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By the joint use of a coherent light source and of photon counting statistics, we have verified the statistical
properties of Brownian motion. The light source is a helium-neon laser emitting at 6328 A. The scattering
media are dilute solutions of monodisperse polystyrene spherical particles with diameters ranging from
0.088 to 1.06 p. Three types of results are presented. First, by working at a density of scattering centers
such that neither particle correlations nor multiple scattering processes have any influence, we measure the
angular distributions of the field scattered by single particles, and verify the Mie theory. Second, by fre-
quency measurements, we show the Lorentzian character of the scattered light spectrum, as one would expect
from the diffusion approximation. Third, by use of photocount distributions, we measure the ensemble
distribution of the scattered field within a coherence area and time, and show that the field distribution is
Gaussian. The last two results imply that the field scattered by Brownian particles is accurately ‘described
as a stochastic Markov process. The techniques here used open the way to similar measurements on more

complicated scattering media.

1. INTRODUCTION

ECENTLY, a great deal of information on physical
systems has been obtained by scattering experi-
ments using a laser as a source of known properties and
then measuring the frequency spectra of the scattered
light.'8 These experiments have led to extremely
interesting results. However, they yield only the value
of a particular parameter, namely the first-order corre-
lation function of the density fluctuations, related by
a Fourier transform to the measured power spectra of
the scattered light.®10
It seems worth while to increase the information on
the statistical properties of the scattering medium by
using the method of photocount distributions in the
study of the scattered light, either to explore the ensem-
ble distribution within a coherence time of the material
fluctuations!®:12 or to get full information on the time
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properties, complementing the frequency measurements
by measurements of the joint photocount distributions.!3
Recently extensive theoretical and experimental work
has been done on the use of the statistical distributions
of the photon counts from a photodetector as a tool
to explore the statistical properties of an electro-
magnetic (EM) field.’*~" The photocount-distribution
method has thus far mainly been applied to the study
of a laser field!!-12:3% and only in one case to a scattering
problem, namely the very simple case of a rotating
ground-glass scatterer.!!13,19

In this work we have studied, both by photocount
distributions and frequency measurements, the light
scattered by a very simple statistical medium, that is,
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a collection of equal-size spherical Brownian particles.
We have chosen to make the first experiment a simple
one, for which a complete theoretical treatment is
already available.10:20 2! Tn Sec. 2, we briefly recall the
main points of the scattering theory at optical fre-
quencies, partly adapting the theory developed for
thermal-neutron scattering,2*-2? and partly using some
recent treatments for the optical field.”>*1 In Sec. 3
we describe the experimental arrangement, and illus-
trate the peculiar problems which distinguish a photo-
count distribution measurement from a simpler fre-
quency measurement. In our case (system of equal un-
correlated particles), the absence of a “two-particle”
correlation part in the density correlation function (see
Sec. 2) allows us, as a byproduct, to givedetailed angular-
distribution measurements for the single scatterer.
These are shown in Sec. 4, and they fit the values
computed by the Mie theory.? Sections 5 and 6 give the
results of photocount and frequency measurements.
These measurements are in agreement with the theo-
retical predictions for the scattered field, that is, we
obtain a Gaussian ensemble distribution for the field
observed within a coherence time and area, and a
Lorentzian line profile for the field-power spectrum.
This last result shows that the diffusion approximation
is sufficient when studying scattering from Brownian
particles at optical frequencies.

2. THEORETICAL CONSIDERATIONS

Before the introduction of laser sources, the scattering
of light by identical particles was studied in the “static
approximation.” This corresponds to considering the
energy transfer in the scattering process as small com-
pared to the energy of the scattered photon. In this
case the intensity of the scattered field in the direction
of vector k; is given by

I(K)=A4(K) / e KGn)dr, (1)

where K=ko—k; is the difference in wave vector
between incident and scattered waves, 4 (K) is the
scattered intensity associated with a single scatterer, and
the integral is evaluated over the illuminated region.
Since usually the minimum size of the illuminated
region is much larger than 1/K, we can extend the
integration limits up to infinity, and the integral be-
comes the Fourier transform of the radial density
distribution function G(r). This function describes the
mean density of particles around a given particle, and
can be thought of as the probability that, if the par-
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ticle is at the origin, another particle will be at point r
at the same time. We note that in relation (1) there is
a very clear distinction between the contribution of the
single scatterer and the interference contribution of the
different scatterers.

