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(4) The phonon-assisted transitions involve at most
one phonon of type TA, TO, or LO of the ZnS lattice.
Many fewer phonons are involved in the emission
process than in the corresponding absorption process.
The emission spectrum is not a mirror image of the
absorption spectrum.
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The well-known theory of tunneling in oxide diodes is the tunneling-Hamiltonian method, but this cannot
describe processes happening in the oxide layer. Some new experiments necessitate the treatment of the elec-
trons in the barrier as well. The author has elaborated a method using Green's functions to describe the whole
phenomenon in an iterative procedure. The starting point is the treatment of two other problems where the
metal on the left or right side of the barrier is replaced by an insulator. The current density in the barrier
has been derived for normal and superconducting junctions. The phenomenon in a magnetic field has been
treated using the microscopic theory, avoiding phenomenological considerations. The applicability of the
tunneling Hamiltonian has been investigated; by its use the total current may be calculated. This method
has proved to be very suitable for the problem of the anomalous tunneling between two normal metals with
paramagnetic impurities in the barrier.

I. INTRODUCTION

N recent years, the problem of tunneling between
. two normal or superconducting metals has been

investigated thoroughly in numerous experimental and
theoretical works. The theory of tunneling through a
barrier was first investigated by Bardeen. ' The general
formalism of the problem has been given by Cohen,
Falicov, and Phillips, ' who proposed the tunneling
Hamiltonian. This method has proved to be very
successful in the interpretation of experimental results.

In the tunneling-Hamiltonian method the barrier is
replaced by a mathematical surface, and the Hamilton-
ian describes processes in which an electron crosses the
barrier. This method is a rather phenomenological one
and fails to investigate the tunneling processes them-
selves. The diKculty in the elaboration of a new theory
describing the electrons in the barrier, as well, comes
from the choice of a set of wave functions that is com-
plete and orthogonal. This problem has been studied

' J. Bardeen, Phys. Rev. Letters 6, 57 (1961);9, 147 (1962).' M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.
Letters 8, 316 (1962).

very carefully by Prange, ' and the appli. cability of the
tunneling-Hamiltonian method has been proved in the
first-order approximation. A quite difI'erent approach
has been suggested by de Gennes, 4 who has derived a
generalization of the Ginsburg-Landau equation for
the tunneling processes. Recently, Josephsons proposed
a very suggestive method using Green's functions, but
it seems to us that the actual application of this method
is not simple.

Nevertheless, a few experiments have turned up in
which the region of the barrier plays a very important
role, for example, the geometrical resonance and bound-
ary eGect in a superconducting tunnel junction meas-
ured by Tomasch' and the electron scattering on para-
magnetic impurities in the barrier investigated experi-

'P. G. Prange, Phys. Rev. 131, 1083 (1963); in Lectures on
the Many Body Prowern, edited b-y E. R. Caianiello (Academic
Press Inc. , New York, 1964), Vol. 2.

4 P. G. de Gennes, Phys. Letters 5, 22 (1963).' B. D. Josephson, Advan. Phys. 14, 419 (1965).
'W. J. Tomasch, Phys. Rev. Letters 15, 672 (1965); 16,

16 (1966); W. J. Tomasch and T. Wolfram, ibQ. 16, 352
(1966).
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Fro. 1. The potential (a) of the original, (b) of the left prob-
lem, (c) of the right problem; and (d) the smoothed-out step
functions.

mentally by Wyatt and by Rowell and Shen. ' In addi-
tion, the proximity effect has a great importance in
tunneling.

A theory of tunneling between superconducting or
normal metals across an insulating layer is presented
here which describes the phenomenon in the barrier as
well. Green's functions are used to avoid the problem
of the completeness and orthogonality of the wave
functions as far as possible. The starting point is the
treatment of two different problems where the metal on
the left (or right) side of the barrier is replaced by an
insulator. In these problems, referred to as left and right
problems, the main part of the boundary effects has
been taken into account. This method may be applied
to the calculation of the current density in the barrier,
for it describes the electrons in the barrier as well.
With other methods, only the total current can be
calculated. Throughout the use of the current density,
the eBect in a magnetic field may be described in an
appropriate way.

The Green's functions of the original problem are
determined by the Green's functions of these two left
and right problems in an interative procedure (Secs. 2

and
F-t '(*, &') = (2't4-'(&) 6'(&') I ) (&)

where P is the field operator of the electron field. The
interaction of the electrons with electrons or impurities
is represented by the mass operator Z, which is calcu-
lated according to the special problem. We describe the
barrier as a potential V. For brevity, we introduce the
matrix notation for the Green's functions 6 and F,

(G

(Pt G)
(2)

where the superscript T denotes the exchange of the
arguments, and the spin indices will not be written out.

