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so that (83) through (85) are easily evaluated in terms and from (82),
of Gt. The same results hold for F(p,p').

From (81) one then finds

c)se'(P) 1 1 Fi 1

c/p or m 3 m m

and
(8&)

(810)

I ]

r)p or 3 m pp
(88) where we have restricted ourselves to the /=0 and 1

coe%cients in the expansion (86).
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The "intrinsic" surface tension of liquid He II, arising from the structural energy of the free surface, is
calculated on the basis of Gross and Pitaevski's imperfect-gas model. The resulting expression, when sup-
plemented by the contribution arising from the presence of quantized surface modes of vibration, gives a
value of 0.28 erg cm 2 for the surface tension of liquid helium in the limit T —+ O'K. This value compares well
with the experimental estimate of 0.37 erg cm~. It is also demonstrated that the so-called boundary effects,
which arise from a better enumeration of the density of states in a bounded statistical system, do not make
a significant contribution to the temperature dependence of the surface tension. The dominant contribution
is again the one due to the quantized surface modes.

I. INTRODUCTION

KCENT experimental work by Atk. ins and
Narahara' on the determination of the surface

tension of liquid He for temperatures down to 0.35 K
has shown that the temperature dependence of the
surface tension can be expressed by an empirical
relationship of the form

o(T) =o(0) aT", —

where o(0) is the limiting value of the surface tension
as I' —&0 K, while a and e are adjustable parameters.
The best G.t, using the method of least squares, was
obtained with o.(0)=0.3729 erg cm ', tv=0.0081 erg
cm ' K ", and v=2.5~0.2. A complete theoretical
understanding of the observed behavior of o(T), as
depicted by Eq. (1.1), is, however, still lacking.

The most satisfactory theory we have had so far of
the surface tension of liquid HeII is the one due to
Atkins, who, in an earlier paper, ' suggested that the
major contribution to the surface energy of this liquid
comes from the quantized surface modes of vibration
(also referred to as "ripplons"). Atkins assumed these
surface modes to be similar in nature to the rnacro-

t Research supported in part by the!National Research Coun-
cil of Canada.' K. R. Atkins and Y. Narahara, Phys. Rev. 138, A437 (1965).' K. R. Atkins, Can. J. Phys. 31, 1165 (1953).

scopic capillary waves which have a frequency-depen-
dent phase velocity as given by'

st= (2srov/p) r~' (1.2)

where cr is the surface tension of the liquid, p is its
density, and v is the frequency of the wave. In the spirit
of the Debye theory of solids, Atkins chose a cutoR
frequency v, such that the total number of normal
modes of vibration in the surface was equal to the total
number of atoms in a monomolecular layer (of thickness
5) at the surface. This fixed the cutoff frequency at
about 10" sec ' and the corresponding characteristic
temperature (),(=ho, /k) at a few degrees Kelvin.

Thus, according to Atkins's theory, a part of the
observed surface tension o(T) of liquid hel.ium arises
from the presence of quantized surface modes, which
themselves arise due to the surface tension of the liquid.
Accordingly, we must invoke an "intrinsic" surface
tension, o;(T) say, of the liqu. id, with the result that the
observed surface tension o(T) can be written as

where r, is the contribution arising from the vibrational
modes of the surface which would depend upon the
temperature of the liquid explicitly as well as implicitly,

' C. G. Kuper, Physica 22, 129i I,
'1.956); K. R. Atkins, iNd. 23,

1143 (1957).
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the latter through the T dependence of 0; itself. Of
course, it will be natural for us to look for the origin
of o;(T) in the basic interactions among the atoms of
the Quid. A study of this aspect of the problem consti-
tutes the main theme of the present investigation.

In the limit of 0 K, Kq. (1.3) reduces toe

h (So.(0)
(0)= '(0)+- --I

7nr/4k /oP
(1.4)

the second term on the right-hand side representing the
zero-point contribution of the surface modes. In order
to appreciate the relative magnitudes of the two terms
in (1.4), we note that to obtain the experimental esti-
mate of 0.37 erg cm ' for o(0), we require o;(0) to be
about 0.14 erg cm ', leaving about 0.23 erg cm ' for
o,(0). The contribution of the surface modes is, there-
fore, more than appreciable.

