three types of coupling: o.-A-o.,
as between A and A"; x-h-x, as between 8 and 8";
and tT-6-~ as between A and 8". These linkages in-
volve the same 0- and x cation-anion overlaps as befor-
the only change is the addition of an anion-anion
overlap, denoted by h. This additional factor of 6
in the transfer integral multiplies the exchange by ZP,

and results in a uniform reduction which leaves the
signs and relative strengths of these interactions un-
changed from those of their nearest-neighbor counter-
parts.

's J. B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958).
» J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).

PIG. 2. Types of more-distant-neighbor superexchange through
two intermediary anions,
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Now consider the spinel structure, a portion of which
is shown in Fig. 3. Here the four diBerent 8 sublattices
are denoted by subscripts, and some of the anions are
numbered for the purpose of identiication. Within a
particular face-centered 8 sublattice, say that with
tz=3, a given site (such as Bp in Fig. 3) has twelve
nearest neighbors which are subdivided into two groups
of six. B3"shares a chain of 8 sites with B3 and typifies
one group; B3' illustrates the other group. The pair
B3 B3" is separated by a vector ~„„&,which belongs to
the (2, 2, 0) family; the pair Bp-Bp' by one belonging
to the (2, 2, 0) family. We define J (Bp Bp"-)—=J(2, 2, 0)
and J(Bp-Bp') —=J(2, 2, 0) . As detailed in Appendix A,
these exchange constants contain several superexchange
terms, some of which involve multiple paths (linkages) .
When the dominant anion-anion overlap 6 is sufIiciently
large compared with the lesser overlaps included in
the results of Appendix A, one obtains, from Eqs. (A1)
and (A2),

J(2, 2, 0) —= UJ—Q {o;[28)o;}+{zr[2diifzr }, (2)
~12

J(2, 2, 0) —= U'J= Q {o;[2&~.go;}+{zr[2hg]zr}. (3)

Here the curly brackets represent distinct super-
exchange terms connecting different pairs of cation
orbitals and enclose products of orbital overlaps which
behave like the corresponding transfer integrals. The
subscripts A and B indicate overlaps which may be
augmented (or diminished, depending on phases) by
covalency with A- or B-site cations, respectively. The
parameters U and U' will be equal when there is no
covalency eGect.

Other interactions involve sites lying in difterent
sublattices. The ions B3 and B4' in Fig. 3, for example,
are separated by a vector ~„„&,which belongs to the
(3, 1, 0) family; the pair Bp-Bi' by one belonging to
the (2, 1, 1) family. With the definitions J(Bp B4')=-
J(3, 1, 0) and J(Bp-B&') —=J(2, 1, 1), Eqs. (A3) and
(A4) yield

J(3, 1, 0) =—VJ=2 Q {o;[2hggzr}, (4)

J(2, 1, 1)—=WJ=2 Q {o;[6+6~)~}

+{zr[h+2hg)zr}+{zr[3bejzr}, (5)

when 6 is suKciently dominant. Still other interactions
involve even more distant neighbors, such as B3 and
Bp"'. With J(Bp—Bp"') =—J(4& 0, 0), it follows from
Eq. (A5) that

J(4, 0, 0) =—Up J=P {o.,[4hghfo, }+2{zr[2hghii jzr },
~ll

(6)

which need not be negligible. We shall include this inter-
action in our calculations to obtain an estimate of the
potential importance of such terms depending upon two
anion-anion overlaps, of which there are several others.
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FIG. 3. Positions of the anions and cations in the spinel
structure.

In Table I the exchange parameters V, O', V, 8',
and U2 defined above are compared with other nota-
tions which have appeared in the literature. These
parameters will be treated as arbitrary mathematical
variables in the next two sections of this paper. How-
ever, in Sec. V we shall return to the concept of super-
exchange to discuss the inference of the signs and rela-
tive strengths of the interactions for the particular
case of trivalent chromium (empty e, and half-filled tpp

orbitals) .
III. GROUND-STATE CALCULATIONS

It is convenient to work with the Fourier transform
of Eq (1)lz—14 ~

&J Z ZL. (k—)Q.*(k) Q.(k), (7)

where
S„„=QQ„(k) exp(zk R„„),

I,„(k)=Q g„„,„„exp(zk z„„"&),

"D. H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960)."D. H. Lyons, T. A. Kaplan, K. Dwight. and N. Menyuk,
Phys. Rev. 126, 540 (1962).

