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Quantum-Mechanical Model of Mossbauer Line Narrowing*

SAMUEL M. HARRzs

Department of Physics, Pnrdne University, Lafayette, Indiana

(Received 29 May 196/)

A model for Mossbauer radiation is developed which includes both radiation and lattice-relaxation
processes. The model describes an initially excited nucleus in an excited lattice. Both radiation and relaxa-
tion phenomena are treated in lowest order, so that a quantum-mechanical solution is possible. It is found
that under certain conditions, Mossbauer lines result which are narrower than the natural line, although
line broadening is the more usual eGect of lattice relaxation. The maximum narrowing in this approximation
never exceeds 36% of the natural width.

ECENTLY, Bash and Nussbaum' proposed that
it might be possible to observe a. narrowing of a

Mossbauer line due to lattice relaxation phenomena.
They consider a radiating Mossbauer nucleus which
is vibrating in a long-lived localized mode. It is as-
sumed that the vibrational amplitude is initially greater
than the equilibrium value. As time progresses, this
amplitude damps down to the equilibrium value with
some characteristic relaxation time. Since the recoil-free
fraction f depends on the amplitude of vibration, the
emission of a recoilless photon becomes relatively more
probable as time increases (as the vibration amplitude
becomes smaller). They argue that the effect of this
relaxation mode is to impose an additional time de-

pendence on the usual amplitude for recoilless photon
emission. They predict line shape narrowing in cl/

cases and under certain circumstances, the resulting line

may attain a limit of zero width (although, unfortu-

nately, with zero intensity) .
Although their treatment is simple, it is open to some

serious criticism. Since there exist two competing mech-

anisms, nuclear photon emission and lattice relaxation,
it is not clear that one can simply consider the photon
to be modulated by the relaxation process as they have
done. Also, it is dubious that one can simply use the
positive square root of the time-dependent recoil-free
fraction when calculating the photon amplitude. In
particular, we Gnd that the phase of the recoil-free
amplitude (the square of which gives the recoil-free

fraction) influences the line shape greatly. We have
constructed a simple model which includes both photon
emission and lattice-relaxation processes and has the
added advantage that it possesses a quantum-mechani-

cal solution.
We consider a nucleus in a two-state lattice. If we

allow the nucleus to possess one excited state, then
there are a total of four possible states for the system,
lattice and nucleus both excited, both in their ground

states, etc. For the sake of simplicity, we will consider

space to be one dimensional although our conclusions

will in no way depend on this restriction. Units are
chosen so that S=c=1.
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The lattice relaxation is handled by introducing the
phonon concept. The lattice de-excites by phonon
emission which allows energy conservation. We con-
sider a Hamiltonian,

H =Hp+H, +Hp.

Hp contains the pure-nuclear, pure-lattice, and free-
photon and phonon-radiation-Geld Hamiltonians. H7
is the interaction term which leads to photon emission
(nuclear de-excitation); Hp leads to phonon emission
(lattice relaxation) . Eigenstates of Hv ale easily written
since Hp is completely separable into nuclear, lattice,
and radiation parts. An eigenstate is represented by a
four-product wave function. The operators H~ and Hp
are responsible for transitions between eigenstates of
Hp. Hp has nonzero matrix elements between states
which differ only in phonon and lattice composition.
H~ matrix elements are nonzero for states which differ
in nuclear and photon quantum numbers and may
or may not differ in lattice composition. If the lattice
quantum number does not change, we are led to recoil-
less photon emission. If the lattice quantum number
changes, we obtain photon emission accompanied by
nuclear recoil.

We consider our system to be initially in an eigen-
state of Hp in which both nucleus and lattice are ex-
cited with no photons or phonons present. Only those
amplitudes will be considered which are of zeroth or
Grst order in phonon and photon coupling constants;
we never consider states with more than one photon
and/or phonon present. We rationalize this limitation
on the basis of the weakness of the coupling constants
involved. This approximation is the usual one for
photon emission. Since we expect the interference be-
tween lattice relaxation and nuclear de-excitation modes
to be most signiGcant when the lattice-relaxation time
and nuclear lifetime are comparable, it seems consistent
to limit ourselves to one-phonon states also.