Recently, the introduction of the very monochromatic
laser sources and the development of optical and elec-
tronic high-resolution spectroscopy, has allowed an
extension of the time-dependent theory to light scat-
tering. The time-dependent theory of scattering has
been developed by Glauber?0:22 and Van Hove?! in the
case of thermal-neutron scattering, and later adapted by
Komarov and Fisher® and by Pecoral® to photon
scattering.

In these theories, taking into account only single
scattering events, Eq. (1) is generalized by a relation
between the spectral density 7(K,Aw) of the scattered
field E(K)¢), defined as the Fourier transform of the
field correlation function

I(K,Aw)= [ dt e~ 124E*(K,0)- E(K,)) (2)

-0

(where the angular brackets denote an ensemble
average, and Aw is the frequency difference between
incident and scattered fields), and the density corre-
lation function G(7,f), defined as

5 (06— 0D +r—r,(O))dr, (3)

Vv £.5=1

1
G(l‘,t) ='—~r

where /' is the total number of scattering particles, and
the brackets denote an average over the equilibrium
joint distribution of the random variables ry(0) and
r;(¢) (particle positions at different times). The general-
ized relation is

1(K, Aw)= A (K) / dro=iKe / B LG ) —pe],  (4)

where 4(K) is the same as in Eq. (1) and po is the
average density of the medium.

It is now convenient to split G(r,¢) into a “‘single-
particle” function G,(r,!) and a “two-particle” function
Ga(r,t), corresponding, respectively, to the terms i= j
and 777 in the sum (3). The former gives the proba-
bility that the same particle that was at (0,0) will be
found at (r,f), while the latter gives the probability
of finding at (r,£) a particle different from the one which
was at (0,0). Gy(r,) clearly describes the wandering of
a given particle away from its initial position.

In the static approximation the single-particle and
two-particle correlation functions reduce, respectively,

to
ltm% Gs(r,t)=46(r),

lim Ga(r,)= (1/N) 2 (8(t+r:—1,))=G(r). (5)

We now apply these considerations to the case of scat-
tering from Brownian particles. In this case the corre-
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Fi6. 1. Schematic representation of the experimental setup. The
three different electronic chains correspond to different measure-
ments, namely (from top to bottom). (a) angular intensity dis-
tributions, (b) frequency spectra, and (c) photocount distributions.

lation function G(r,f) can be determined by the following
arguments. If we neglect the density fluctuations in
the dispersing liquid, then scattering will arise from the
fluctuations in space and time of the excess dielectric
constant of the solution, i.e., the dielectric constant of
the particles minus that of the pure liquid. These
fluctuations are induced by the random motion of
particles inside the medium. In the classical theory of
Brownian motion, the particles are always supposed to
be uncorrelated, that is, the motion of one particle has
no influence on the remaining ones. Hence G(r,)
reduces to a single-particle function G(r,t).

For the Brownian motion, the time-averaged scat-
tered intensity measured at a given direction is re-
lated in a straightforward way to the intensity scat-
tered by a single particle. In fact the time average of
the intensity is given by the field correlation function
(E*(K,0)-E(K,t)) specialized to ¢=0. A comparison of
relations (2) and (4) shows that this is the space Fourier
transform of the density correlation function taken in
the static approximation. But in our case this is a §
function, whose angular spectrum is uniform. Therefore,
the angular distribution is given by 4(K), that is, the
measured pattern yields information on the geometry
of the single scatterer. Since we make experiments on
homogeneous dielectric spheres, we may use the classical
results given by Mie.?

Let us now look at the time behavior. A relation for
the frequency distribution of the light scattered at a
given angle can be obtained by performing the space-
time Fourier transform of G,(r,f). Therefore we need
an explicit expression for Gy(r,#). In the theory of the
Brownian motion the velocity u of the center-of-mass
of the particle obeys a Langevin equation

du
—+Bu=F(0). (6)
dt

Here F(¢), the noise force per unit mass, is a Gaussian
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stochastic process correlated on a very short time
scale, that is,

(F(0)-F())=Ca(), )

(C being a constant), and 8 is the friction constant
divided by the mass m of the particle, given by the
Stokes formula

B=06wan/m , (8)

where a is the radius of the particle and 7 the viscosity
coefficient of the water.