"N. Menyuk, K. Dwight, D. Lyons, and T. A. Kaplan, Phys.
Rev. 127, 1983 (1962).

with ~„,""=R „—R„„. We shall use the notation
R=(ap/4) (r, s, t) for vectors in real space, and k=
(2zr/ap) (tz, k, l) for vectors in reciprocal space, ap being
the usual cell edge. In addition, R„„=R„+9„,where
the lattice vector R„ is expressed in terms of the basic
face-centered translations (2, 2, 0), (2, 0, 2), and
(0, 2, 2), and where the four B sites in the unit cell
occupy the positions 9„=(1, 0, 1), (0, 1, 1), (0, 0, 0),
and (1, 1, 0) as z runs from 1 to 4. The matrix elements
L.„(k) are given explicitly in Appendix 8 as functions
of the Ave exchange ratios introduced in Sec. II.

Minimization of the energy is equivalent to maximi-
zation of the summation over k in Eq. (7) when J is
ferromagnetic ()0), as in ZnCrpSe4. We wish to demon-
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TAm, z I. Notations used for the various interactions considered
by different investigators.

Interaction Present L~ Pb 3WRLo

J (&,t,o)

J(2,2,0)

J(22 0

J(3,&,O)

J(2,&,&)

J(4,0,O)

U'J

VJ

U2J

Wp

W3

WI

Wp

~ Reference 1.
b Reference 3.
o Reference 6.

strate spin configurations (sets of unit vectors S„„)
which achieve this goal for various values of the ex-
change parameters. Our procedure has been described
in detail elsewhere. " "In essence, the t.uttinger-Tisza
argument proves that a spin configuration is rigorously
the ground state whenever it is represented by the
eigenvector associated with the maximum eigenvalue
(over all k) of the matrix function L(k) .' "Conversely,
it can be shown that a planar spin configuration rigor-
ously cannot be the ground state whenever it is not
represented by the maximum eigenvector of L(k)."
Thus, representation by the maximum eigenvector
constitutes the necessary and sufficient condition for
a planar configuration to be the ground state.

Consider the case where k=(2s-/as) (0, 0, 1). It
follows from Appendix 3, abbreviating L„„(0, 0, 1)
as L„„(l),that

L„„(l)= (2U+2U'+4Us) +(4U+4U') cos(2l')

+2Us cos(4/') (10)

Since these equations involve only the sum of U and
U, it is convenient to introduce the new variables
tJ and y such that

U=U(1 —y) and U'=U(1+y). (16)

08

We have determined the maximum X (l) throughout
the 6ve-dimensional parameter space being investi-
gated. Some of our findings are illustrated in Fig. 4,
which shows a portion of the y=W= U2=0 plane. The
ferromagnetic state Xr(0) lies highest when all the
parameters are positive (all interactions ferromagnetic) .
However, the collinear antiferromagnetic state Xs(0)
overtakes it when V( —0.5, and the spiral state Xr(l)
overtakes it when U is sufficiently negative. The value
of / varies along the Xr(l) —Xr(0) boundary shown in
Fig. 4; 1=0 from C to 8, 0&i&1 from 8 to A, and
1&i&2 from A to infinity. The dashed, constant-/ lines
to the left of this boundary indicate the manner of
variation of l within the spiral region. In between the
Xr(l) and Xs(0) states, there exists a region where a
X(z~, ~„~z) lies highest. Its associated eigenvector g=
(1/V3) (1, 1, 0, 1) is related to the configuration ob-
served in GeNi204. "