The equation of motion may be written as

(G-i —~)G=I (3)

where 60 ' is the inverse of the noninteracting-electron
Green's function, which is

and 3) . Jn Sec. 4 we give the calculation of the current
density in the barrier. These results are applied to the
josephson current (Sec. 5), and to the long-range order
in the Iosephson junction in a magnetic field (Sec. 6) .
We discuss the applicability of the tunneling-Hamilton-
ian method, and we conclude that the tunneling Hamil-
tonian is a powerful method for the calculation of the
total current (Sec. 7) . Finally, the possibility of higher-
order processes is discussed very brieQy (Sec. 8) .

2. THE MATHEMATICAL FORMULATION
OF THE PROBLEM

We must describe an interacting electron gas which
is divided by a potential barrier into two parts, called
the left (l) and right (r) sides. The height of the
potential barrier is greater than the Fermi energy for
an insulating oxide layer. We shall apply the method
of the thermodynamic Green's functions. The normal
and anomalous one-particle Green's functions intro-
duced by Gorkov' are

(i (ct/Bxo) + (V'/2m) +tt —V l0
!

i (8/Docs) + (V'/2m) +ts——V)

and
G '6=I

GG '=I
(3a)

(Sb)

7 A. F. G. Wyatt, Phys. Rev. Letters 13, 401 (1964).
8 J. M. Rowell and Y. Y. L. Shen, Phys. Rev. Letters 18)

215 (1966).

In this formula xo denotes the time variable and p, the
chemical potential. The de6nitions of the inverses are

where I is the unit operator. The second identity may
be proven by partial integrations.

The crucial point of our approach is the reduction
of the solution of the above-mentioned original problem
(o.p.) with the potential barrier separating the left

'L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl. : Soviet Phys. —JETP 11, 696 (1960)]; A. A.
Abrikosov, L. P. Gorkov, and I. E, Dzyaloshinskii, Methods of
Qnantnnt Field Theory in Statistical 3fechanics (Prentice-Hall,
Inc. , Englewood Clips, 'New Jersey, 1963).
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and right sides to the solutions of two other problems.
In the new problems, the electron gas is localized to the
left or the right side of the barrier, introducing appro-
priate potential wells (Fig. 1). These problems are
called "left and right problems" (l.p. and r.p.). The
potentials introduced are chosen in such a way that the
potential of the l.p. (r.p.) is equal to the potential of
the o.p. on the left (right) side and inside of the barrier.
The corresponding mass operators Z& and Z„may be
chosen in a similar way. These definitions may be
formulated mathematically if we introduce two
smoothed-out step functions h~ and h„corresponding to
the left and right sides, which vary only inside the

barrier /Fig. 1(d)7. Assuming the identity

hi+h, =1,
we can write'

V= kgVg+k, V„

Z =hiZg+h„Z„= Z„h„+Zonk(.

(6)

(2)

These equations are independent of the special choice
of the step functions, and we shall have to show that
all physical results are independent of their choice.

Let us introduce the Green's functions and their
inverses for the l.p. and r.p. by the definitions

l0
!—o(8/Bxp) + (V'/2m) +p —V j

(o(8/Bxp) + (V'/2m) +p V—
o

where n=l, r and

I'urthermore,

Gp 'Gp =I (9a)

3. THE ITERATIVE SOLUTION OF THE
GREEN'S-FUNCTION EQUATION

We take the Fourier transform of (14a) with respect
to time:

6 '=Go '—Z,

C 'C =I, - C.g. (9b)

It is easy to see from Eqs. (4), (6), (2), (9a), and

(9b) that the following identities are exact:

and
Go '=Gor'%+Go. 'k.,

6 '=6 'k+6 'h (12)

Inserting (12) into (Sa) and (5b) and multiplying by
G„and G~ from the left and right, respectively, and

using (9b), we get the following identities:

C(E) = C,(E)+Cg(E)
—-,'I (G,(E)6) '(E)k(—+r~l)G(E)

+G(E) (hgGg '(E)G,(E)+r~l) I, (14b)

to make the discussion of the physical base of our
approximation easier. "

Equation (14b) shows quite different characteristics
at small and large values of the energy variables. At
small values of the energy, the Green's functions G&

and G„are strongly localized to the left or to the right
side of the barrier. Only the tails of the Green's func-
tions penetrate into the barrier. In this case the expres-
sion in the bracket is very small, for it contains products

and

or

and

(h,+C„G) 'h)) G=G„-
C( h+ hg

C(-' C) =C„

r~l in (13a),

r~l in (13a).

(13a)

(13b)

(13c)

(13d)

"The sufficient condition of the given form of Z is that it
may be written in the following form:

& = &i+&.+&a,

where Z~ and Z™„arethe parts of the mass operator which are
well localized to the left or right sides of the barrier and Z~ is
localized to the barrier and its neighborhood. Furthermore, we
have to suppose that Z~ is a local function in the space

ZB (xix') =Zp (exp —xo )5 (x—x') .
Adding these four equations together, we get the

fundamental equation of our approach, where the
Green's function of o.p. is expressed by the Green's

functions of the I.p. and r.p. :

C=C„+6)—o I (G„G) 'k)+r~l) 6+6(hygr '6,+r~l) }.
(14a)

Our program is to give an approximate solution of this
equation, supposing that the transition rate of electrons
through the barrier is very small.