At nonzero temperatures, especially for T«0., the
added contribution of the surface modes (as arising
from the explicit dependence on temperature) turns out
to be'

= —6.5X10 'T'/' erg cm '. (1.5)

The exponent 7/3 is quite consistent with the empirical
value of 2.5~0.2; however, the numerical factor here
is about 20% lower than the corresponding empirical
value. It is, however, quite imaginable that the temper-
ature-dependence of 0.; itself couM. , to some extent,
account for the remainder.

An alternative explanation of the temperature de-
pendence of the surface tension of liquid helium has
been attempted by Singh, 4 who adopted the ideal-gas
model for this liquid but made use of a better enumer-
ation o5 the eigenfunctions in the bounded continuum-
an enumeration which takes into account the so-called
surface effects in the expression for the density of states.
Singh thereby obtained for the temperature-dependent
part the expression

—s.mk'T'f'(2)/2k'= —7.5X10 'T' erg cm-', (1.6)

here m is the mass of a helium atom, awhile the Riemann
function t'(2) is equal to ass'. Comparing (1.6) with the
empirical result of Atkins and Narahara, one Gnds that
the numerical factor now is much closer to the corre-
sponding empirical value, but the exponent is signi-
6cantly low. From the point of view of agreement with
the experimental data, therefore, there is not much
reason to choose one or the other of the two alternatives
(1.5) and (1.6). From a physical point of view, however,
we note that whereas the theoretical basis for (1.5) is
su6iciently sound, the adequacy of using the ideal-gas

' A. D. Singh, Phys. Rev. 125, 802 (1962).

Vs =4m ah'/m, (1.7)

u being the relevant scattering length. It is well known
that this model has been successfully employed by
Gross~ and by Pitaevski' to demonstrate the possibility
of the existence of quantized vortex motion in a Bose
Quid. The basic feature of this model is to endow the
system with an inhomogeneity in space which extends
over regions of the order of (ns~u~) '/', where ee is
the mean particle density, and which results, in a very
natural way, in an increase in the energy of the system.
%e have employed this model to investigate the nature
of the inhomogeneity at the free surface of a Bose
liquid and compute thereby the energy associated with
a unit. area of the surface. This leads to a nonvanishing

5 It appears worthwhile to state here in clear terms that the
latter contribution is an.exclusively surface phenomenon, whereas
the former ones are in the nature of surface sects (or rather
surface corrections) supplementing the customary bulk values.

s K. Hnang and C. N. Yang, Phys. Rev. , 105, 767 (1957).' E. P. Gross, Nuovo pimento 20, 454 (1961).
L. P. Pitaevski, Zh. Eksperim. i. Teor. Piz. 40, 646 (1961)

)English transl. : Soviet Phys. —JETP 15, 451 (1961)g.

model for liquid helium, which led to (1.6), is hardly
acceptable. Of course, Singh's argument does advocate
a closer examination of the surface eRects than has
hitherto been done; however, in studying the contribu-
tion of these eRects to the density of states and hence to
the free energy of liquid helium we must consider a gas
of actual excitations, namely, phonons and rotons,
rather than one of noninteracting atoms. Moreover, in
the absence of interatomic interactions one cannot
understand why o;(0), a.nd hence o(0), should at all be
nonzero.

The only way out, of this dilemma lies in taking into
account the interatomic interactions in the Quid and
in turn studying their contribution to the surface energy
of the system. However, before we proceed to do so,
we prefer to settle once and for all the issue with regard
to the surface eRects that arise from a proper enumer-
ation of the density of states in the gas of elementary
excitations. This is done in Sec. 2, where the surface-
energy. contributions made by phonons and rotons have
been explicitly evaluated. It is important to note that
these contributions are nonzero only for T&0;moreover,
in magnitude, they turn out to be negligible in com-
parison with the contribution made by the surface
modes of vibration. ' Now, since the ideal-gas model
does not appear to be relevant to the study of liquid
helium, the contribution of the surface modes of vibra-
tion to the temperature-dependent part of the surface
tension remains the most dominant one.