By using an SDS 930 computer, we have established
that the above are indeed the maximuni eigenvalues
of L(k) over all k and n inside the regions assigned them
in Fig. 4. This result proves the spiral, ferromagnetic,
and collinear antiferromagnetic configurations to be
the ground states within their respective regions. )The
X(—',, —',, —,) state poses problems similar to those treated
elsewhere, " and will not be discussed further in this
paper. $ However, the all-k computations introduced
a "no man's land" between the )u(l) and X(-', , s, s~)

regions, where neither is the maximum eigenvalue.

for all p, with l' = s (s.l), and

Lrs(l) —L34(l) = (2+4V) +4W cos(2l'), (11)

L„„(l)= (2+2V+4W) cos(l') +2V cos(3P), (12)

for all other v(p, and of course Lvir, (l) =L„„(l).The
eigenvectors g (1) of this matrix are (1/2) (1, 1, 1, 1),
(1/2) (1, —1, 1, —1), (1/2) (1, —1, —1, 1), and
(1/2) (1, 1, —1, —1) as rr runs from 1 to 4. These
eigenvectors all represent planar spin configurations,
and their eigenvalues X (l) can be written as

0.6—

0.4—

0.2 — 1

-0.2

X(———)
12'2'2

), (0)

7 =0
W=0

V =0

Xr(l) =2(1—U —U'+2V —2IV+3Us)

+4(1—2V+2W) cosl'+8(U+U'+W 2Us) cos'l'—
-0.6

—0.8
1

-0.4 0

U

1

0.4 0.8

+16V cos'1'+16Us cos4l', (13)

Xs(l) =As(l) =2(—1—U —U' —2V+2W+3Us)

+8(U+U' —W —2Us) cos'l'+16Us cos4/', (14)

FIG. 4. A slice through exchange-parameter space showing the
regions wherein the indicated X (k) are the maximum eigenvalues
of L(k) over all o. and k. None of these eigenvalues is the max-
imum inside the shaded region. The dashed lines in the )1(l)
spiral region denote curves of constant k= (0,0,l).

X4(l) =Xr(2 —l) .
'~ This theorem is proved in footnote 15 of Ref. 13.

(15)
' K. F. Bertaut, Vu Van Qui, R. Pauthenet, and A. Murasik,

J. Phys. (Paris) 25, 516 (1964).
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FIG. 5. Slices through exchange-parameter space selected to provide insight into the influence of all the variables upon the spiral
instability boundary in the neighborhood of the ferromagnet-spiral border. The circled points represent values of the parameters which
fit the experimental data for zinc selenio-chromite, i.e., which satisfy Eq. (25). The dashed lines are the loci of all parameter values
corresponding to a spiral conGguration with a turn angle of 42', and the distance of the circled points from the ferromagnetic border
is related to the magnetic Geld required to realign the spins.

The (0, 0, l) spiral state rigorously cannot be the
ground state within this instability region, which is
shown shaded in Fig. 4. The location of this instability
boundary plays an essential role in our interpretation
of the experimental results for ZnCr2Se4.

Consider a spiral spin configuration with some par-
ticular value of t = lo and some particular degree of stabi-
lization 8 over the ferromagnetic state, bs=Xr(ls) —Xr(0).
It will be represented by a point in the p=8'= U2=0
plane. Such a point, representing the configuration

observed in ZnCrsSe4, is indicated in Fig. 5(a) . It lies
outside the spiral ground-state region. Consequently
this spiral configuration could not be the ground state
for that choice of y, t/t/, and U2. Negative values of y
tend to stabilize the spiral state, but even y= —1 is
insufhcient for this particular spiral to be the ground
state, as shown in Fig. 5(b). Positive values of W also
favor the spiral state, but must be compensated by
more negative values of U. Figure 5(c) shows that
t/I/'=0. 3 is more than enough to stabilize the spiral.

TAsLE II. Stable solutions of Eq. (25) for the simplified model.