This condition is ful6lled if Z describes interaction of electrons
with impurities corresponding to the Hamiltonian:

H=grP t(R)g (R) Jg t(R)o origo(R)S, —
where P ~0.

@PE is the spin density and P tP is the electron den-
sity at the position of the impurity with spin S. In this nota-
tion we may write

Z) =Zg+Zg and Z„=Z„+Egg.

~'The definition of an arbitrary Fourier transform according
to time is

f(&) = dt f(&) exp(~E&).
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FIG. 2. The cutoff energy betvreen the top of the potential
barrier and the Fermi energy.

like G,Gi 'h~, which are proportional to the rate of
penetration into the barrier. Therefore, Gi+6„ is the
zero-order approximation to the Green's function near
the Fermi energy.

At high values of the energy variable, the effect of
the potentials V& and V, may be neglected. In this
case both of the two terms in the bracket of Eq. (14b)
are approximately the solution of Eq. (14b) itself. We
are interested in the solution of this equation only in

the Q.rst case, and it seems reasonable to solve the
equation by iteration starting with the zero-order
approximation Gi+6„.

To get rid of the physically uninteresting part of the
Green's functions with large values of the energy vari-
able, we apply a cutoff in the spectral functions of the
Green's functions at some energy between the top of
the potential barrier and the Fermi energy (Fig. 2).
The prime on the Green's function will denote that the
cutoff procedure is applied. It is worth mentioning that
Eqs. (9b) are to be corrected for the truncated Green's

functions. The corresponding new equations are

d4&"C -i(~ ~")C.'(x" *') =A(*, ~')

=b(gp —xp')8 (x, x') H~,

(15)

where the application of the cutoff results in a smeared-

out Dirac delta function D. Since the Green's functions
Gi' and 6,' are strongly localized to the left or right
sides, 8&' is very small on the right side and 8,' on
the left side.

Our fundamental equation (14a) after the application
of the cutoff is

C'(E) =«'(E) +C.'(E)
—l{(6.'( )6 '( )» )6'( )

+6'(E) (h)Gi '(E)6 (E)+r~I)}, (16)

where the terms in the bracket are small, because we

have supposed that the penetration of the wave func-
tion into the barrier is weak. By iterating this equa-

tion, we get some typical terms which we will now

investigate.
It will be useful to transform some terms, e.g., in

the following ways,

6'6 'hG'=C'({6 'h) +h 6 ')C'
=C„'LC(-'h)) C(+C„'h4D(, (17)

where we have made use of the identity (15), and L Q

{~.h.) =0; (19)

the identities in Eq. (19) are fulfilled if the mass
operators are local functions in that region of space
where the corresponding smoothed-out step functions
vary, i.e., inside the barrier (see Ref. 10) .

Inserting (18) and (19) into (17), we get finally

C„'6(—'h(G(' ——C„'(m '(V,h() 7;+2m '(Zh() )C('+C„'hQ.

(20)

It is easy to prove the following identity for another
typical term appearing in the iteration of (16):
6„'C) 'hiG„'

=C„'(6 —(aV( —aV,) —(hei —az„) )h)C„'

=D,htG, ' G,'(b V( A—V,) hiG, '—
—6„'(EZi—hZ„) h)G, ', (21)

where we have introduced the new notation

hV = V —V, and hZ =Z —Z, (22)

and the following identity has been applied:

6, '—Gi '= (Vi—V,)+(&i—&.), (2~)

which follows from (8) and (10). It is worth men-
tioning that hV& is different from zero only on the right
side of the barrier. Similar results may be obtained by
the exchange of the indices r and l.

The result in the first-order iteration of (16) may be
written as the sum of four terms with different physical
interpretations:

G'= 64'+6, '+bGr+bG +bG . (24)

We will give the order of the particular terms in
powers of the tunneling rate t. The tunneling rate is
the relative decrease of the wave functions at the
Fermi energy in the barrier:

t= exp{—
I 2m(V 14) )i~'d}—, (25)

where d denotes the thickness of the barrier and V is
the energy of the top of the barrier.

n

I
FIG. 3. The first-order diagrams corresponding to the tunneling

contribution of the Green's function. 8 denotes the barrier and
x denotes the current coupling.

denotes the commutator. The commutator in (17) may
be calculated using (8) and (10):
)G. ih-.) =m i-(VP.)0,+(2m)-iZh. —{i.h.), (18)

where the direction of an arrow above a differential
operator indicates the operand. The cyclic rule is to
be followed in the absence of an adjacent operand.

