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Properties of Vortex Lines in Superconducting Barriers*

P. LEBwoBLl' AND M. J. STEPHEN

Physics Department, Yale University, Sex Haven, Connecticut

(Received 11 April 1967)

There are two qualitatively diferent types of solution to the Josephson barrier equations. The Grst

type corresponds to vortex lines in the barriers. For small damping, a rather complete picture of vortex
line motion can be obtained including inertial and dissipative effects. The second type of solution cor-
responds to plasma oscillations. The stability of the solutions is investigated and results are obtained for
the collective modes of the vortex lines and the propagation of plasma oscillations in a magnetic 6eld.

S. INTRODUCTION
" "N this paper we discuss some of the properties of a
„.long Josephson' barrier between two supercon. -

ductors. There are two qualitatively different types of
solutions to the barrier equations. The first type cor-
responds to vortex lines in the barrier and has been
discussed by a number of authors. ' In the case where
the damping is small and the barrier is long the transi-
tion to moving vortex lines can be accomplished by a
Lorentz transformation. A rather complete picture of
vortex motion can be easily obtained in this case
including inertial and dissipative effects. When the
damping is large the nonlinear equation of motion of
the vortex lines is of the diffusion type and it does not
appear easy to obtain analytic solutions. The case of
large damping is closer to the situation in type-II
superconductors. ' In this paper we only consider the
case of small damping (low temperatures).

The second type of solution is similar to a plasma
oscillation or transverse electromagnetic wave propagat-
ing in the barrier. In the linear approximation these
solutions have previously been discussed by Josephson. '

The stability of the above types of solutions is in-
vestigated. Results are obtained for the collective modes
of oscillation of the vortex lines and also for the pro-
pagation of plasma oscillations in the presence of a
magnetic field. In the case of a weakly nonlinear barrier
these results, apart from the boundary condition,
reduce to those of Eck et al.' Some considerations on
the spectrum of small oscillations have also recently
been made by Kulik. '
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The nonlinear term in the equation of motion of
the vortex lines is taken, in. accordance with Josephson, '
to be sing, where g is the phase difference between the
two superconductors. This simplifies the analysis con-
siderably but the phenomena described here probably
only depend quantitatively on the form of this term.
Hobart' has indicated how to obtain solutions of some
related nonlinear equations.

2. PROPERTIES OF VORTEX LIN'ES

The phenomenological equations describing the
macroscopic behavior of superconductiog barriers have
been obtained by Josephson' and we summarize his
results here. Ke assume that the barrier lies in the
x, y plane and only consider variations along x.

8$/el@ = (2ed/Ac) Jsr„, 8$/Bt = (2e/5) V, (1)

J,=jt sing+a V. (2)

Here p is the phase difference between the two super-
conductors, H is the magnetic field in the barrier, t/ is
the voltage across the barrier, and d=2X+t where X is
the penetration depth and I is the barrier thickness. In
the current density (2) the first term represents the
supercurrents and the second term the Ohmic currents.
From Maxwell's equations regarding the barrier as
having a capacity C per unit area and (1) and (2),
an equation for p can be derived;
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where c~=c2/47rdC is the phase velocity in the barrier,
Xos=ftcs/Ssredj& is the penetration depth, and P =
42rdC~o/C' iS a damping COnStant.

Assuming the barrier to be of unit length in the y
direction, the total free energy of the barrier, measured
from the situation where @=0, is

8$ ', tX() ' (Bp'ts
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(4)

The 6rst term represents the coupling energy of the

' R. H. Hobart (private communication).
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@L(x—ut)/) j,

two superconductors and the other terms the electro- Thus for a long barrier if p(x/Xp) is a solution of (6),
magnetic energy in the barrier. The rate of dissipation a solution of (3) (P=0) is provided by
of energy from (3) and (4) is

(7)
dF/dt = —o V'dx (5)

8'p/8xs = (1/Xp') sing, (6)

which, except for a sign, is the equation of a pendulum.
In the case where the damping can be neglected

(P=O), the transition to solutions representing vortex
lines in uniform motion is accomplished by a I.orentz
transformation. '%hen the damping is large the inertial
term in (3) can be neglected and the equation resembles
a diffusion equation rather than a wave equation. In
this paper we will con6ne ourselves to the case of small
damping which is appropriate at low temperatures.
The case of large damping, however, is also of interest
and is much closer to the situation in type-II super-
conductors.

'2

and is due to the Ohmic currents excited in the barrier.
It is interesting to note that (3) (with P=0) is the

basic di6erential equation of the Frenkel-Kontorova
lattice model of dislocations. ' It has also been studied
as a model one-dimensional 6eld theory' and in dif-
ferential geometry. "

Solutions of (3) representing vortex lines in the
barrier are obtained as solutions of the time-inde-
pendent equation'

where u(c is an arbitrary velocity and X = Xp(1—vs/c~) 'ts

leads to a Lorentz contraction. In a similar manner if
Q(ct/Xp) is a solution of

tan(xagp) =exp) —(x—etl/X j,
sinP(gp —pr) j=snf(x —st)/B 1,

=k snt (x—nt)/)I. j,

(10)

where k is the modulus of the elliptic functions
(0(k(1). Solutions of this type have recently been
discussed by Scott."