0.3
0.2
0.2
0.0
0.0—0.2—0.2—0.25—0.25—0.29

3.3
3
4
3
6

7
4
6
5

—0.314—0.299—0.305—0.262—0.266—0.235—0.225—0.219—0.219—0.211

0.245
0.174
0.175
0
0—0.232—0.228—0.302—0.297—0.358

0.081
0.081
0.066
0.061
0.035
0.032
0.017
0.025
0.016
0.015

0.106
0.089
0.109
0.061
0.088
0.054
0.056
0.042
0.050
0.040

U2

—0.059—0.060—0.050—0.051—0.034—0.034—0.026—0.032-0.026—0.026

J/k ('K)

25, 1
25.3
25.0
25. 7
25.3
25.8
25. 7
25.6
25.8
25.6
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Negative values of U2 result in more positive V, as il-
lustrated in Fig. 5(d). However, Us ———0.1 is not
enough to stabilize this particular spiral when 5'=0.

IV. APPLICATIGN TO ZnCr~Se4

Zinc selenio-chromite is a normal, cubic spinel with
nonmagnetic Zn'+ ions occupying the A sites. It be-
comes antiferromagnetic below about 20'K, and neu-
tron diGraction has shown its ground state to be a
k= (0, 0, ls) Planar sPiral with a turn angle of ls' ——42'.s
However, experiments in pulsed magnetic 6elds at
4.2'K show that the spins can be realigned ferromag-
netically by the application of an external field as
small as Hp=64 kOe. In addition, susceptibility meas-
urements at higher temperatures show the asymptotic
Curie temperature to be 0=115'K.' Because of this
positive value of 0, the nearest-neighbor exchange inter-
action J can be presumed to be ferromagnetic. Conse-
quently the theoretical treatment of Sec. III is appli-
cable and can be used to deduce relationships among the
exchange interactions from the experimental values for
lp Hp and 0. The interpretation of these quantities does
not involve any approximate statistical mechanics.
Furthermore, we consider the slight tetragonal distor-
tion (c/a=0. 999) which occurs below TN' to be a sec-
ondary eGect that, if taken into account, would not
materially affect our conclusions.

In our notation, the usual derivation gives

k8=-', S(S+1)(J/S') Q g „„
=4S(S+1,) (J/S') (1+2U+2V+2W+Us), (17)

where S is the 8-site spin quantum number and J is
the nearest-neighbor exchange interaction multiplied

by S'. Furthermore, in the presence of an external mag-
netic field P, Eq. (7) becomes

E/&= gvsSH Z Q.—i(0)

—J Z Z L"(k)Q.*(k) Q.(k)
k vp

gvBSH g Qy&(0)

using Eq. (17).Thus

~ (i) —~ (o) = (gI »o)/(»)

(1+2U+2V+2W+ Us), (20)
ke

U = —0.140—0.928W+1.28Us,

V = —0.036+0.118W—1.78Us. (25)

These equations yield a point independent of 7 in
every y-W-U& plan- the circled points in Figs. 5(a)—
5(d), for example.

Each such point represents a possible set of values
(within experimental error) for the exchange param-

0.8—
UN

where the value of the bracket is 0.374 for zinc selenio-
chromite (gS=3) . Rut, from Eqs. (13) and (16),

Xi(l) —Xi(0) =4(c—1)L1+4U(1+c)+2V(1+2c+2c')

+2W(2+c) +4Us(c'+c )j, (21)

where we have written c for cosl' Equ. ations (20)
and (21) can be combined to yield the relation (for
ZncrsSe4)

0=1.401+7.912U+8.128V+6.385W+4.331Us. (22)

The spiral turn angle l' must maximize Eq. (13).
Upon factoring out 4 sinl', this stationary condition
becomes

0=1+8Uc—2 V(1—6cs) +2W(1+2c) —
8 Us(c —2c'),

(23)

which is the equation of a constant-l surface. %hen
l'=42',

0=1+5.945U+4.626V+4.972W+0.618Us. (24)

This equation yields the l =0.466 surface illustrated by
the dashed lines in Figs. 5(a) —5(d). The actual ex-
change parameters in zinc selenio-chromite must satisfy
both Eq. (22) and Eq. (24), so that one obtains the
solution

Q„(k) being proportional to the fath component of the
eigenvector i' (k) .For a conical configuration, Q„i (0)=
z cosp and Q„i(&ko) =s(xWiy) sing, so that