We suppose that the commutator on the right side
of (18) vanishes:
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The particular terms of the Green's function are:

(1) The tunneling term bG~,

(V~—Vy'I -,
SG, (x, x') = G,'(x, y) I

" "IG„'(y, x')
2m ];

—G,'(x, 3') I
'2 "IGi'(y, x') X(V„hi(y)),d'y,
2m

(26)

where h, is eliminated by h& using (6). In Appendix
A another form of this term is derived to eliminate
h~ as well;

bGr(x, x')

C((x y) l l
G.'iy, x') r~lI —d'f, :dy,

s
' (2m j;"

(27)

where the integral is taken on an arbitrary surface S
lying in the barrier. The surface element vector dF~,;
is directed from left to right, and it may be shown that
the value of this integral is independent of the special
choice of the surface S to a good approximation.
Namely, we can prove that that part of 5Gp which is
dependent on the choice of the step function h is similar
to the third type of correction 8G& (see Eq. (33) and
Appendix Aj, which is always neglected.

It is easy to see that this term corresponds to the
one-particle tunneling and therefore is proportional to
the tunneling rate t, and that its part depending on
the choice of h is of order P. These corrections give the
coupling between the Green's functions corresponding

aV.h.=h.wv. =o,
AZ h =h hZ =0.

(29)

(30)

Inserting (29) and (30) into (28) and making use of
(6) we have gotten rid of the smoothed-out step
functions h~ and h„:

8C~(x, x')

6„' x, y ~llf„y, y', ' y', x' r~l d4yd

Here we have introduced the new notation

(31)

h&III (y, y') =hV (y) 8(y—y')+hZ (y, y'). (32)

A certain part of BGg provides a contribution to the
proximity effect. RGB is proportional to the square of
the tunneling rate P, and is represented by the diagrams
in Fig. 4.

(3) Terms corresponding to the nonorthogonality:

to the two diGerent sides of the barrier by the current
coupling derived by Bardeen. ' They may be illustrated
by the diagrams in Fig. 3.

(2) The renormalization terms 8Gg due to the poten-
tial and mass operator corresponding to the opposite
sides;

bGg ———,
' IG,'(b Vg—aV„)h(G, '+G„'hg(aV) —A V,)G„'

+G, (~z,-~x,)I,G, +G, I,(~z,—~z„)G, }
+-', {r~l}. (28)

Using the definitions of hVg, AV„AZ~, and dZ„,
the following identities may be proven:

co(, ')= —-If 'i, ) ( )a(.. ') '+Jai, ) i ) 'i ') '

+J@'(~,x)&iix)D(x ~ )d s+f&(~'x)'l~(v)G'i& , ~'ipvj —li~~&i (33)

x~ BMOC

n
8 8ide

h
Gg

Fxo. 4. The diagrams corresponding to the renormalization
of the Green's function by the opposite side.

These terms are slightly dependent on the choice of
the smeared-out step functions. A careful analysis of
these terms shows that, this correction renormalizes the
one-particle wave functions inside the barrier and in
the neighborhood of it. These correction terms are very
strongly oscillating outside the barrier and quickly
damp with increasing distance from the barrier. They
are the effect of breaks in the orthogonality and com-

pletness of the used one-particle wave functions, dis-
cussed by Prange. ' Because this correction is like a
renormalization of the wave functions, the direct con-
tribution to current via (34) is zero, but in higher-order
approximations it might give a correction to the current
proportional to t'. We conjecture that the correc'ion
terms are concerned with some mathematical problems
of our approach and never with some real physical
problems. We will neglect them in the following.

We may get higher-order approximations to the
Green's functions in this way using the corrections of
the erst and second type.

The surface and the proximity e6ect may be taken
into account in two steps:

(1) The Green's functions G ' have been calculated
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in the case where the metal on the opposite side and
the barrier are replaced by a single insulator. In this
way, the decrease of the gap function near the barrier
and the surface e8ects have been taken into account.

(2) Actually, there is another metal behind the
barrier and this may cause a slight modification of the
gap function near the barrier. This can be calculated
in perturbation theory using the diagrams in Figs. 3
and 4.

4. THE t"URRENT DENSITY IN THE BARRIER

The current density in an arbitrary point x can be
calculated using the Green's function.

j'( )= lim I e((V„—V„.) /2m), G'( x, x') ) . (34)
x.&~go+0,xl',~x;

The zeroth-order approximation to 6 will not give
any contribution to the current density. Using the first-
order approximation to the Green's functions, we get
the leading term of current density, which is given by
diagrams in Fig. 5, where the lower-case j(x) represents
the current operator. The corresponding mathematical

expression is

dy pZ, (x, x') T;,(x'),

where T is the general symbol of the tunneling coupling.
The causal kernel E,(x, x') is calculated using the
causal Green's functions, but here we need the retarded
one. Investigation of the analytical properties of the
kernels shows" that the retarded kernel may be ob-
tained by shifting the poles of the Fourier transform of
E, below the real axis in the complex energy plane. If
the operator (C~R) stands for this operation, then
the expression of the current density is anally

j;(x)= d'f„„'
8

j;(x) = e d'f, „' dyp
S —CO

V.—V„, V,—V,iX
* "