The solution (10) represents a single-quantized
vortex line in uniform motion and gives rise to a voltage
pulse across the barrier. The energy per unit length of
the moving line is F= Fp/(1 —o'/P)' ' where Fp is the
rest energy (Fp=4ftj&hp/e). This leads to a small
eGective mass per unit length of the vortex line m=
Fp/c~. This of the order of the mass of an electron and
is similar to that found by Suhl in a type-II super-
conductor. " The dissipation per unit length of the
moving vortex line due to Ohmic currents is, from (5),

18' 1= —sing,
C~ Btm Xp'

then a solution of (3) (P=0) is provided by

yP(~f —x)/) 'g,

where n&c and X'=Xp(u'/P —1.)"' We refer to these
solutions as M (magnetic) and E (electric) types.

Solutions of M type (7) are given in Ref. 8. They
are

BF/itt = —2o (fi'v'/e9. ) . (13)

This result is only correct for small o.. By equating
this to —&pe' we arrive at a phenomenological viscosity
coeQicient.

rtp ——2o.ks/es)%. =Qp jjtr, /c t,
s

1.0

I
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pro. 1. Plot of the reduced frequency co/cop against I &(np) I for
k'=0.4. Curve I corresponds to 0&no&iX' and curve II to
E&O.0&K+iX'.
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where pp is the flux quantum, o. =od, and. H, ~ is the
lower critical 6eld. ' This expression is of the same form
as in a type-II superconductor except that II,& relpaces
II

The solution (11) represents a moving vortex array
with the distance separating adjacent vortices I.=
2&kE(k), where E(k) is the complete elliptic integral
of the First kind. The average Q.eld II and voltage t/' in

"A. C. Scott, Bull. Am. Phys. Soc. 12, 308 (1967); and to he
published.

» H. Suhl, Phys. Rev. Letters 14, 226 (1965}.» Y. B. Kim, C. I". Hempstead, and A. R. Strnad, Phys. Rev.
139, A1163 (1965).



378 P. LES YVOHL AND M. J. STEPHEN

the barrier are

H„=Acsr/2edhkIC(k) =42r2H. i/kE(k), (15)

V =—(tt/c) Ho~t. (16)

The voltage may be regarded as due to induction and
owing to the structure of the vortex lines also contains
an infinite series of harmonics of the frequency (2e/k) V.
Making use of the Fourier expansion of the elliptic
function (11) the total voltage is

4qn m7r

V(x, t) =V 1+g, cos (x—et) i, (17)
„=i 1+F2" 7ikE

where q=exp( 2r&'/E—) and &'=&(k') when k' is
the complementary modulus. The energy dissipation
per unit length of a vortex line now leads to a viscosity
coefficjent of 2f =itp(E(k)/k), where E(k) is the com-

plete elliptic integral of the second kind. This is in-
creased over that for a single line (14) and for strong
field H)IAi from (15) 27= rf(pH/ Hi) and increases
linearly. The energy per unit length of a vortex line
also increases in this manner.

The solution (12) can be regarded as representing
an array of vortex lines with a,lternating signs. The
phase @ oscillates around the value 2r. +le wjll not
discuss this solution in detail as it is unstable owing to
the attractive force between vortex lines of opposite
sign.

Seeger et at.' have shown how to construct super-
positions of the solutions (10), (11),and (12) using a
Backlund transformation. One interesting solution"'
corresponds to the collision of two vortex lines of
opposite sign moving in opposite directions

c sinh (nt/7~)

v cosh(x/)i)

The collision occurs at @=0 at 1=0 and a,s the vortex
lines in one dimension do not have hard cores they
pass through each other. It is also possible to get a
stable bound state of the two vortex lines. Thus in (18)
choose e=ivho, where v is a, real frequency and we get
a localized oscillatory solution

t
iop singlet

v cosh(x/)~") '

where

co=i/(1+ p'/ooo') ' ', 7~"=&o(1+o'/coo')' ' (20)

and ~op=c/Xp is the cutoff frequency of the barrier.
The frequency co is less than coo and the free energy is

F=2FQ/(1+ i'/Mp') '"=2FQ(1—M'/ioo') '" (21)

where 2FO is the free energy of two isolated vortex lines.

"A. Seeger, H. Dorth, and A. Kochendorfer, Z. Physik 134,
173 (1952), KrI. (35) .We are indebted to Dr. R. Hobart for bring-
ing this to our attention.

This solution may be dificult to realize in practice,
however.