E/E = —4gv~SH cosp —4JPi(0) cos'&+Xi(ls) sin'p),

(19)

where P is the cone angle. Minimization of Eq. (19)
yields @ as a function of H, and this equilibrium

vanishes when the 6eld strength reaches Hp. The
nearest-neighbor interaction J can be eliminated by

-0.4—

-0.8—

-0.2 0.2 0.4

FIG. 6. Values of y versus lV needed to stabilize the spiraI
ground state of zinc selenio-chromite as represented by solutions
of Eci. (25) for particular values of the exchange parameter U&.
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eters in zinc selenio-chromite provided, of course, that
it lies inside the spiral ground-state region. Figures
5(a) —5(d) illustrate how this region is limited, by the
all-k instability boundary in the vicinity of the points
in question. Among the planes depicted, only &=0,
W=0.3, Us ——0 )Fig. 5(c)j yields a spiral ground state
for ZnCrsSe4, for which U= —0.419 and V= —0.001.
This point essentially corresponds to Plumier's solu-
tion. 3 More generally, our all-k calculations yield the
boundaries shown in Fig. 6 when U and V are given

by Eq. (25). Positive values for W and negative for

p serve to stabilize the experimentally determined
spiral ground state.

Baltzer et a/. ' have suggested that Plumier's con-
clusions are invalidated by his use of molecular-6eld
theory. However, the molecular-field expression for
8 is known from the high-temperature susceptibility
expansion to be rigorously correct. Furthermore, the
determination of a particular (0, 0, ls) spiral is also
reliable, since the classical ground-state spin configura-
tion not only determines the quantization axes in the
quantum-mechanical internal-Q. eld theory, but also
provides the basis for all spin-wave calculations.
Finally, spin-wave analysis of collinear antiferro-
magnets indicates that the classical molecular-field

expression for Ho is accurate when anisotropy is weak, "
as indeed it is in chromium spinels. '"" Thus the
molecular-field interpretations of these quantities

(8, ls, and Hp) do not constitute valid grounds for re-

jecting Plumier's analysis, nor our own.
In our notation, the model proposed by Baltzer

et al.' for chalcogenide spinels requires that V= W=2U
and y=1, with Us=0. However, Eq. (25) possesses
no solutions which satisfy these restrictions. In addi-
tion, our all-k calculations show all (0, 0, l) spiral
configurations to be unstable under these conditions.
Even if the restriction of equality among V, 8', and
2U were dropped, there could be no stable solution of
Eq. (25) as long as they all remained negative (anti-
ferromagnetic). Thus rigorous consequences of their
model contradict experiment, which indicates that
its underlying assumptions are unrealistic. Their pre-
supposition that the A ion is solely responsible for dis-

tant-neighbor interaction is particularly questionable.

V. INTERPRETATION AND CONCLUSIONS

We have shown that the values for U and V com-

puted from Eq. (25) yield agreement with experi-
mental findings for zinc selenio-chromite if and only
if the values for the three other exchange parameters

p, 5', and U& are represented by a point inside the re-

gion of spiral stability shown in Fig. 6. This result,
obtained by treating the exchange parameters as arbi-

"Yung-Li Dang and H. B. Callen, J. Phys. Chem. Solids 25,
&459 (&964).
y,' S. B. Berger and H. L. Pinch, J. Appl. Phys. 38, 949 (1967).

» R. C. LeCraw, H. Von Phillipsborn, and M. D. Sturge, J.
Appl. Phys. 38, 965 (1976l.

trary mathematical variables, constitutes a severe
limitation on the range of allowed values for these pa-
rameters. Further 'restrictions can be inferred from the
physical nature of the interactions by considering their
decomposition into the superexchange terms described
in Sec. II and detailed in Appendix A.