The solution of this stochastic problem provides the
conditioned probability P.(rofo; uo|rf) that a particle
will be at (r,s) if it was at (ro,ts) with a velocity up. A
full treatment can be found in Ref. 24. Remembering
its definition, G,(r,?) can be deduced from P (rofo; uo| rf).
By performing an integration over the initial velocities
one obtains the following relation:

Gi(r,t) LN (9)

- [71..0.2(0]3/2

This is a Gaussian in 7, with a time-dependent mean-
square deviation given by

4kpT
(41 1),
mB?

where k5 is Boltzmann’s constant and 7 the tempera-
ture of the surrounding liquid. For large values of
[1], the function o%(¢) becomes

c*O)=4(D|t| —mD?*/kpT), (11)

where D is a diffusion constant, related to the friction
coefficient by the Einstein relation

D=kBT/'m6.

(1) =

(10)

(12)
The space-Fourier transform of relation (9) is given by
Gi(k,t)exp={— (K2D/B) (e #114-8[¢| —1)}.

This exponential can be expanded in a series with re-
spect to the parameter v=K2D/3. The scattered spec-
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F16. 2. Angular scattering diagram for particles
of 0.088-u diameter.

# S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
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tral density is obtained using Eq. (4), by a time-Fourier
transformation of each term of the series. The result is

o 1 K2 l K2D+1
IKA)=AK) S ~ — 2\ LA,
=i\ 8 /) awtH(K2DLIB)?

In the usual operating conditions, y<<1. Therefore, only
the s=0 term is important in determining the experi-
mental results, and 7(K,Aw) can be approximated by a
single Lorentzian

13)

K?2D
I(K,Aw) = 4 (K)————. (14)
Aw?+(K2D)?
Typical values, for a particle of polystyrene of radius
a=0.25p and for a scattering angle of 40°, are

K=09X10>° cm™,
D=0.9X10"% cm? sec!,
B=T7 X101 sec™!.

This leads to a value y=10~* for the expansion parame-
ter in Eq. (13).

So far, we have discussed mainly Eq. (4), which is a
relation between the scattered intensity and a particular
average referring to the medium, that is, the first-order
correlation function of the particle’s position. More
information could be obtained if the ensemble distribu-
tion of the scattered field were known. This point will
be discussed in Sec. VI.

3. EXPERIMENTAL ARRANGEMENT

Three different kinds of measurements on the light
scattered by a solution of dielectric particles in Brownian
motion have been performed: (a) angular intensity
distributions, (b) frequency distributions at fixed
scattering angles, and (c) photocount distributions.

The experimental arrangement, shown in Fig. 1,
consists of the light source, the scattering cell with the
collecting optics, and the electronics for the three types
of experimental analyses to be performed. The light
source is a 6328-A He-Ne gas laser delivering 2 mW when
operating in the TEM, mode. The output power is
monitored to avoid long-term drifts. The beam di-

102

PARTICLE DIAMETER 0.234p

INTENSITY (ARBITRARY UNITS)

1 1 I L I I TR B
8 18 23 4 s 62 7 80
SCATTERING ANGLE IN DEGREES

F16. 3. Angular scattering diagram for 0.234-x diameter.

SCATTERING OF COHERENT

LIGHT 189
et
PARTICLE DIAMETER 0557)

—~ S
2
=z
2
z
g w2l
E
@
g
E
(2}
z
w
L
E T

5+

1 I I I I 1 ] I 1

8 9 2 W 5 6%, 71 80

SCATTERING ANGLE IN DEGREES
I'16. 4. Angular scattering diagram for 0.557-u diameter.

ameter is reduced to about 0.2 mm by the use of a lens
with a long focal length. A very thin (1 mm) scattering
cell is introduced into the laser beam at the Brewster
angle. The small over-all transverse dimensions of the
interacting volume provide fairly large coherence
areas for the scattered light, which are nearly constant
even for large off-axis scattering angles. In such a way,
a pinhole diaphragm of practical aperture size can be
used to collect the scattered light within a coherence
area. Stray light has been carefully eliminated by
means of diaphragms. The laser beam after passing
through the cell is extinguished by a light trap.

