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Symmetric Quark Model of Baryon Resonances*
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The symmetric quark model of baryon resonances is applied to the (56,0+), (70,1 ), and (20,1+) super-
multiplets. Using a systematic SU (6) analysis, octet dominance, and dominance of two-body contributions to
the mass operator, the Gursey-Radicati mass formula for the (56,0+) is derived without use of pertu. rbation
theory. An equal-spacing relation is derived for the SU(6}-symmetric mass contribution for the (56,0+},
(70,1 ), and (20,1+) in ascending order, with the (20,1+) lying above 2 Bev. A detailed analysis of the
{70,1 },which yields a quantitative fit for the spin-orbit-split negative-parity resonances, is made, with the
result that the magnitude of the octet spin-orbit term is about six times greater than the singlet one. The
masses and mixing amplitudes for all the resonances in the (70,1 ) are calculated, and it is pointed out that
because of the large mixings for J =-', and $, the Gell-Mann-Okubo mass formula cannot be expected
to hold for these resonances, so that there is no sense in trying to group them into octets and decuplets.

I. INTRODUCTION

'HE introduction of quarks' or other triplets as
fundamental constituents of hadrons has given

a new unifying point of view to particle physics. This
notion of fundamental triplets achieved striking success
when combined with the idea of approximate-spin and
unitary-spin syrrlmetry of the interactions relevant to
the low-lying hadronic states. ' This SU(6) theory' has
led to a number of striking results which can be obtained
in an elementary way using the quark model4: classi-
hcation of baryon and meson supermultiplets, ' mass
formulas for these multiplets, ' magnetic moment ratios
for baryons, ~ and scattering of hadrons at high energy. 6

The underlying idea is that the observed hadrons are
bound states of the quarks or other triplets. Up to now,
a naive bound-state model in which the triplets are
assumed to move nonrelativistically has been sur-

prisingly successful, even though at present the model
has no fundaInental justidcation. One of the sulpllslng
features which has appeared from the study of the
baryons is that the SU(6) wave function of the baryons
is totally sylnrnetric. ' Since ordinarily the ground state
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of a composite system has all particles in the lowest s
state, the synnnetry under permutations of the 5U(6)
wave function indicates an apparent symmetric sta-
tistics for the triplets in the ground state of the baryons.
Evidence against an antisymmetric space wave function
for the ground state of the baryons comes from the study
of the saturation of triplets bound in hadronic states'
and from the consideration of the electromagnetic form
factors of the proton and the neutron'; further, the form
factors provide speci6c evidence for a symmetric
ground-state space wave function, since the proton form
factors and the neutron magnetic form factor remain
positive in the range of momentum transfers in which
they have been measured' —"(up to 245 F—')."

Two proposals have been put forward to explain the
apparent violation of Fermi statistics in the ground
state of the baryons. One of these is that the quarks are
parafermions of order three, " in which case three
quarks can be in a symmetric state under permutations
and the composite object which is a bound state of three
such quarks is a Fermi particle. This theory seems to be
equivalent to a theory of three indistinguishable Fermi
triplets. (One could also have a theory with three
distinguishable fractionally charged Fermi triplets. ) For
the paraquark theory the triplets must have the usual
quantum numbers associated with the quarks, for ex-

70. W. Greenberg and D. Zwanziger, Phys. Rev. 150, 1177
(1966).

s A. N. Mitra and R. Majumdar, Phys. Rev. 150, 1194 (1966).
'R. E. Kreps and J. J. de Swart /University of Pittsburgh

Report NYO-3829-4 (unpublished)g quote a theorem of L. K.
Pandit and V. S. Mathur that the form factor must have at least
one zero for any antisymmetric wave function. Krcps and de Swart
argue that the zero in the form factor can be made to occur at
arbitrarily large momentum transfer by proper choice of thc
antisymmetric wave function, and exhibit a 4-parameter anti-
symrnetric wave function which leads to a form factor which its
the present data (see Ref. 10).