We must consider six amplitudes which correspond
to eigenstates of Hp..

both nucleus and lattice excited, state vector
I E'L*);

8„,nucleus de-excited, lattice excited, photon present
with momentum p, I El.*p);
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C~, nucleus excited, lattice de-excited, phonon k,
I N*Lk);

Doq, nucleus and lattice de-excited, photon p, phonon
k, INLpk);

Fo, nucleus and lattice de-excited, photon p, I NLp);
G„s, nucleus de-excited, latt. ice excited, photon p,

phonon k, I NL*pk).

The energy scale is 6xed by taking the state
I
NL) to

have zero energy. Nuclear and lattice-excitation ener-
gies are denoted by co~ and col., respec'ively. The ener-
gies associated with a photon of momentum p and a
phonon with momentum k are co„and orI, .

We approach this problem via the time-dependent
Schrodinger equation,

(Ho+H )+(t) =i(~/~t)+(t) (2)

We attempt a solution in terms of eigenstates of Ho,

+(t) =Z -(t) -(t) (3)

(oo t—oz, t—o,+is) B„(oo)

=A(~)(NL*p IH INeLe)

+Q Dos(to) (1VL*p I Hp I NLpk),

(to—totv —too+«) Cs (&)

=A(~) (N*I.k
I H, I

N*I*)

+gD„( )(N*Lk IH„INLpk)

+Q G,s ((o) (N*Lk I H, I NL*pk),

(to too—toy—+te) Dos (co)

=B,(~) (NL,pk I H, I NL*p)

+Ct, (oo) (NLpk I H~ I 1V*Lk),

(M —co&+«) F&(oo)

(Sb)

(Sc)

(Sd)

where

Hollo (t) = v (t). (4)

a„(t) = —(2ori)
—' dho expLi(to„—oo) t]a„((o), (6)

then Eq. (5) becomes

( — + ) ( )=Z ( )(v, H'~ )+4 (&)
m

The introduction of +is in (7) insures that the system
will display the correct behavior for t(0 and leads to
the proper causality conditions.

This formalism is easily applied to the current
problem. We obtain six coupled equations using (7),

(to—to~ —cor,+«)A (oo)

=1+2 Bo(oo) (NoLo
I Hv I 1VLoP)

+Q Cs(oo) (1V*L,* I Hp I N*I.k)

+ Q F„(oo) (N*L* I H, I NL p), (8a)

' W. Heitler, The Quantum Theory of Radiateon (Oxford Uni-
versity Press, ¹mYork, 1954).

e S. M. Harris, Phys. Rev. 124, 1178 (1901).

Upon substitution of (3) into (2), we obtain a coupled
system of diGerential equations for the amplitudes,

ia„(t) =g tJ (t) expI i(to„—to ) tj(q„, H'&p )+i8„ob(t).

(5)

In (5), the time dependence of the matrix element has
been explicitly displayed. The inhomogeneous term
expresses the boundary condition that a„(0)=8„o, at
I,=O, the system is in the pure state denoted by the
index 0. H' is the operator that leads to transitions be-
tween eigenstates of Ho.

It is simpler to use the Fourier transform of (5) than
the diGerential equation itself."If we introduce the
Fourier transformed amplitudes u„(to) by

=A (oo) (NI.p I H, I
N*L*)

+QG„,(~)(NL,p IH, I NL, *pk),

(to Gor,
—too —tos+«) Goy (to)

=C,(~) (NL*pk I H, INoLk)

+F„(to)(NL*pk I Hp I NLp). (8f)

These equations can be written more concisely if we
introduce the following definitions:

(Np I Hv IN*)=v,

(Lk I Hp I L*)=P,

(NL'p I H„ I
N*I*)=f„&,

(NLp IH, IN*L*)=f-v,

(NLp I Hr I N*L)=f~ry.