6„'(x, y)
' '~ 6('(y, x) r~—l .2m; '
2m );r

(35)
In the statistical mechanics of nonequilibrium proc-

esses, the current density is calculated as a response to
an external force; in the present case, it is calculated
as a response to the tunneling coupling:

V.—V.~ -, , (V.,—V.,j,(g) = (C~R) e d'f, ' dgp'
*

~
6,'(*, x')

~

* 6'(x', x) r~l . —(37a)

The current density derived here satisfies the equation of continuity in the barrier. This can be shown by a
calculation similar to the one in Appen. dix A. We will return later to discuss t,he connection of (37) and the current
formula derived by using the tunneling Hamiltonian. "

A similar formula can be obtained in the case of an external magnetic 6eld:

j,(x) = (C—+R) e d'f„,;. dxp'

(g +i(e/c)A(x)g —$V i(%)—A(x)1) -, , (LV +i(e/c)A(x') j—(V .—i(%)A(x'))&x i l

alt (3'lb)—
J

~

where A(x) stands for the vector potential.

S. JOSEPHSON CURRENT

To calculate the actual value of the current, we have
to insert the matrix form of the Green's functions (2)
into the expression of the current (37). Then using
the symbolic notation T for the coupling constant we
obtain the following formula:

j;(g) = eI TG,'TGg'+ TF,'TF~t'I —eI r~lI . (3g)

It is well known that the anomalous Green's functions

are dependent on the special choice of phases and the
absolute value of the time arguments. Therefore we may
write

F '(x, x') = exp( 2ip xp) y—„'(x, x'; x,—x,')

X exp( —(2e/c) i&p ),

F t'(x', x) = exp(+2ip xp)p t (x x' gp —gp)

X exp)+ (2e/c) iy j, (39)
where p, is the chemical potential and y„ is the phase

u V. Ambegaokar and L. P. Kadanoff, Nouvo Cimento 22, 914 (1961);A. A. Abrikoaov et al (see Ref. 9). .
"See Sec. 7.
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of the pair wave functions on the a side of the barrier.
Here g (n=l, r) are independent of the choice of
phases.

The current density may be written as the sum of
two terms:

(40)
where

jN(x) = TG,'TG(' (r~—l)
is the one- article current densit and

'

(41a)

p

jz(x) = exp{2} (e/c) Ap+Apxsj} Ty„'Tygt'- (r&-+l)

(41b)

is the current density due to the pair tunneling, Grst
suggested by Josephson. " Here we have used the
notations

p p) pr ~~&

where V is the applied voltage, and

(42)

(43)
/

The actual value of the current density is given in
Appendix B.At zero applied voltage, the expression for
the current density reduces to the following:

Jj—JJ Q sinL2 (e/c) Dyj. (44)

6. JOSEPHSON EFFECT IN MAGNETIC FIELD

We will also very brieRy tres, t the Josephson effect
in the presence of an external magnetic Geld. This
treatment is based on the compensation of the long-
range phase modulation of the pair wave function Ii'
by an appropriate transformation discussed by the
author in the case of Quxoid quantization. " Inside
large superconductors the magnetic Geld vanishes; the
vector potential A; may be written as a gradient of a
function y, i.e.,

2,;(x) =V;q (x)+85,;, (cr=l, r) (45)

where 8A, ; vanishes except at the surface layers and
at the neighborhood of the barrier where the magnetic
Geld appears. It is useful to apply the following trans-
formation:

G '(x, x') =G, (x, x') expI —i(%) tq (x) —q„(x')$},
F t'(x, x') = exp(+2' xs) p, t'(x', x; xs' —xs)

)& exp[+i(%)Lq (x)+&p (x')]},
and

F '(x, x') = exp( —2' xs) $ '(x, x'; xs—xs')

&«xpt —i(&/c) 9-(x)+v-(x') j} (46)

This transformation has a form similar to that of a
gauge transformation; therefore, using the gauge-
invariant structure of our approach, it is easy to see

'4 3. D. Josephson, Phys. Letters 1, 251 (1962).
"A. Zawadowski, Phys. Rev. Letters 14, 557 (1965).

JC~J i(~)

ls Is
FIG. 5. The diagrams of the current density. S is the surface

occurring in (34) and j(x) stands for the current operator.

that in the system of equations for the Green's func-
tions of,the particular problems only 8Z occurs, and
in the system of equations of the original problem 82
and h&p(x) =y~(x) —y, (x) occur. 's Inside the super-
conductors, 6 and p satisfy field-free equations, and
so they are equal to the Green's function in the absence
of an external Geld and will be denoted by Go

' and
later in this section. We introduce a notation

similar to (45),

G =Go, '+&g. and 4„=ps, '+&&, (47)

where 56 and 8@ are the deviations from the Reld-free
Green's functions. These deviations are induced by the
vector potential hJ according to the Meissner effect,
and produce the current which cancels the magnetic
Geld in the superconductor and supplies the current
in the barrier. bA has to be determined in a self-
consistent way as discussed by I'errel and Prange. '~

This vector potential is small and therefore can be
treated in perturbation theory.