The measurements are performed on dilute solutions
of monodisperse polystyrene spherical particles?” with
different diameters from 0.088 to 1.06 u. Each sample is
composed of almost equal-size particles, with a very
small variance. The liquid in which the particles are
dispersed is deionized water, filtered with a Millipore
filter. The attenuation of the beam through the cell
never exceeds 159, so that the multiple scattering
contributions can be neglected. Furthermore, knowing
the scattering cross section and the cell depth, we can
evaluate the average mutual distance between the
polystyrene spheres. This turns out to be always much
larger than a wavelength, so that no fixed phase corre-
lation exists between the elementary wavelets scattered
by the spheres, and the scattering contributions can be
considered as independent. A further point should be
emphasized regarding the small scattering volume.
Discrepancies between experimental results and the
plane-wave approach to the scattering should be ex-
pected when the escape time of the particles from the
interaction volume is smaller than the characteristic
relaxation time for the momentum of the particles,
defined as the average time interval which elapses before
collisions make a particle forget its initial velocity. This

26 The polystyrene latex samples have been kindly provided
by the Dow Chemical Company.



190 ARECCHI,
104
5k
PARTICLE DIAMETER 0.798}1
103
g st
z
=
>
(-4
g
2
& 104
g
= 5r
=
@
z
i}
=
=
10
|
1 | 1 I 1 1 1 I 1

8 19 29 40 51 62 7 80
SCATTERING ANGLE IN DEGREES

Fic. 5. Angular scattering diagram for 0.796-u diameter.

time is equal to 87, where 8 is defined in Eq. (8). In
our case the escape time can be evaluated on the basis
of the diffusion theory for the Brownian particle, and
typical values are larger than 10~! sec, whilst the relax-
ation time 8! is of the order of 10719 sec. Hence the
plane-wave theory applies in spite of the small diameter
of the incident beam. To evaluate the real scattering
angle inside the cell, corrections for refractions must be
taken into account. Minor corrections are needed for the
variations in the solid angle of collection and the
reflectivity of the cell boundaries at different scattering
angles. These corrections become important only for
large emergence angles. We have confined ourselves to
the study of forward scattering, since for large particle
diameters, the back reflection of the forward lobe
masks the backscattered lobe. If particular care is not
taken, stray light from the edges of the cell and light
due to internal reflections could constitute the major
contributions to the collected light, particularly at large
off-axis angles. These spurious contributions are elimi-
nated by an efficient light trap selecting a very narrow
solid angle of collection centered on the interaction
volume.

We have used different photodetectors for photocount
distributions and for frequency and angular distribu-
tions. In the first case, it is important to have a single
photoelectron pulse high enough to exceed the threshold
of a nonlinear circuit (see Sec. 6); therefore we have
used a 56 AVP photomultiplier with an S-11 photo-
cathode (0.5%, quantum efficiency at 6328 A) and 14
dynodes, operated at high voltage, so that the average
gain is 10%. In the second case, it is important to reduce
the shot noise; hence we have used an X P 1002 photo-
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multiplier, with an S-20 photocathode (5%, quantum
efficiency) and only 10 dynodes. In all cases, no filters
were employed, and the photocathode was at 50 cm from
the scattering cell with a circular diaphragm of 0.5-mm
diameter in front of it.

4. ANGULAR DISTRIBUTIONS

Performing a time average on the scattered intensity,
we obtain the angular intensity distribution for the
scattered light, as discussed in Sec. 2. Since there are
no correlations between particles, the angular distribu-
tion is expressed in terms of the single-particle scattering
theory, as given by Mie.?? For a given angle ¢, related to
K by the relation K= (4r/)\)sin?(3¢), the intensity of
the scattered light depends on two parameters, ¢ and
m. The first, g=md/}, is the ratio between the particle
diameter d and the wavelength of the light in the sur-
rounding medium (water); the second is the relative
refraction index, which is 1.199 for polystyrene in
water.

The fluctuating output photocurrent was fed to an
X-Y recorder through a low-pass filter. The results are
shown in Fig. 2-6. The experimental points agree with
the nearest values of ¢ and m among the published
values.?? The dispersion of the experimental data is
less than 59, for all measurements. A few points in
large disagreement with the theoretical curves are
thought to be due to some residual systematic error
(anomalous refractions from cell irregularities for par-
ticular positionings of the cell). The size of the error
line associated with each experimental point corre-
sponds to the maximum dispersion over three runs.

5 PARTICLE DIAMETER 1.099p
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5. FREQUENCY SPECTRA

The series expansion (13) provides a full expression
for the power spectrum of the light scattered at a given
angle. All terms besides the first may be safely omitted
in our case, since the parameter y=K2D/8 in the power
expansion is of the order of 10~ In this diffusion ap-
proximation the Lorentzian line emerges. Since line-
widths of a few cps are expected, very-high-resolution
techniques are required.