In Sec. 3 we attempt to explain the existence of the
limiting surface tension o.(0) on the basis of the inter-
atomic interactions. The theoretical model employed
for this investigation consists of a dilute, imperfect
gas of bosons, interacting through a two-body potential
V(r—r') which can be replaced by a pseudopotential
Veb(r —r'), where'
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value of the intrinsic surface tension o;(0), whence
follows the vibrational part o.(0), so that 6nally we
have an estimate for the observed surface tension at
absolute zero, viz. , o(0) of Eq. (1.4). The resulting
theoretical value of 0.28 erg cm ' compares favorabiy
with the experimental estimate of 0.37 erg cm '.

2. SURFACE EFFECTS IN A GAS OF
EXCITATION'S

For studying the physical properties of a statistical
system, a knowledge of the asymptotic distribution of
single-particle states, which are eigenfunctions of the
Schrodinger equation

v'++4+=0, (k= y/A), (2 1)

where V is the volume of the enclosure. Of course, the
validity of this expression rests on the assumption that,
the linear dimensions of the enclosure are much larger
than the characteristic wavelength h/p. A more rigorous
study of the density of states, as allowed by (2.1), shows
that the second term of the asymptotic expression for

g(p), of which (2.2) is the main term, is directly propor-
tional to the surface area S of the enclosure. '" This
surface term is naturally of a very direct physical
interest to us, for, when taken into account in calcu-
lating the extensive properties of a physical system, it
leads to what might be called a. "surface contribution"
to the customary bulk values of these properties

For the sake of generality, we consider the enclosure
to be an e-dimensional domain, D'") say; this will
enable us to study the case of ripplons without any
extra calculation. For such a domain, Fedosov' has
established the following asymptotic formula:

is essential. Customarily, the number of eigenstates

g(p) with momenta not exceeding a particular value p
is approximated by the familiar Rayleigh-Acyl expres-
sion

(2.2)

0 yt.

2n+ls. i( e 1)P (~ 1)j l

(2.6)

This implies that the correction term in (2.4) may also
be written as 0(E" '). With this understanding, we can
readily evaluate the surface contributions to the free
energy of liquid helium as arising from phonons, rotons,
and ripplons. The resulting free energy per unit area
will then be interpreted as the temperature-dependent
part of the surface tension of this liquid.

Now, the free energy Ii of a Bose-Einstein gas of
(noninteracting) quasiparticles below the transition
temperature Tq is given by the formula

I&'= 0T Q, ln(1 —e '/ "r) .

One can convert, the summation here into an integral
by employing the expression (2.4), along with (2.5) and
(2.6), for the density of states. Again, for generality,
we take the energy-momentum relation for the quasi-
particles to be e= np'. We then obtain for the free energy

~here S;&') is a, t-dimensional "face" of the domain; the
upper (lower) sign corresponds to the Dirichlet
(Neumann) boundary condition, i.e., everywhere at
the boundary /=0 (df/dn =0).

For a three-dimensional domain of arbitrary shape,
Eqs. (2.5) and (2.6) yield the formula

g(E) = (E'/6rr2) VW(E'/16')5+O(E'). (2.7)

Now, the error term as such rather appears to vitiate
the role of the surface term in the expression for g(E).
However, Pathria" has provided sufFicient compu-
tational evidence to show that the error term in (2.7)
is in eRect much inferior to the surface term, so that
Eq. (2.'I) may be replaced by

g(E)=(E'/6s')VW(E'/16rr)S/0(E'). (2.8)

so that, with )=0, one obtains

(" ') "P(e—1)/sj!f L(s—1)/s+1jA „
(pT) (n r) /s+I—

4L:', (/t, —1)q!h" '(r( ="'
(2.10)

g(E)= Q //,;E'+'O(E" ') . (2.4)
Considering only the surface terirr, we ha.ve, as a

check, for the ideal-gas particles (x= 3; a= 1/2m, s= 2),

a =mes D(")/2"s""(are)! (2.5)

S. V. Fedosov, Dokl. Akad. Nauk. SSSR, 151, 786 (1963);
157, 536 (1964) /English transl. : Soviet Math. —Doklady 4, 1092
(1963); 5, 988 (1964)g.