(9a)

(9b)

(9c)

(9e)

Here 7 and P are the photon and phonon radiative
matrix elements, respectively. The square of the mag-
nitude of fn and for yields the recoilless fractions for
photon emission from lattice states L* and L,. The
square of the magnitude of f» yields the fraction of
off-resonance photons (emission accompanied by nu-
clear recoil) .

It is shown in Appendix A that fn and fss are real if
the lattice wave functions are eigenstates of parity.
Furthermore, we have

(10)

where m is the product of the parities associated with
L and L,*.If L and L* have the same (different) parity,
then rr=+1( —1).f» can always be made real by a
proper choice of relative phases of lattice wave func-
tions. Assuming that the matrix elements do not de-
pend strongly on the momenta p and k, we can take
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them outside of the summations, so that (8) becomes

((0—
CON

—COL+ZE)A = 1++ fll g By+p g f k

p k

+y*f22 Q Fy, (11a)
p

(N —ML Cd—y+$f) By——A rfll+p* Q Dyke

(M CON G)k+26) Cl; Ap+ t f22 g Dyk

+y*f,22r Q Gyk, (11c)

(11d)

(11e)

(kl cry ~—k+ik) D,k =pBy+yf22Ck,

(cg kly+ik)—Fy =yfi2A+lrp Q Gyl

A(~) =L~ loN ~L+22(pr+~P) j
B (&) = tfu[~ klL &y+22I P3

Xp~ ~N ~L+22(I r+I P)? ~

(12a)

(12b)

Ck(co) =pfkl &N krak+— 2~I r]—
XL(g—lyN —(uL+2'z(I', +I's) j ', (12c)

D„(~)k= (pB.(~)+Yf22Ck(~) )I ~—~y —~k+i'j '

(12d)
F.( ) =~f I .+ 'iI's—j '-

XL~—coN —coL+2i(I'r+I'p) j ', (12e)
and

Gyk(~) =(vf C 22( k)+~p Fy(~) )L~ "L "y "k+'~3— —

(12f)

In the above, I'~ and Fp are the natural radiative and
lattice linewidths. The nuclear lifetime is rr= 1/I'„.
The lattice-relaxa, tion time is rs I/I' s. We ——are in-

terested in the Fourier transforms of these amplitudes
at large time (t~~). The time-dependent amplitudes

may be calculated from (6) using (12.a) —(12.f) . Thus,
for example, I A(t~~) I' is the probability of finding

the state I
1V~I.*) populated at large times. All Fourier

transforms can be evaluated easily by calculating resi-

dues, since only simple poles enter into our integrals.
Looking at (6), we see that at t~+~ only those

terms will survive for which (ar„—co) does not contain

and

((a (gL (y —idk—+is)—G„k pfl2rrCk——+p*lrFy.

Everywhere Gpz occurs, it is preceded by x so that we

can redefine this amplitude mGpA~Gpg. Making this
substitution, x explicitly disappears from our set of
coupled equations.

These equations can be handled in a manner similar
to the treatment used in our earlier discussion of time-

dependent Mossbauer transmission. ' Details of the
solution of (11a)—(11f) are given in Appendix B. The
results are

a positive imaginary part. Thus a pole for which ~
has a negative imaginary part will not contribute to
a„(t~~). If we return to (12), we see that all poles
in A, Bp, CI„and Fp lie in the lower half-plane, so that

A(t—+~) =B,(t—+~) =Ck(t—+~) =F„(t +~)—=0.

(13)

The amplitudes Dpy and GpI, each contain one pole in
the lower half-plane which moves up to the real axis
as e—+0. These amplitudes will therefore remain finite
as t—&~.