We have used the self-beat technique.® This technique
permits a knowledge of the spectrum I1(w) of the scat-
tered light from the knowledge of the spectral distri-
bution Is(w) of the fluctuations in the output of a
photodetector collecting light within a coherence area.26
I:(w) and Is(w) are the Fourier transforms of the corre-
lation function of the field and of the intensity fluctu-
ations, respectively, i.e.,

Ii(w)= / dt e E*0)-E()),
(15)
L(w)= f dt oK E(0) 2| 8E @) |,

where §£= E—(E). For Gaussian processes, the second
correlation function is equal to the square of the first,?
hence the two frequency spectra are related by a con-

26 This is not necessary in these measurements. In fact, working
in a region larger than a coherence area means only adding a
further dc contribution, i.e., increasing the § function centered
at zero frequency. However, the limitation becomes necessary
when measuring photocount statistics.

( 2:’51\;[ C. Wang and C. E. Uhlenbeck, Rev. Mod. Phys. 17, 329
1954).
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volution formula?2®
Ig(w)=/ I(o") [1(w—w')dw' . (16)
@

Equation (16) means in practice that the spectral
density at w is the sum of all the beats between spectral
components at optical frequencies differing by an
amount w. One may easily verify that if I;(w) is a
Lorentzian centered at the frequency wo ,with a line-
width Aw, then Is(w) is also a Lorentzian, but centered
at zero frequency and with a linewidth 2Aw. The output
voltage from a wave analyzer with a full-wave bridge,
as used in our measurements, is proportional to the
square root of J»(w), hence a square root of a Lorentzian
is expected as a direct result of the measurement.
Beside being simpler, the self-beat technique is more
suitable than the heterodyne technique when measuring
lines of a few cps in width, since the factor 2 between the
linewidths of I»(w) and Ii(w) can be extremely useful
when working at the limit of the wave-analyzer
resolution.

The linewidth (half-width at half-height) of the
scattered light, as given by formula (14), is Aw=K2D
and from this one obtains the following numerical
formula for its dependence on the scattering angle

Av=[49sin*(3¢)/d], (17)

where we have used the Bragg condition K =2k, sini¢
(Bo=2mn/N\o) and the relation D=kpT/3wdn (d being

28 The self-beat technique provides a complete description only
for the case of a Gaussian field. For a scattered field, the Gaussian
nature can be taken for granted, as an obvious consequence of the
central limit theorem, whenever one deals with linear scattering
processes from uncorrelated scatterers. Direct experimental
evidence of the Gaussian character of the scattered field is dis-
cussed in the following section.
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the particle diameter) resulting from Egs. (12) and (8).
The numerical coefficient results from using the values
n=1.33 (water) \o=6328 A, T'=293°K (room tempera-
ture), n=10"2 poise, and expressing d in microns.

The photomultiplier is the same as in the angular
measurements, and the wave analyzer is a Hewlett
Packard 302 A, with a bandwidth of 6 cps. The output
of the wave analyzer is recorded after passage through
a low pass filter (time constant 15 sec). In Fig. 7 and 8
the measured frequency spectra are given in a log-log
plot, for various scattering angles. Reported measure-
ments refer to particles with 0.088 and 0.557-u diam-
eters. The 0.088-u-diam particles give the largest
broadening, while the 0.557-u-diam particles give the
smallest broadening still detectable. The shot noise
makes the fitting less accurate for experimental points
corresponding to large-angle scattering. Experimental
data in the higher frequency region fit fairly well with a
straight line of slope —1, thus verifying the Lorentzian
character of the scattered-light spectrum. However
some uncertainty still remains in regard to the proper
value of linewidth to be attributed to each curve, since
no data can be collected in the 0-20-cps range because
of instrumental limitations. To clarify this point, a
slightly different technique has been used. The photo-
multiplier output has been filtered through a high-pass
filter in order to remove the dc component, and elec-
tronically chopped at 1 kc/sec. In this way the power
spectrum has been translated to around 1 kc/sec and
the whole spectral profile can be measured. The data
obtained again fit fairly well with a Lorentzian shape,
and the linewidth can now be evaluated (an example
is given in Fig. 9).