We can calculate the Josephson. current very simply
if we suppose that the phase difference Ay is slowly
varying in the barrier. " Inserting (46) into (41b) and
replacing Ay(x') by Ay(x), we have the formula for
the Josephson current density:

j~(x) = exP}2ei(c 'f)y(x)+Vx )}s
X Tgp, ,'Typ, g' (r~l) . (48)—

At zero applied voltage, this formula becomes more
simple as (B11) has been simplified to (B12):

JJ'(x) = Jz(x) sinL2(e/c) Ap(x) ), (49)

where some part of the phase shift Ay is due to the
magnetic Geld at the junction. If Iq changes by (s.c/e) e,
where e= &1, &2, ~ ~ ~, the Josephson current density
does not alter.

Ke will treat the connection between the direction
of the Josephson current and the magnetic Q.eld en-
closed by the junction which has been discussed by
Anderson. " In Fig. 6 we have illustrated a junction

"The variable x is taken on the surface S.
'7 R. A. Ferrel and R. E. Prange, Phys. Rev. Letters 10, 479

(1968).' The opposite case is discussed later in this section."P. W. Anderson, inLectures on the Many Body Problem,
edited by E. R. Caianiello (Academic Press Inc., New York,
1963), Vol. 2.
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FIG. 6.'Junction with penetration region of the magnetic Geld.
The arrows represent the direction of the Josephson current
density.

and the penetration of the magnetic field into it. The
penetration depths are denoted by X& and A,„, respec-
tively. The magnetic Geld may be found from the
magnetic field H (which is directed along the axis y):

(37a) would oscillate as a function of x'. In fact, this
eGect cannot be observed because the required magnetic
field would be comparable with the critical magnetic
Geld.

THE TUNNELING HAMILTONIAN METHOD

The tunneling Hamiltonian has been proposed by
Cohen, Falicov, and Phillips' to describe the electron
transitions through the barrier in a phenomenological
way. The Hamiltonian containing the Geld operators of
both sides of the barrier is

Hr = ~ Tq, q., ~,,aq, ~ aq, „+con].t

The transition amplitude T in the tunneling-Hamilton-
ian method has been Qtted to the electron scattering
amplitude corresponding to the transition from one
side of the barrier to the other. According to Bardeen's
investigations which are in agreement with our results, "
they are

A. (x, s) =f s„(xs)ds. , (50) t'V„—V l
&v,);, ~..= d'f, 'x), .r*(x)

~ ~ xz,,(x)
s & 2m j;

The appropriate transformations discussed before are
determined by the functions

q((x) = dx
SP

dzH„(x, z),

y(x) = dx dzH„(x, z),
0

(51)

where xo determines the boundary condition for the
relative phases. The corresponding change of the phase
difference between the points x2 and x~ is

x2 QO

Ap(xs) —Aq (xr) = dx
1 —CO

= Ay~(xs, xr),

dzII„(x, z)

(52)

which is the magnetic Aux enclosed by the dashed line
in Fig. 6. The Josephson current is unaltered if the
Aux changes by ~Jr s, where p&, s

——7rc/e is the flux
quantum, as has been found by Anderson. "The current
density (49) and the phase difference (52) determine
the total current as a function of the enclosed magnetic
Geld, which is similar to a Fraunhoffer interference-
pattern formula.

It might be expected that a similar interference efI'ect
would occur in the local current density at a axed
point x. Qne of the electrons of a tunneling pair crosses
the barrier at point x, but the other one crosses some-
where else in the region of the coherence length around
the fixed point x. The phase difference for the second
electron might strongly vary as a function of the tunnel-
ing place if the magnetic Geld were strong enough.
Then the integrand of the current density expression

~ 3. D. Josephson„Rev. Mod. Phys. 36, 216 (1964).

1'&,x; l (53)

where the y's are the one-electron wave functions.
The value of the total current is the same if we

calculate from the tunneling-Hamiltonian method22 or
from the present Green's-function method. However,
we need not automatically expect corresponding agree-
ment in the case of the energy density. "

8. HIGHER-ORDER PROCESSES

A diagram technique is proposed in Sec. 3 which is
similar to the one suggested by Josephson. s The typical
structure of the nth-order diagrams is illustrated in
Fig. 7.

The contribution of the fourth-order diagrams to the
tunneling current has been calculated by SchrieGer and
Wilkins. '4 In the processes calculated by them one pair
has been broken up and two electrons have tunneled
through the barrier. Such processes were Grst observed
by Taylor and Burstein" as peaks in tunneling charac-
teristics. Recently, 2A/rs structure has been observed. 's

These processes may be interpreted as the breaking of
one pair and the tunneling of e electrons in the same
quantum-mechanical process.

"See Appendix B.
~ Our results may be compared with, e.g., those of V.

Ambegaokar and A. Barato8, Phys. Rev. Letters 10, 486 (1963);
11, 104 (1963).