To obtain the time dependence of D, we must
evaluate

Dyi(t) = —(2~i) '

expI it((ay+&uk —ko) j
( —.—.+ )( — —.+ ~,+l'-i)s

~y+2l'I P) (~—~N —&k+2iIr)

All poles are in the lower half-plane. For t&0, we must
close our contour of integration in the lower half-plane.
I For t&0, we must close our contour in the upper half-
plane which contains no poles, so that D(t&0) =0, a
requirement of causality. j At large time, only the pole
at cv=idy+&vk ie wh—ich is very close to the real axis
can contribute. The result, after performing the inte-
gration specified in (14), is

D»(t~~) =py(~„+~k ~N ~L+2irr)-
Xt f„((uk ceL+ ,'iI's—) '+f -(~, ~N+ ',il',—) 'j-—

(15)

where I'r ——I'r+I's is the total width for decay from the
initial state. The probability of finding the nucleus and
lattice both de-excited at large time with one photon p
and one phonon k present is given by the square of the
amplitude in (15). Since we only observe the photon,
not the phonon, we must sum over all unobserved
phonon states, k. The same techniques are used in
performing the k sums here as in Appendix B. The
result is

I'„
Z ID»(~) I-'=

f2 (I' f22+I'sf ) (fu —f )fbi(1', +2rs)
(~y ~N) +41 r (~y ~N) +k(I r+2I S)2

(16)

The spectrum given in (16) is the sum of two Lo-
rentzians centered aboiit the natural frequency co&.
The first term gives a line of width I'~, the natural line-
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width. The second line is broadened to rv+2r~ by
the effect of lattice relaxation. This result can be
written more concisely if we introduce the parameters
a=re/r, =r,/rp, x= ((o„»—)/r„and n=fu/fss,

~(x) =2 I
D"(") I'= (1+~) '

21 ~L

X,+(a+a) o.(n —1) (1+2a)
17

x'+-,' x'+ -', (1+2a) '

In a similar manner, we can evaluate the photon dis-
tribution due to G„A,,

RIG:(~-) I =I
& rrp fu'

&r,yr, 2L,

xII ( »—+ z)'+-'r'j '+I (r +2rp)/rpj

xL( „—~—,) +-', (r,+2r,)'j- }. (18)

1.0

0.9

0.8

0.7

04

0.2

O. I

+a= I

a= I/2
a=/- I/4

This is the probability that the nucleus is de-excited,
lattice excited, photon p, and an unobserved phonon
present at large time. Since we have limited ourselves
to one phonon processes, there is no mechanism avail-
able for the lattice to relax back to its ground state.
The amplitude 6 yields two lines centered about
~„=~N&~g. These are the nonresonant lines corre-
sponding to one-phonon transitions. In addition, there
is a cross term present in (18) which we have dropped.
This latter contribution will be small if the two lines
included in (18) do not appreciably overlap.

Returning now to the expression for resonant emis-
sion, (17), we see that the special case of o, = 1 leads to
an especially simple result,

Z(x) =(fess!2r,L) (x'+-') ' (for n=1). (19)

This is just the natural line shape which would be ob-
tained in the absence of lattice relaxation (ran= a=0) .
Similarly, we obtain the natural line shape if u= ~.
This case corresponds to immediate lattice relaxation,
so that resonant photon emission always occurs while
the lattice is in the ground state. For other combina-
tions of e and 0., we can obtain lines which are either
narrower or wider than the natural line. 4

For a true two-level lattice, we must have
I fu I=

Ifss I (Appendix A), so that n=&1. In the previous
paragraph, we saw that o.=+1 leads to the natural
line shape. For the other possibility, n= —j., the line
is always broadened. The line shape is plotted as a
function of x for various values of u (a = —1) in Fig. 1.

By linewidth, we mean the maximum width of the line be-
tween points with amplitude equal to half of the central ampli-
tude. Because our line shape is in general not a simple Lorentzian,
alternative definitions may be used. We could have used the max-
imum width between points with amplitude equal to half of the
maximum amplitude (since in some cases maximum amplitude
does not occur at the central frequency) or the width which
includes half of the area under the spectral curve. For a pure
Lorentzian, all of these definitions yield the same width. The
choice of definition may alter our numerical values slightly,
but the qualitative results do not depend on definition.

0
0

I

I.o
I

2.0
-0—

I

3.0

Fzo. 1. Resonant line shape as a function of x= (~—co~)/I'~
for various values of a (o.= —1). All curves are normalized to
have the same value at x=0.