'~ R. K. Pathria, Nnovo Cimento Snppl. 4, 276 (1966),

The coef6cients a; here are related to certain geometrical
measures of the domain, viz. ,

F,/A = +Lsml (2)/2h')(kT)'
7 5 X 10 'T' erg cm ' (2.11)

vvhich is Singh's resu)t. 4 It is instructive to note that
Eq. (2.11) can also be derived without making use of the
explicit expression for g(E). In that case one works
with the summations as such and. arrives at the desired
results by applying the 0-function transformation to the
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sums; for details, see the Appendix. Still another way
of deriving this result is through the construction of the
MeOin transforms of the relevant summands. " p/+n„n/n,

(a) For the phonons (n=3; n=c, s=1), one obtains"

F./2 =&Lrrf(3)/2h'c'g(k T)'
=a1.96X10-4Ts erg cm ' (2.12)

0'5—

e = (o./pk) r/'ps/'

(b) For ripplons, the energy-momentum relationship,
when the effect of the gravitational field can be neg-
lected, is'

(2.13)

FIG. 1. Variation of the superfiuid wave function (curve 1}and
of the superQuid density {curve 2) at the free surface. The dashed
line indicates the spatial extent of the Quid if the density mere
uniform throughout.

so that we have o/= (o/p/s) r/"-, s=-', . Since ripplons con-
stitute a surface phenomenon (rather than a correction
to some bulk value), the desired result in this case
follows from the main term of the formula (2.10) with
e= 2 and V2= A. One thus obtains

F/A = rr(p/2%0—)s/sh(I/T/h) r/sr(7/3)i (i /3)
= —6.5X10 '~'~' erg cm—'. (2.14)

This is precisely the result obtained earlier by Atkins. '
(c) For rotons, it is necessary to make a separate

calculation because their energy-momentum relation-
ship does not fall in the category discussed above. One
has, in this case, c= 2+(p —ps)'/2p. A straightforward
calculation, making use of the density of states formulas
(2.4)—(2.6), gives

P /g —~PT & l&+(/ —r'ol/l—ss&&/p dp
2h'

—~L(2~st)r/s/2f sjP c 6/RT(PT)s/s-

= ~3.1)&10 ' e a/srT'/s erg cm '. (2.15)

A comparison of (2.12) with (2.14) readily shows that
the surface eBect of the phonon component, at T~i K,
is hardly a few percent of the direct, contribution of the
ripplons. The surface effect of the roton component, as
given by (2.15), is still less, by another factor of 10 or
more. Moreover, a basic difFiculty with the surface
effects (2.12) and (2.15) is that they are so strongly
dependent on the nature of the boundary conditions
used that it appears somewhat awkward to ascribe to
them any definite physical signi6cance. Thus, we see
that the observed temperature dependence of the sur-
face tension of Liquid helium is, in the main, given by
the direct surface energy of the ripplons.

3. THE IMPERFECT GAS MODEL
( T= O'I)

Ke now examine the nature of the nonuniformity of
distribution of atoms in the region of the free surface
of the Bose Quid; this study will enable us to calculate
the free energy associated with a unit area of the
surface and to obtain thereby a theoretical estimate for
the observed surface tension. The imperfect gas model
to be employed for this investigation has already been
studied in detail by some authors, ~ ' who have shown
that the spatial variation of the particle density
n(r)(=—~P(r) ~') in the system is given by the nonlinear
equation

where a is the scattering length of the interaction and
p is the increase in the energy of the system consequent
upon the addition of one more particle to it. Ke shall

apply Eq. (3.1) to study only the surface part of the
Quid, for it is in this part alone that we have a variation
of n(r) from the bulk value n// to a vanishingly small
value, over a region characterized by some sort of a
"healing length. " It is, however, important to note
right in the beginning that the existence of a free sur-
face, which is one of the basic characteristics of a liquid
(as opposed to a gas), necessarily requires that the atoms
in the surface region experience a predominantly at-
tractive force towards the interior of the Quid; conse-
quently, the effective scattering length of interaction
for atoms in this so-called "surface layer" must be
negative, "i.e., a= —

~
a~.