By this compound technique both the Lorentzian
character and the agreement between measured and

GIGLIO, AND TARTARI

163

expected linewidth can be checked.” The agreement
seems to be fairly good for 0.088-u particles, and less
accurate for 0.557-u particles, especially at low scat-
tering angles, where a systematic deviation from the
expected linewidth may be noted (see Fig. 10). This
cannot be attributed to the measuring procedure, since
several independent checks have always led to seli-
consistent results. Some, as yet, obscure systematic
effect must be invoked, as for instance the local heating
due to inelastic scattering of the incident light,® or a
further broadening due to deviations of the single
scatterers from a spherical shape.

6. PHOTOCOUNT DISTRIBUTIONS

The connection between the ensemble distribution
P(E,) of the complex amplitude E, of a classical elec-
tromagnetic field and the photoelectron distribution
p(n) from a photodetector interacting with the field
is given by!#

1
2’7(”)=—'/(§'|E0|2T)" eIERTP(Eg)d?E,  (18)
n!

(d2E0= d(ReEo)([(ImEo))
sumptions:

under the following as-

(1) The measuring time 7" is much shorter than the
coherence time 7. of the field.

(2) The illumination is uniform over the used region
of the photocathode surface.

(3) ¢ takes into account the quantum efficiency of the
photocathode, eventual attenuator factors due to
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Fi1G. 9. Sample of a power spectrum of the chopped photocurrent.

29 In a previous work (see Ref. 1), linewidths obtained by the
heterodyne technique were reported, but no direct evidence was
given for the Lorentzian character of the scattered light.

3 K. E. Rieckhoff, Appl. Phys. Letters 9, 87 (1960).
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filters, and a dimensional factor to translate from field
intensity to “photon” numbers.

The relation (18) has been given a quantum-mechani-
cal treatment by Glauber!® and by Kelley and Kleiner.!®
We summarize here the main results. Let us write the
field operator in a given cavity of volume ¥ in an ortho-
normal-mode expansion (we consider for simplicity a
single polarization and use mks units);

E@t)=12 (how/2¢V )12
X[aw(@) () —a’ Ouer ()],

where ux(r)/A/V are a complete orthonormal set of
cavity eigenfunctions. Then we use the “coherent state”
representation, i.e., we take the expectation value over
the complete space of the eigenstates of the annihilation
operators defined by

(19)

(20)

In this way we obtain a relation similar to Eq. (18),
where now the weight function is Glauber’s P({as}),
which appears as a weight function in the diagonal
representation of the field density operator

ax|an,0, - <o, - Y= ] o)) =i | {ou}) .

P=/l{ak}><{alc}|P({ak}){da2k}, (21)
where {d%x} stands for []i d(Rear)d(Imay). In general
we should write a relation between photocount and
field distributions such as Eq. (17.35) of Ref. 15 to take
into account the multimode structure of the field.
However, limiting ourselves for simplicity to a single
mode, and introducing a new coefficient s for quantum
efficiency and attenuation, we obtain

1
plm)=— / (s|a*T)" e1etTP(0)d%,  (22)
n:

which appears formally identical to the classical
relation (18). '
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Fi16. 10. Theoretical and experimental values of linewidths of the
photocurrent power spectrum (full width at half-height).
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Fic. 11. Example of a photocount distribution as obtained
performing measurements within a coherence area and a coherence
time.

This relation permits us to know the statistical dis-
tribution P(a) of a field once the photocount distribu-
tion p(r) has been measured. A similar relation can be
found between the joint field distribution for two dif-
ferent times and a joint photocount distribution.!?
This way of investigating is more general than the use
of relations between ensemble averages, such as Eq. (4),
which relates the first-order correlation functions of the
scattered field and of the scattering medium.

When we apply these considerations to the field
scattered by Brownian particles, since the statistical
properties of the incident laser field are already known,
the measured distributions of the scattered field yield
information on the properties of the medium.

The conditions under which we perform measure-
ments on a single mode must be specified. From a spatial
point of view, each scattered mode is isolated on the
detector when the aperture of the detector is smaller
than a coherence area 4. defined by

4.5 (dR/N)?, (23)

d being the maximum size of the scattering region on a
direction orthogonal to the scattered direction ks, and
R the distance between the scatterer and the photo-
detector (this relation holds when R is much larger
than the size of the scatterer). From a temporal point
of view, field amplitudes for the scattered mode are
correlated within a coherence time 7; depending on the
correlation time of the density fluctuations in the scat-
tering medium. We already know from the experiments
of Sec. 5 the value of this relaxation time 7.. Therefore,
it is easy to choose times much shorter than 7., so that
the field measurements correspond to an ‘‘instan-
taneous” sampling over an ensemble distribution.
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TasLE I. Data obtained by photocount
measurements (see Fig. 11).