A 8
Z(x) =,+x'+-', x'+,—' (1+2a) '-' ' (20)

in analogy to (17).The coeKcients 2 and 8 are given

The curve for a=0 corresponds to the natural line shape
of width I'~. For 0&a&1, the line has a double hump
with a minimum at x=0. The case a=i corresponds
to a pure Lorentzian of width 31~. For aQ 1, we obtain
a non-Lorentzian line peaked at x=0 (only one maxi
mum). The linewidth varies between r~ and 3.3r .
In this case, the line can only be broadened by lattice
relaxation.

If we were to relax our conditions on the matrix ele-
ments so that

I fu IWI fss I would be allowed, then our
formalism could piedict narrowing under certain con-
ditions. We would expect

I fu I+ I fss I, since the recoil-
less fraction should be larger for states of lower excita-
tion. We would then be interested in cases for which
I
n l(1.The linewidth as a function of a is plotted for

various values of o. in Fig. 2. It is apparent that
narrowing is only possible for 0.)0. The minimum line-
width possible is 0.869t', which occurs for a=0.238
and @=0.108. Thus even though narrowing is possible,
it is a small effect, never larger than about 13%%u~. The
condition

I fn IWI fs2 I
might arise in the multilevel

lattice where only two levels are important for resonant
emission, so that our formalism still applies.

A calculation of the multilevel lattice has been per-
formed in the same approximation as above, namely,
considering only amplitudes up to first order in photon
and phonon emission. The calculation and results are
similar to the two-level case. The resonant line shape
is given by the sum of two Lorentzians,



SAMUEL M. HARRIS

as complicated sums of products of photon and phonon
matrix elements between all permissible levels and
are strongly model-dependent. In this case, a is the ratio
of total phonon width to photon width.

If A, B, and a in (20) are treated as independent
parameters subject to the constraints that Z(z) is posi-
tive de.nite and a&0, then one Gnds narrowing only
when A&0 and B&0. The minimum obtainable line-
width is 0.644I'„a reduction of 36%. Note that this
narrowing is greater than the optimal 13% effect for
the two-level system. In the latter case, A and B were
determined by a and n, so that A, B, and a could not
be varied independently. Also, the condition ! ei &1
restricts the possible value of A and B for given a.
Consequently, it is possible that slightly sharper lines
will result for the multilevel system, but narrowing
should not exceed 36%. The effect of higher-order
phonon processes (multiple phonon emission) is difli-
cult to estimate. Models which can deal with this ques-
tion are now being considered.

APPENDIX A

The amplitude for photon emission (momentum p)
accompanied by a lattice transition from state i—+j is
proportional to'

f'=(j Ie '" lz). (A1)

If we assume that the lattice states are eigenstates of
parity, then

Z! z) =~;!z), ~;=~1. (A2)

This situation would exist in our simple model where
we consider the lattice to be one nucleus bound in a
potential well. Using (A1) and (A2), we obtain

f,~*=(jIe—'" Ii')*

= (z I
e'"*

I j)

APIENDrX S
We will solve the set of Eqs. (11a)—(11f). We use

(11d) to eliminate the amplitude D„k from the remain-
ing equations. From (11d), we get

Dpk = (M My Mk+zs) +By+'Yf22Ck).

Substituting (81) into (11b), we obtain

(81)

(M Ml, M&+«—)B~-
=~Vf»+P g (M Mz Mk+—«) PBz+Vf22Ck).

(82)

B„is independent of 0 so that the 6rst sum is simply

GO
—

GO&
—

GOp Z6

This sum can be handled by converting the sum to an
integral (plane waves normalized in a length J.)