Now, considering a free surface normal to the x axis,
so that the operator V' in (3.1) is merely d'/dx', and
denoting the value of n(x) at the point of inflexion (see
Fig. 1) by n„we obtain for the parameter p

p, = (4s.ak'/rn) n, . (3.2)
"See S. Franchetti, Nuovo Cimento 5, 183 (1957), Eq. (22) „.

this calculation corresponds to the Dirichlet boundary condition.
Using the same method, A. D. Singh and R. K. Pathria, Progr.
Theoret. Phys. (Kyoto) 24, 229 (1960), carried out a calculation
for the Neumann boundary condition as well; see Eq. {10)of the
Appendix I of their paper.

~ This result can also be derived by the method of Mellin trans-
forms; see S. Franchetti, Ref. 11, Eq. {28).

Equation (3.1) can then be written as

d /I//dx'+Srr ( a
)
/is= Srr I a

) n,f (3.3)
"A negative scattering length for atomic interactions in liquid

helium has also been used by M. Girardeau, Phys. Fluids 5,
1468 (1962}; see s,iso K. Huang, Phys. Rev. 119, 1129 (1960}.
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Introducing the reduced variables

Po(x) =P(x)/n, '~', (=x/1, (3.4)

where l=(Szrzz„lal) 'z', our differential equation be-
comes

which, on substitution from (3.8), becomes

8 h'
~.(0)=———

7V3 m
(3.11)

go= v2 sech&

is such a solution; accordingly,

zz(oo) =20, sech'(x/l) .

(3.6)

(3.7)

As @~0, the particle density approaches the value
2m„which should be equal to the bulk value eo. Thus,
the point of inflexion of the (fo, $) curve (see Fig. 1)
corresponds to a particle density exactly —,

' of the bulk
value, which is clearly a very satisfactory situation.
The dashed line in the graph indicates the spatial region
which would be occupied by the particles now consti-
tuting the nonuniform surface layer if they were spread
out uniformly with a density equal to mo. Thus,
ll =(4zrlulzzo) '~'j is a measure of the extent of the
spatial inhornogeneity in the free surface; in magnitude,
it is comparable to the lateral dimension of the "core"
of a quantized vortex.

The structural energy per unit area associated with
the nonuniformity in the free surface can be determined
by calculating the difference between the energy per
unit area of the surface layer as 8 is and that of the
corresponding layer if the distribution were uniform.
One thereby has

k' —Fo E—Eo h' " diP''
dx

o d'x2m

dQo/d$" +4-o' go—=0 (3.5)

The relevant solution of this equation would be the
one that vanishes as (~~ and has a vanishing slope
at, say, )=0; for all $(0, i.e., everywhere in the bulk
of the liquid, we shall take zz(x)=N(0)—=zzo. We find
that

Substituting the relevant numbers in this expression,
we get

o.„(0)=0.19 erg cm '. (3.12)

APPENMX

We derive here expression (2.11) without replacing
the summation over states by an integration; ac-
cordingly, we shall not make use of any explicit formula
for g(E). Let us consider a gas of noninteracting par-
ticles, each of mass m, confined to a volume V, which for
simplicity is taken to be a cube of side a. The energies
of the stationary states of any one particle are given by

o = (hz/Sma') (s'+ 8+zz'), (A1)

Combining (3.9) and (3.12), we obtain for the observed
surface tension o (0) of He4 an estimate of 0.28 erg cm ';
the corresponding experimental estimate is 0.37 erg
cm

Of course, on the basis of a gaseous model, though
interacting, we cannot expect to understand the physical
behavior of a liquid quantitatively, especially when the
numerical value used for the scattering length is not
very reliable. Qualitatively, the theory developed here
indeed appears to be a step in the right direction.

Finally, we remark that since the temperature de-
pendence of the surface tension of liquid helium is
reasonably well explained by the surface-energy con-
tribution from the ripplons, the intrinsic surface tension
0-; may not be expected to be strongly temperature-
dependent. Nevertheless, this aspect of the problem is
also being pursued.

m L- p

ly(~)I4dx — eo'dx

=—'h'zzo/ml= (2x"oh'/3m)zzo'zolul' o. (3.8)

Using Girardeau's" estimate for
I
u I, viz. , 2A, we obtain

from the foregoing

where s, I, and e can take onjy positive integral values
in the case of the Dirichlet boundary condition, but can
also take the value zero in the case of the Neumann
boundary condition.