The signs of the contributions from the various terms
can be obtained from the Goodenough-Kanamori rules
of superexchange, ' " which, state that superexchange
between two empty or two'-, half-filled orbitals will be
negative (antiferromagnetic), whereas that between
one empty and another half-611ed orbital jwill be posi-
tive. In the particular case of trivalent chromium in
octahedral coordination (as on a spinel 8 site), the
e, orbitals involved in the 0. bonds are empty while
the t2, orbitals involved in the x bonds are half-filled.
Consequently all contributions from 0 —6—0. and m —5—z
linkages will be negative; those from cr—6—m linkages
will be positive. In addition, since x overlaps are smaller
than 0 overlaps, there can be a tendency for super-
exchange interactions via m bonds to be weaker. than
those via 0. bonds, even when the latter orbitals are
empty. Accordingly, we anticipate the o--6-r inter-
action to be the strongest of the three, the x-5-x the
weak. est.

From the above properties of trivalent chromium
and the analysis given in Sec. II, where the lesser anion-
anion overlaps were neglected, it follows that the inter-
actions U, U', and U2 are all negative, that V is posi-
tive, and that the sign of 8' is uncertain. It is clearly
unrealistic to equate V with O'.' lt is also unrealistic
to speak. of a 5'=0.3 when V=O.' Furthermore, since
the superexchange contributions vary as the square
of the transfer integral, which in turn behaves like the
product of the orbital overlaps, ' Eqs. (4) and (5)
require that W((1+6/h~)'V. Only when Us( —0.02
can solutions of Eq. (25) be found which both satisfy
this inequality and lie in the stability region of Fig. 6.
Thus the neglect of U2 would preclude any possibility
of obtaining physically reasonable agreement with

experiment.
The inference of more specific consequences requires

that the number of independent variables be reduced,
but not by arbitrarily ignoring or equating any of them.
Rather, such a reduction should be effected by the
adoption of some sort of superexchange model which
will provide additional, physically reasonable relations
among them. A simple, unsophisticated model is de-
scribed and developed in Appendix C. The results
given in Table II, where 6 denotes the effective anion-
anion overlap due to A-site covalency and o. is a pa-
rameter of the model, show that solutions exist only
over a limited range of covalency corresponding to—0.25&y&0.36. Furthermore, the derived parameter
values fall in rather limited ranges which can be covered
by writing U = —0.26~0.05, V=0.05~0.03, S'=
0.075&0.035, Us ———0.045&0.015, and J/k =25.4&
0.4'K. As pointed out in Appendix C, these solutions
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+{~[~B(svy4)+AB(y2S3)

+2B (S1S3)+~2B (y2y4) ]~}

+{vrh" (x1x4) }+vrj vrh" (xzx6) vr }, (A1)

» J. B. Goodenough, Phys. Rev. 117, 1442 (1960).

even yield plausible values for the exchange contribu-
tion from direct overlap of neighboring cations, "
namely —0.6(Jd;,~&/J( —0.17. Although presented
primarily for the purpose of illustration, these results
can serve as a zeroth approximation for ZnCr~Se, .
It is hoped that improvement can be achieved both by
refinement of the model and by cross reference with
analogous results for other chromium-chalcogenide
spinels.

APPENDIX A: SUPEREXCHANGE DETAILS

Each exchange constant J„„,„consists of a sum
of superexchange terms, one for each pair of inter-
acting 3d wave functions, which will be denoted by
curly brackets { }.The contribution from each such
term is proportional to the square of the transfer in-

tegral involved. These transfer integrals arise from
superexchange linkages, defined as sequences of over-

lapping ionic orbitals beginning and ending with the
particular 3d wave functions involved in the term,
and behave like the products of the orbital overlaps,
or like the sums of such products when there are mul-

tiple linkages. We shall write the overlap product
inside the { }, and enclose the contributions from
multiple paths in square brackets [].

The cation-anion overlaps involving the three t2,

orbitals are all equivalent and can simply be called ~,
but the overlaps with the two e, functions are inequiv-
alent and require the notation 0-; with i=i, 2. The
dominant intermediary anion-anion overlap 6 is illus-

trated by D(yvs4), meaning the overlap between the
p„orbital of anion 1 in Fig. 3 and the p, orbita, l of anion
4. With reference to Fig. 3, one can similarly define the
lesser overlaps 62(y,y3) and b,'(y1y4); b."(xvx4) is even
smaller and 6"'(yvx4) vanishes. These anion-anion
overlaps may be augmented (or diminished, depending
upon phases) by covalency with empty A- or 8-site
cation orbitals, which circumstance will be denoted

by a subscript as in hA (y1x8) . In the expressions which

follow, the symbols cr;, ~, 6, etc. , represent magnitudes;
the signs are to be determined from the phase relations
among the indicated anion orbitals and the terminating
3d functions.