Solutions of E type, Eq. (9), with s)c, are im-
mediately obtained from (10), (11), and (12) by
making a phase change of x and replacing X by X'=
7~Q(s%~ —1) 'f'. These solutions are

3. SMALL OSCILLATIONS

We now investigate the small oscillations of a static
vortex array. If in Eq. (3) (with P=0) we let P(x, t) =
Pp(x)+N(x) e+'"', where @p(x) is a solution of (6), and
linearize with respect to m we obtain

(8' rosh

i
—,+ —

i N(x) = (1/'AQ2) N(x) costs(x). (25)

Here Pp(x) can be any of the solutions (10), (11), or
(12) with tt =0. It turns out that no interesting localized
modes of oscillation of a single vortex line (10) exist.
Heliconlike modes, which occur in type-II super-
conductors, are absent in one dimension. Substituting
(11) in (25) and introducing the new variable n=x/Xok,
we And

O'I/Bn =
t 2k' sn'n —k'(1+&o'/io ') ]22(n), (26)

where coo=c/7~Q. This is Lame's equation" and three
simple solutions are provided immediately by the
ellipsoidal harmonics of degree one. These solutions
and their corresponding frequencies are

(i) 22(n) =Snn,

(ii) N(n) =cno,

(iii) N(n) =dnn,

~2 —~ 2 ~ 2/k2

oo2 io 2
oo 2(1 k2)/k2

o)'=0.

(27)

(28)

(29)

The solution sno, has nodes at the centers of the vortex
lines and corresponds to a frequency co&)coo. This
solution corresponds to the plasma oscillation described
by Josephson. e The effect of the magnetic field is
given by the factor k '. The solution cnn has a maxi-
mum amplitude at the centers of the vortex lines. It
may be regarded as a collective mode of the vortex
1ines. The frequency vanishes exponentially for low

"The relevant properties are given by E. T. %'hittaker and
G. N. Watson, Modern Anatysis (Cambridge University Press,
Near York, 1940), Chap. XXIII.

tan4L Qo(x, t)+2r]=exp) —(x—nt)/7'], (22)

slI1—Pyo(x, t)]=sng(x —vt)/IVk], n) C (23)

sm-,'Ly, (xt) ]=k snL(x —~t)/Z']. (24)

These solutions represent, respectively, a single vo1tage
pulse, a series of identical voltage pulses, and a series
of alternating voltage pulses passing through the
barrier. They correspond to the plasma oscillation
discussed by Josephson. '
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(us ——4&op exp (—m'H, r/4H),

= (2teo/~) (H/H. t),

II~+c

a)B,g.

fields and increases linearly for high fields'.

(30)

This dc current oscillates with respect to the spatial
coordinate and whether or not there is a net dc current
across the barrier will depend on the boundary condi-
tions at the edges. Choosing the solution (28) as an
example the condition for a dc current is

The solution (29) corresponds to a translation of the
vortex lines.

It is also possible to construct solutions of (26) for
general values of the frequency. The problem is similar
to that of an electron moving in a periodic potential
and the solutions have the same form as the Bloch
functions. The general solution" of (26) is

u(u) =$H(u us)—/0'(u) ]el', (31)

where H is an eta function and 0' is a theta function.
The quantity p plays the role of the wave vector and p
and the frequency are related to the parameter uo by

c0'= (ruo'/k') dn'uo p = —Z(us),

where Z is a zeta function. For small oscillations p
must necessarily be imaginary and the spectrum of
oscillations has two branches corresponding to Ap

in the intervals

0&us&iE'(k), E'(k) (us&E(k)+iK'(k).

These two branches correspond to the two types of
small oscillations (27) and (28), respectively. A typical
dispersion curve is shown in Fig. 1.

The simplest manner in which to observe these
oscillations would be to give the vortex lines a transla-
tional velocity n as in (11). It should be noted that (25)
is separable in terms of the variables x*=x—et, t*=

(%~)x. Wh—en one of the frequencies associated
with the translational motion of the vortex lines coin-
cides with the frequency of a collective state of the
vortex lines a dc current appears across the barrier.

V/Hd =c/c((2m+1) . (34)

Kck et al.m have observed such an effect correspond-
ing to m=0. For long barriers other harmonics may
also be observable. Their amplitude decreases like
(2m+1) s exp( —vrrsE'/E). The effect of damping is
easily included in (25). The solution is of the form
z(z]) =e+'"' O'I'&'N(x) and oP is replaced by ~s+ps/4 in
subsequent formulas.

Finally, we note that if (12) (with v=0) is sub-
stituted in (25) we again obtain Lame's equation. The
collective mode frequencies are now imaginary, in-
dicating that the solution is unstable. Small oscillations
around the solutions (23) and (24) may also be
investigated. Solutions of type (24) are unstable, at
least for long barriers, presumably against the formation
of vortex lines.

ACKNOWLEDGMENT

The authors are indebted to Dr. R. Hobart for some
valuable discussions and for bringing Refs. 8 and 9 to
their attention.

"R.E. Eck, D. J. Scalapino, and B. N. Taylor, Phys. Rev.
Letters, 13, 15 (1964). See also L M. Dmitrenko, I. K. Yanson,
and V. M. Svistunov, JETP Pis'ma V. Redaktsiyu 2, 17 (1965)
[English transl. : JETP Letters 2, 10 (1965)j.

(as = (2e+ 1)ere/2EXk,

where ts is an integer. From (15) and (16) this leads
to a relation between the average 6eld and voltage
which takes the simple form when H&B,~,

.