~ Recently, K. L. Ngai, J. A. Appelbaum, M. H. Cohen, and
J. C. P&illlps LPhys. Rev. (to be published) g investigated this
problem and have concluded that the tunneling Hamiltonian
is accurate for the calculation of the energy density as well.~ J. R. SchrieBer and J. W. Wilkins, Phys. Rev. Letters 10,
17 (1963).IB. N. Taylor and E. Burstein, Phys. Rev. Letters 10, 14
(196').

~I. K. Yanson, V. M. Svistunov, and I. M. Dmitrenko, Zh.
Eksperim. i Teor. Fiz. 47, 2091 (1964) LEnglish transl. : Soviet
Phys. —JETP 20, 1404 (1965)g; S. M. Marcus, Phys. Letters
19, 623 (1966);20, 236 (1966).
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We may argue that there is no reason to suppose that
there would be a great diGerence between the ampli-
tudes for the break of one or several electron pairs in
processes of the same order. The proposed process is
the breaking of p pairs and the tunneling of I electrons.
The voltage threshold of these processes is eV=
26(p/e), due to the conservation of energy. The experi-
mental results of Rochlin and Douglass'~ may be inter-
preted as a 2b, (p/I) structure in the tunneling charac-
teristics, as is discussed elsewhere. 28

It must be stressed that the proposed method is not
correct to any order, as the erst term of the Green's
function in the iteration procedure given in Sec. 3
contains unphysical corrections of higher order to the
lowest nonvanishing one. It seems reasonable to sup-
pose that if we consider only the leading corrections of
the higher-order processes and neglect the unphysical
corrections, we will obtain the interesting contributions
of these processes. On the other hand, the amplitudes
of the higher-order corrections strongly decrease as the
order increases. Therefore the processes of this type
may be much more intensive if the transitions of the
electrons through the barrier occur at some imperfec-
tions of the barrier. In the last case our approach can-
no t be applied.

9. CONCLUSION

A many-body treatment of the tunneling processes
has been elaborated. The present approach has dealt
with the behavior of the electrons in the barrier, as
well. The Green's functions have been calculated by an
iteration procedure. The contributions to the Green's
functions in the lowest approximation might be classi-
fied into three di Gerent groups:

(1) The tunneling term 56r which describes the
electron transition through the barrier";

(2) the renormalization term 56n for the metal on
one of the sides due to presence of the metal on the
opposite side; and

(3) the term 56& due to nonorthogonality and non-
completeness of the wave functions. "These terms are
dependent on the choice of the step functions intro-
duced in Sec. 2. These terms have been neglected.

We have found that only the term of the first type
gives contributions to the current density in the barrier.
We may conclude that our approach, computing the
current density, is correct to order P. The advantage
of working with the current density occurs in the conse-
quent treatment of the electromagnetic properties of
Josephson junctions.

"G. I. Rochlin and D. H. Douglass, Jr., Phys. Rev. Letters
16, 359 (1966).

~ A. Zawadowski, Phys. Letters 23, 225 (1966).
w The term Gr —Gr, n would be better described as the tunneling

term. See Appendix B.
Is According to Ref. 35, it is correctly Gn+ Gr, n.

FIG. 7. Typical nth-order dia-
gram. 8 denotes the barrier and
the circles stand for the diBerent
Green's functions 6, F, and F+.
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In a few cases, the description of the electrons in the
region of the barrier is very important. One of them is
the geometrical resonance e6ect discovered by
Tomasch" where the surface and the boundary eGects
play important roles. This method may be very power-
ful in the discussion of this effect, because the boundary
and surface effects could be taken into account in the
solution of the so-called left and right problems and a
direct calculation of the tunneling current becomes
possible using the solutions of the particular thin-film
problems.

Recently, some new tunneling anomalies have been
discovered, " and Anderson" and SuhP4 have called
attention to the Kondo scattering in the barrier as the
possible explanation of this effect. Appelbaum'5 has
calculated the tunneling current using the tunneling
Hamiltonian. Recently, Solyom and the author have
applied this Green's-function method to this problem, "
summing up a wide class of diagrams The resonant
scattering on the paramagnetic impurities has been
taken into account by finding the solution of the par-
ticular left and right problems considering also the
paramagnetic impurities.

Finally, it has been concluded that the phenomeno-
logical tunneling Hamiltonian can be applied to the
calculation of the current in those cases in which the
barrier eGects are not important.
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APPENDIX A

We have derived the turineling term of the Green's
function, but (26) contains the smoothed-out step func-
tion h ~. Ke must show that 66z is independent of the
choice of h~ to a good approximation. The following
expression is to be calculated:

P/», (y) ]SCz (x, x'), if yP 8 (A1)

or taking the Fourier transform with respect to the
time variable,

C &/»r(y) ]&Cr'(x, x'; E), if y6 B. (A2)

A straightforward calculation gives the derivative

V, , ;{C,'(x, y; E)

X ((V,—V,)/2m), G„'(y, x'; E) —(r+-+l) }, (A3)

or

{G (x y ~ E) ((& —& )/2~)G„'(y, x'; E) —(r~t) }.
(A4)

%e express the Laplacian operators by the inverses
of the Green's functions, using (8) and (9):

~./2~= (E+~ ~(y) ——~~(y; E) )+G='(y; E),
(AS)

where we made use of the structure of the mass opera-
tor" and the arrow above a diGerential operator indi-
cates the operand.