We then have for the logarithm of the grand partition
function

o, (0)=0.09 erg cm '. (3 9) in'= —Q ln/1 se "&++'+"j—(A2)

The existence of the intrinsic surface tension would
lead to the presence of ripplons on the free surface,
which, in turn, would give rise to a zero-point free
energy. Atkins has carried out this calculation earlier,
with the result2

where zz=h'/(Sma'hT) and s is the fugacity of the
system. The internal energy U can then be determined
by the relationship

o„(0)= (o»)a(~)d.
U= —

I 8 log//BPf„r, (A3)

= (h/7zr'") LS~,(0)/pb'1'"
where P=l/h'I'. Carrying out the expansion (A2) in

(3,10) powers of s and the differentiation as required by (A3)
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we obtain
h'

U Q Q ss'(ss+ts+Ns) e »—(es+ts+ss)

ac
3h'

ss e—»s )LQ e »t $—2

8m'' ~-c s

s =1)

(A4)
Accordingly, (A4) becomes

s e "'"=s g s e»"=&~/(yj) j' (A6')

The sums involved here can be evaluated by using
Poisson's formula'

U —',(V/X') kTg~/s(Z) W'4(A/7 ')kTgs(Z), (A7)

( sr)1/s
Z e ""'"',

Ep j&
(A5)

where X=k/(2srsnkT)'/s and the function

and the one resulting from (A5) by a differentiation
with respect to (/4j), namely,

)1/s — ~sss-

g s' e »'=
~

-~ g -' — e ""/» -(A6)

The free energy of the system can be calculated by
means of the formula

From (A5) and (A6) it follows that, in the limit ts —+ 0,

s 1}

1 (sre»
~

— P e /»'~l
(tsj s=-~

——,'L(sr//4 j)'/sa 1j, (A5')

"See D. Menzel, Fmndamesstat Formsstas of Physics, (Dover
Publications, Inc. , ¹wYork, 1960), p. 77. This is also referred to
as the 8-function transformation: see R. H. Fowler and H. Jones,
Proc. Camb. Phil. Soc. 34, 573 (1938).

(AS)

whence we 6nally get

I' = (—V/Xs)kTgs/s(s) ~4 (A/&')kTgs(z) . (A9)

For T&T1„s 1; then, for n)1, g„(z) l(n). The
second term in (A9) thereby gives precisely the expres-
sion (2.11) for Ii,/A.

:errata

EEect of Molecular Redistribution on the Non-
linear Refractive Index of Liquids. R. W. HELL-
wARTH LPhys. Rev. 152, 156 (1966)$. We have
discovered an important error in the sign of a term
calculated in the Appendix. As a result, the question
raised in this paper as to the accuracy of the Kirk-
wood superposition approximation for calculating
certain configurational averages for liquids can now
be answered: The approximation gives the wrong
sign at liquid densities for the nonlinear free-energy
term and also for other quantities whose signs are
known on general grounds. Specifically, in Eq.
(A17), for Is the factor (Is+ 2rr'/3) should be
(P—2sr'/3). Also, in (A21) the factor 0.5066 should
be replaced by 0.922 and in (A22) the factor —0.117
should be replaced by —0.467. We have re-ex-
amined the small correction E4and ascertained that'
its sign is negative, so that it contributes, though
very little, to the worsening of the failure of the
superposition approximation. With these correc-

4' poP
n9= &+ (32+1368+1676')

n(1—4srpcr/3)4 45r

sr pcs'P

Ssr'psrrs (6 1)—
+4.5 icFp'r, (41)

3

tions, the superposition approximation gives, in-
stead of the existing Eq. (38),

Uss/(NZI4p'a4) = (l'+2sr'/3) 6—2srs/3

+ms(32+1368'+1672P)/(45 pr)
+1 13pr (1+X4/.4) . (38)

From the definition (28b), Uss must be positive.
For symmetric molecules (6=0), the right-hand
side is seen to fail to stay positive as the density p
increases beyond 1.6/r, where r/8 is the molecular
volume. Normal liquid densities run between 2/r
and 3/r. The above change in Uss requires that the
expression (41) for ns be altered to