Particle diameter (1) 1.088 0.796

Total count number 55.226 121.475 87.921 | 60.050 83.876
Mean value 0.763 1.489 1.754 1.294  1.820
Variance 1.328 3.580 4.695 2.881 4.976
Hs 0.97 0.95 0.94 094 0955
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Within these experimental limitations, the photocount
distributions are given by the relation (22).

It is readily apparent, by the central limit theorem
(the reasoning is very classical and was first made by
Lord Rayleigh; see Ref. 11), that scattering of a co-
herent field from uncorrelated scatterers gives rise to a
Gaussian field distribution for each scattered mode,
i.e., denoting by (n;) the photon number in the Kth
mode, the Glauber P function for that mode is given by

|

()

The associated photocount distribution, taken in the
above mentioned experimental conditions, is given by a
Bose-Einstein, or geometric, distribution

1 <1’LT) "
i)

where {nr) is the average number of photoelectrons
detected in the time 7'

We could in the same way write a relation for the
joint photocount distribution, as we have done in Ref.
13. However, as discussed there, for this case of linear
scattering the same information is already furnished
by the frequency measurements. We therefore limit
our experiments to first-order distribution functions.

The experimental arrangement for photocount
measurements has already been described in Ref. 12,
to which we refer the reader for details. Here we add
only that the thermal noise contribution from the
photocathode is reduced to a negligible value by an
electronic diaphragm, which consists in giving a negative
potential to the focusing electrode between the cathode
and the first dynode of the 56 AVP phototube, thus
reducing the effective photocathode surface to only
1 mm?. Use has been made of the nonlinear method!!:12
i.e, we have standardized the ouptut pulses from
the  photomultiplier, thus avoiding statistical
spreading due to fluctuations in the multiplication
process. This has been possible because the coherence
times 7, are so long that we can safely use measuring
intervals 7" much larger than the dead time of the
nonlinear circuit which performs the standardization
(about 10 nsec). Experimental results are reported in
Table I for spheres of diameter 1.088 and 0.79 x. An
example is shown graphically in Fig. 11.

Play)= exp— (24)

w(ny)

(25)
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For each run we have calculated the reduced second
factorial moment

Hy=[(n(n—1))/(m)*]—1,

which goes from 1 for a Bose distribution to 0 for a
Poisson distribution. We note from Table I that our
measurements agree with the theoretical expectations
within a few percent. The residual error cannot be
attributed either to the aperture of the observation
system (since this was much smaller than a coherence
area) or to the measuring time. Furthermore the photo-
count technique has already been tested!!:!* and is
known to give no errors besides the expected uncertainty
due to the finite count number, and this uncertainty is
negligible in the case of the actual numbers used in our
experiments. We suppose that a small non-Gaussian
contribution could arise from multiple scattering. In
fact, while the “primary interaction” volume is small
and its size is limited by the beam diameter, the
“secondary interaction” volume over which multiple
scattering is effective extends to the whole cell and
must be associated with coherence areas much smaller
than the phototube aperture, thus introducing an
uncorrelated contribution.

(26)

7. CONCLUSIONS

The results may be divided into three parts. By
working at a density of scattering centers such that
neither van der Waals correlations nor multiple scat-
tering processes have any influence, we have exploited
the absence of a ‘“two-particle” density correlation
function to measure the angular distributions corre-
sponding to the light scattered by a single particle.

Then, by the joint use of photocount distributions and
frequency measurements, we have shown the validity
of the Markov approximation for the scattered EM
field, that is, both a Gaussian ensemble distribution
and a single-exponential correlation function.

The results we have found are in good agreement with
the existing theoretical treatments.!0-20-2t The tech-
niques we have used, however, may open the way to
similar joint measurements on more complicated scat-
tering media, such as those in which the presence of
long-range correlations or nonlinear phenomena de-
stroys the Gaussian character of the ensemble distribu-
tion, or those in which the presence of more than one
relaxation time gives a non-Lorentzian frequency
profile.
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