Thus it can be seen from Fig. 3 that

~(fl-~.")=Z {-,[~(y )+A( y)].;}
232

+Z { '9'(yy)+~'(S2S3)7 }

+Z {~[~'(S124)+~'(y2y3) ]o'}

~(&3-W~') = Q j~;pA(yvx8)+AA(x3yv) l~, }

+ {vr[~A (xly8) ++A(y3xv) +52(xlxv)

+A2(y3y8) 7 }+2{~'[~A'(yvy8)

+&A'(x3xv) ]vr }+Q {vr[EA'(xvx3)

+&A'(y3yv) ]o;}+{vrhA" (s1s8) vr }

+ {vr~A (S3S7)vr}+g joAA (yls8) vr}

+g {.,~A'"(x3sv) ~}+g{~AA"'(S»3).,}

+P {~~A"'(S3yv)o;}+{~&A"'(svy8) ~}

+{~AA"'(x1S8)~}+j~aA"'(y3sv) x}

+ {vrhA"'(S3xv) vr },
~(~3 ~4 ) Q j& [~A (ylx8) +A2(y1y3) ]vr}

(A2)

+g f vr[AA (xly8) ++2(y3y8) ]o '}

+Z r-,~.'(y y.)-,}+r-~.(.,")-}
2l2

+ {vl AA '(s1z3) vr} +g {o,AA'"(y1z8) vr}

+Q {~~A"'(svy8) ~;}+{~AA"'(x,s8) ~}

+ {vrhA'" (s1x8) vr },
~(fl3-~1') =z {o'[~(yvs4) +~A(y»8) 7~}

(A3)

+Z {~[~(x2y6)+~A(S3y6)]o }

+ j vr [+(xls6) ++A (*ly8) +~A (y3S6)

+ +2(y3y8) ]vr }+{vr[~B (sly4) +~B(slx6)

+~B(yzx6) +A2B (y2y4) ]vr }

+g {o,[&'(yvy2)+~A (x3x6) 7~}

+2 {~[A'(y2y6)+~A" (S1S8)7~ }

+Q {~;[AA'(yvy8)+A" (S2S6)]~}
2

+2 j~[AA'(y3y6)+A" (»x4) ]o }

+{ P'(x,x,)+A "'(y,x,)] }

+{~[A'(x,x,)+S,"'(s,x,) 7~}

+ jvrAA'(xvx8) vr}+ {vr&A'(S3S6) vr}

+rvrh'(s126) vr}+ jvrA'(svs4) vr}

+Z {o'[~A"'(y1S8)+~A (x3y6) 7~3} (A4)
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J(Bs-Bs'")=P {;LAs(yiy )+4AdA —4''A']tr;j Finally,
J.„„(h,k, l) =L„„(h,k, l) . ( 85)

+2 {sr{ 2hgAs —2''A']sr }

+2 Z {rr'P ~'As —2A~A'+AA~'+AA~'"

—a"a,'"]~}y2 g {~LA~'&s—»~A'

+2 {sr j2AsL4"' —2&'Dg"' —2A"Ag"']sr j.
(A5)

Here it was necessary to include linkages with two
anion-anion overlaps because the leading term A2 is
small. The overlap product Az (yips) A (xsys) was
abbreviated as A~&, Ad'(yays) 6'(ysys) as Az'b. ',
A~(&iys) Aa(ys&s) as L4Ait, etc. The minus signs arise
from phase considerations.