Inserting (AS) into (A4) and using (15), we get the
following formula:

p/»i(y)]~C, '(x, x'; E)

= {«'(x,y; E)&,(y, x') —A(x, y) C„'(y, x') I
—{r++&}-

=9/»i(y)]&Cr, ~(x, x'; E),
where we have introduced the new notation

8Cr,o(x, x'; E)

(A6)

{C&'(x, y; E)D„(y, x') —D&(x, y) G„'(y, x', E) }

X~ (y) d'y —(r t).
We may conclude that 86+ could be cut into two

parts boz —bGz, ~ and 60z,~. The erst term contributes
directly to the physical quantities (e.g. , current den-
sity), but the second one is similar to 8G&, which is due
to the break of completeness and orthogonality. In Sec.
3 we neglected the contribution 5GD so we do the same
with 86&,&. Finally we conclude that 86& is independent
of the choice of h~ in this approximation.

APPEND IX 3
The tunneling current can be obtained by computing expressions (41a) and (41b) .
The Green's functions may be expressed by a complete set of appropriate one-particle wave functions:

C '(x, x') = Q x)„(x)C)„„(xp—xp') x)„*(x).

The spectral representation of the normal and anomalous Green's functions are"

1 S(y,~G„'(E)= dt exp(iEt)Gg, .'(t) = do) "'. + "'
~
g), (&p),E M+zp . E—

pp ——zpj

(E) = dt exp(iEt)P„, (t) = d(a '. + '
Bg ((g),E pp+1p . E p0 —M—

Where t= Xo—Xo', and
~.,.(E) =@,.'(E),

I„.= {expt P( —~.)]+1}-&.

(&3)

(B4)

Here the spectral functions A„(a&) and B,(co) are real. The current density may be expressed by the Fo
transform of the causal response function

j;(x)= lim (C—+R) d'f„. ,;, dt exp(i Et)E., ;(x, x') T;.(x') .

We calculate erst the one-particle current using (37) and (B1)—(BS) and introducing the transition mstrix
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elements

(V —V„
T), ,~;;,k,.(x) =x), , P(x)

~ x~,.(x)
2m

= —T*~,x, ,x(x), (86)

T)z)z', r, k= C frr, kT), )i', k, r, k(X )
S

Tx',x;r, l

The current density calculated in a straightforward manner is

j& k(x) =2lirn (C~R)(, dt exp(iEt) {gT), z. ; &,,(x)G), ,„'(t)G), , & ( t) T),,x', r, k (&~&) I
E~O

dE'
=2 1(m (C R)e P rz, z, ;,z„(x)rzz ...z Gz(R +R,)Gr'z(R') —(r 2)I

$~0 X,X~ 2~

(87)

=2i lim (C~R) e g Tq. ,),, ;,k,r(x) T),,), ,„,k Cko"A)„r(kd") do&'Av, k(k2')

(
(1—e„"„)e„.,g ne-, r(1—m„,k) &,

R+ ' —"+z R+ ' —"—z I

S ', ~ fI~», &=2i lim e g T), ,q, ;, k „(x)T), ,)(..r ~ d(d"A), ,r(&o") dk2'A). ..k(k0') ', „' . —(r~l)
zp xM E kz) kz) 16

where the factor two is due to the spin orientations. Finally we have

Neo& g
—1$&& &

j&,;(x) = —4e Im Q T), ,)„.;, k,r(x) T)„), ,r, k d(u"A)„r(a&") Cko'A),
, k(cv')

X,XI

(88)

(89)

jN„(x) =42re Q T). ,)., k, k,r(x) T );), rk d~A), ,r(~) A), k(~) (e„,k—em, r).
),X~

The Josephson current density can be calculated in a similar way and the result is

(810)

jg, ;(x) = —4e Im exp{2ie(c 'Akp+ V@0) }gT)(.,)„.;,2,r(x) Tq, )...r, k &"B),r(+")
'+to', l +a)",r

dk0'B), , k(a)')
kz) k0 ZR

= Js, , (x) sint 2e(c 'Akp+ Vxo) $+Jo,; (x) cosL2e(k,-'5p+Vgo) ),
where we have introduced the notations (42) and (43) and the amplitudes Jqv and Jov.

At zero applied voltage we have a much more simple expression of the Josephson current:

(311)

Sg)& I

jZ, ;(X)= —4e Sin} (2%)dyj g T), ,)„.;,&,r(X) T)„),,r, & Ck2"B)„r(kd") Ck&'B)...&(k0')
X,V

= Jg,o, ;(x) sinL2(e/k;) hy],

where e =n„,„=n„,g and JJ,O)0.

(312)