'0 S. Ishida, K. Konno, and H. Shimodaira |Nuovo Cimento
46A, 189 (1966)g found form factors which fit the present data
using a one-parameter symmetric wave function."K. Albrecht et al. , Phys. Rev. Letters 17, 1192 (1966).
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supcrmultiplcts (2L+1) dimSU(6) arc labelled r dimSU(6), I.&g in
the present article.
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ample, fractional charge. The second proposal to explain
the apparent violation of Fermi statistics is a three-
triplet model" in which a new three-valued degree of
freedom is introduced and there are nine fundamental
particles. If one assumes that a new SU(3) group called
SU(3)" acts on the new three-valued degree of freedom,
then the lowest-lying baryons, those presently known,
can be placed in the singlet of this SU(3)" with an
SU(3)" wave function s""~"~", 2", 8", C"=I, 2, 3.
For this state each of the three SU(3)" degrees of
freedom occurs with equal probability and this degree
of freedom is essentially averaged out. The quantum
numbers of the triplets in these SU(3)" singlet states
are effectively replaced by their average values, which
are those of the particles in the quark model. Thus this
model has the attractive feature that the charges of the
triplets are integral, but they have eRectively fractional
values in the observed baryons. [Similar remarks hold
for the SU(3)" singlet mesons. J The three-triplet model
allows a construction of particles in the 10* and other
representations which cannot be obtained from the
quark model using three-body states. Both the para-
quark and three-triplet models introduce the number
three explicitly as the maximum number of quarks'4 in
a state which is syrrunetric under permutations. For
most purposes in which the independent quarks do not
appear singly these models are equivalent. We will refer
to a model in which the three triplets in a baryon are
symmetric under permutations as the symmetric quark

model.

We abstracted this model from the properties of the
ground state of the baryons. There are two possibilities
to consider as candidates for the higher baryonic states:
orbital excitation of quarks and SU(6) excitation in
which quark-antiquark pairs are added. It seems to be
in keeping with the nonrelativistic picture used for the
ground state to assume that quark-antiquark excitation
is not important; in addition, it is attractive to use a
model in which only three objects occur and to make use
of the analogy of such a model to the systems studied in
atomic and nuclear physics. In addition, with one ex-

ception, the Zo+ resonance which occurs in E+N
scattering, " there is no 6rm evidence for a resonance
which does not fit into those 5 U(3) multiplets which can
be obtained from three quarks: namely, the singlet,
octet, and decuplet. In this article we will study the
orbital excitation model for the higher states. "
"Y. Nambu, in Prelldes in Theoretical Physics, edited by A. de-

Shalit, H. Feshbach, and L.Van Hove (North-Holland Publishing
Company, Amsterdam, 1966), pp. 133-142; M. Y. Han and Y.
Nambu, Phys. Rev. 139, 81006 (1965); A. Tavkhelidze, in
Proceedings of the Seminar on Ili gh-L&'nergy Physics and elementary
Particles, Trieste, 1065 (International Atomic Energy Agency,
Vienna, 1965), pp. 763—779, and references cited therein.

"We will use the word "quark" for a particle which has an
electively fractional charge in the SU(3)" singlet, as well as for a
particle whose charge is really fractional."R. L. Cool et al. , Phys. Rev. Letters 17, 102 (1966).

In order to restrict the number of a priori possible
mass formulas for the supermultiplets of hadronic
states, we will assume that the terms in the mass
formulas come from only two sources: one-body effects
which can be associated with the masses of the quarks,
and two-body eRects which can be associated with two-
body interactions among the quarks. (Our actual
analysis makes use of a parametrization of the mass of
the observed resonances in terms of one- and two-body
operators and. might not require so concrete an identi-
fication of the terms. ) Within this framework we make
the most general analysis which is compatible with ap-
proximate SU(6) symmetry and octet dominance. In
particular, our derivation of mass formulas does not
make use of perturbation theory.

The baryon resonances are of special interest for two
reasons. First, the interesting question of symmetric
statistics arises only for the baryons; the mesons look
the same in the sylnmetric-quark model as in the Fermi
quark model. Secondly, the simplifying assumption that
one- and two-body effects dominate holds no advantage
for the mesons which are two-body systems.

We carry out our analysis using arti6cial single-
particle space states for the quarks. This simplifying
assumption makes it easier to handle the symmetrization
of the states and probably does not lead to serious error
provided that certain pitfalls, such as excitation of
center-of-mass motion (the "spurious states" of nuclear
physics) are avoided. We think that this simplifying
assumption is appropriate for a phenomenological
analysis such as we are making.

For the higher states, the SU(6) approximate sym-
metry which has been so successful for the ground state
should be augmented by an L-S coupling scheme, "
which sometimes goes by the name SU(6)&&0(3). We
have adopted this classification of the higher states and
have also used the I;S coupling point of view in the
analysis of the mass operator. It is convenient to refer
to the supermultiplets in this model by expressions
(dim SU(6), I ~). Thus the ground state is (56,0+) and
the lowest negative-parity baryon resonances are
(70,1 ). We are mainly interested in these negative-
parity resonances in this article; however, we will also
consider the (20,1+) because the parameters necessary
to derive a mass formula for this supermultiplet are
already completely determined by the (56,0+) and the
(70,1 ).