(0—GOy
—

GOA; Z6
—1

co

dk (M M„Mk+i —s) 1— —
2X QC2

Q

dk (M —M„—Mk+zs)
—1

f»(zrlzrsf»+f») =0.
In the above, we have used the result that fll and f22
are real and that phases can be chosen such that f12
is also real. If f» ——0 (only recoilless emission is pos-
sible), then (A6) has a solution f», f»=&1. If f»~0,
then f22 ~12rs fll. Thus in both cases we have

11 22 ~ (A7)

7l $7l j j$~ (A3)

If we consider diagonal components, then i =j', and
r

Q

dMk(M My Mk+zs)

tc JAp (A4)
OO

dMk (M —
M& —Mk+ 22)

OO

the diagonal amplitudes are real.
Using the completeness relation, P~! zzz) (zzz! =1,

we can show that
dMkP (M My Mk) —zlr8(M —

M&
—Mk) j.

pf; *f; =g (zzz I e '2"!i)* (21z I e '2'
I j)

m m

=Q (z I
e'&*! zlz) (zzz [ e

—'~*
I j)

(83)

g (M M„Mk+«) ' —ZL. — — —
k

(84)
For the case of a two-level lattice (A5) yields three
relations among the f's, Using (84), we can write (82) as

The principal value integral is usually small and con-
tributes a line shift which will be neglected. Thus we

(AS)

fll + 12

f»'+f»'= 1,
giF. Lamb, 'J'r.., Phys. Rev. 55, 190 (1939).

(M —Ml, —M&+ 221 e) B&

=&yf»+P*yfss Q (M Mz —Mk+is) 'Ck, (85—)—
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where rp ——2L ) p (' is the rate for lattice relaxation
from the initial state.

In a similar manner, we can use (11f) to eliminate
6„ from the equations with the result

(zd —
zdzz

—zds+ sir~) Cs

=AP+fssy*P Q (zd zd„co—k+i—e) '8„

+fzs'r P + (6) ML —
M&

—cog+—te) F& (86)

(rd —o)„+zsirp) F

='Yf~+Wf&s Z (zd» &d—&a+is) Cs

to partial fractions,

g (zd rdd+sirp) (M» zdd —COs+Se)

=(-.+-.+ -)- ZL-(---.+:-
+((a—»—co„—(o(,+is)

(»0)
since both sums are approximately equal.

We can evaluate (88) using (89) and. (810),

Q F„= iLyfz—sA

Similarly, we obtain

Cs= sLPA—
(8'l)

and
In obtaining (86) we have used the result fsss+fzss=1,
so that only the total radiation width F~ ap ears.

In calculating A(co), we require P+„, sCs, a,nd

gQ„.Using (8/), we get

g Bd = iLyfuA. — (813)

Substituting (811)—(813) into (11a), we obtain a
solution for the amplitude A,

A (cv) = ((o—co~ — »+ ', rS+r', -harp)
—'.-(814)

The decay rate from the initial state is simply the sum
XpyflsA+ppfts Q (N ddL Md ~s+ie) 'Csj. of the rates for radiative and relaxation processes.

To calculate Cs from (86), we need sums like

g (zd —
M& zds+ze—) 8&

The only p dependence in the bracketed term in (88) oc-
curs in the energy denominator (a& coL rd„—zds+i—e) '.—
The first term can be summed in, analogy with (84),

p (Cd » M—
& (dk—+re)—

P (co coL re M—s+z—e) F—&.

The first of these can be rewritten using (85),
co (yd rds—+is —r

dd » (ud+s—irp-The second sum over p can be performed by reducing

Xp Vftz+p*vfss g (~—zd„—zds+ie) —'C„J. (815)

3.0

O
V)

2.0

I—
Cl

LLI

I.O
a= 0.5

The first term vanishes by (810). The second sum
over p is a sum over a product of three energy denom-
inators which can again be handled by partial fractions
and also is equal to zero. Thus the term (815) does
not contribute to C&. A similar treatment yields a
similar result for g„(rd rdL dd„ddsc+—ie) —'Fd- —

Setting the last two terms in (86) equal to zero,
we obtain

Cs(zd) = (ed zdzv zds+—zsir—~) zAP

0
t I t t I t t I t 1

I.O 2.0 3.0

FIG. 2. Linewidth (in units of r~) as a function of u for various
values of n, ].&n) —g. The dashed curves indicate the envelope a g r ma&n&ng amp & u es ln t e same way
for all accessible values of linewidth. we obtain the solutions (12a)—(12f) .