L44(h, k, l) =Les(h, k, l) . (B2)

Similarly, for the off-diagonal elements,

Let(h, k, l) =2 cos(h'+k')+2VLcos(3h' —k')

+ cos(h' —3k') ]+2 WLcos(h' —k'+21')

+ cos(h' —k' —21i)]. (B3)

The equation for L»(h, k, l) can be obtained from this
expression by everywhere substituting ( —k') for k'.
Consequently, we write

APPENDIX B: THE MATRIX L(K)

Given the de6nitions in Secs. II and III, together
with h' = s (srh), k' =—', (srk), and l' =—', (7rl), we can
express the elements of the matrix L(k) as follows:

Lss(h, k, l) =2ULcos(2h'+2k') + cos(2k'+2l')

+ cos (2l'+2h') ]+2U'Leos (2h' —2k')

+ cos(2k' —2l')+ cos(2l'-2h')]

+2Us{ cos(4h')+ cos(4k')+ cos(4l')]. (B1)

The explicit expression for Lii(h, k, l) can be obtained
from the above equation by everywhere substituting

( —k') for k'. Thus we write:

Lii(h, k, l) =Lss(h, k, l),

Lss(h, k, l) =Lss(h, k, l),

APPENDIX C: SIMPLIFIED SUPEREXCHANGE
MODEL

The superexchange terms g, {tr,Asr} appearing in
Appendix A can be expressed as {o.„b.tr}, where o„
represents the overlap of a cation d,' orbital and a co-
axial anion P„and for the case of octahedral Crt+,
a positive number a can be defined such that {tr„hx }=
—

a {trAsr}. For convenience, let us arbitrarily set
{o„ltto„}= —a{o„Asr}.The relative strengths of the
other o. overlaps of the d,' and d,' „' orbitals are rigor-

1 n a 1.lYously 0.»=o-»= —20-„, 0-~, =0, and o-»= —0~=2-~~0-«,
where the first subscript denotes which e, orbital and
the second denotes the bond axis. Then, for example,
the first term in Eq. (A1) becomes 0.625 {o „(26]o„}=
2.5{tr„ho.„}=2.5as{srAtr}, where we recall that the
superexchange behaves like the square of the overlaps
indicated in the brackets.

I.et us approximate 62=A'=4"=6"'=0, and let
8 represent the effective anion-anion overlap resulting
from mutual covalence with an empty s orbital of the
diamagnetic 2-site cation. Then A~' ——A~" ——A~"' ——8
and Az ——6+8. Covalency with the empty e, orbitals
of the Cr+ 8-site ions is relatively ineffective in Eqs.
(A1) and (A4), since its contributions to Ass and As
almost cancel. Consequently very little error is intro-.
duced in writing 2A&+2As&=2& and 3As+A2B:3A.

The parameters U, y, V, and W can all be expressed
in terms of the new variables {trhsr}, a, and 8/A. For
most choices of a and 8/b, , the resulting solution of Eq.
(25) does not fall in the stability region of Fig. 6. Table
II covers the entire range of stable solutions. We see
that 8/A must lie between 0.3 and —0.29, that a must
lie between 3 and 7, and that the values of U, V, W,
and U2 are narrowly circumscribed.

The parameter U2 can also be expressed in terms of
{7rA7rj, a, and h/A if we introduce a new variable p
to represent explicitly the effect of additional anion-
anion overlaps on the superexchange, that is, {srAbsr j =
P{srAsr} =Ps{srsr}. Then the values in Table II yield
0.020&P&0.033. But a and {srsr}= {trbsr}/P determine
the nearest-neighbor superexchange, namely

J...g=Q {~;tr}+Q{sro,}+2{7rsrj,

and
Jexch+Jd treats

L„(h, k, l) =L,.(h, &, l),

Lis(h, k, l) =L44(l, h, k),

L,4(h, k, l) =L44(k, l, h),

Lss(h, k, l) =Ls4(k, l, h),

Lse(h, k, l) =L44(l, h, k) . (B4)

where Jd;„,~ is the antiferromagnetic exchange contri-
bution from direct overlap of the cation t2, orbitals. "
The values for Jd;,~t/J = 1—J,x,t,/J implicit in Table II
run from —0.17 to —0.6; they increase negatively with
increasing a and increasing 8/A. Since these values do
not seem physically unreasonable, we conclude that the
solutions shown in Table II are self-consistent.