To analyze the one- and. two-body operators, we make
systematic use of the SU(6) approximate symmetry.
From this point of view we can And the most general
one- and two-body operators, and classify them ac-
cording to their spin dependence and according to
irreducible representations of SU(6). Experience in
analyzing the masses of baryons and mesons indicates
that the lowest SU(6) representations are most im-
portant, "and we will make use of this fact in choosing

r' H. Harari arrd M. A. Rashid, Phys. Rcv. 143, 1354 (1966).
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which operators to retain for our calculation. '~ Having
found the relevant operators, we will normalize them in
such a way that the parameters which are found from
the experimental data can be compared. The values of
the di8erent parameters should satisfy certain physi-
cally reasonable conditions which can serve as con-
straints to be used in addition to the question of whether
the data can be fitted.

We will classify the one- and two-body operators here,
but defer to Secs.2 and 3a detailed derivation of themass
formulas. We label the operators Tq;~Bury(@ '

Since a single particle is in a 6 of SU(6), the most
general operator acting on a single particle must be in

6x6'= 1+35.

Only S=O operators can act on a single particle and.

thus the only operators available are T»' and T3;s,
which, of course, essentially come from the central mass
and the mass splitting between the nonstrange and
strange quarks. LWe didn't need this arguinent to find

such a simple result, but gave it to indicate how this
SU(6) analysis will work. ) For the two-body operators
the most general state is in

6)&6=21,„+15,„g;.

The most general operators's acting on a sylnmetric
space state arc in

21'21'= 1+35+405.

The 5=0 operators here are T»', T3, T40, and T405'.

The 6rst two operators cannot be distinguished from the
corresponding one-body operators in a system with a
fixed number of particles and thus do not contribute
anything new. The four 5=0 operators acting on
spatially symmetric two-body states lead precisely to
the Gursey-Radicati mass formula for the (56,0+), as we

will show ln Scc.2. Thc same parameters dctcHMned by
the (56,0+) are used in the (70,1 ). The parameters,
when properly normalized, are reduced two-body matrix
elements. For the (70,1 ), we must also consider the
S=O operators acting on the antisynunetric space state;
these occur in

15'15*=1+35+189.

The 5=0 ones are Tq', T35s T&s9' and Tz&s The four new

terms introduced here have parameters which must be
found. from the experimental data. The spin-orbit
interactions can act only on the antisymlnetric two-

body space wave function, since the relative angular
momentum is antisymrnetric under the permutations of
the two particles. Thus only the 5=1 operators in
15&15* can contribute, namely T35', T35', and Ties.

'~ We keep all operators for (spin) 5=0, and those in the lowest
SU(6) irreducible (BS) for S= j..

'8 Conservation of parity prohibits operators connecting sym-
metric- and antisymmetric-space states.

Tensor forces can only act on the synunetric space state
and thus occur only in T405' and T405s.

The two-body dominance assumption leads to sig-
ni6cant simpli6cation. For example, from the standpoint
of abstract SU(6) the mass operator can occur in"

while from the two-body point of view the representa-
tion 2695 cannot occur. Similar simplihcations occur for
the states with L&0.

Section 2 gives a nonperturbative derivation of the
GQrsey-Radicated mass for the (56,0+). Section 3 gives
the analysis of the two-body operators for s- and p-wave
particles; Sec. 4 gives the 6t of the particles in the
(70,1 ), and Sec. 5 gives a sitnunary and outlook for
future work on this model.

Subgroup

SU (3)
SU(2)8
SU(2lg

U(t)&
SU (4)

SU(2) 8„
SU (2)8),

Generators

I~B=I~oB'= fJ~o~&B'—-'~gBÃ

S b —I~ Cb —g~ tgcb Lg bg

~Z'=IAMB —~~&BIg &=a&,~uB —,'S~ y
y= I3,3' ——Ip P'=Ig~ = —,

' (g„—2gp)
I& Bb Lg-Bg by

A
Bb Lg by

Sb+ Lg by

'9%e will always use small Greek letters for SU(6), capital
Latin letters for SU (3), and small Latin letters for SU(2) 8. Later
we will use capital barred Latin letters for SU(2)y. Repeated
indices are to be summed.

20 S-wave quarks sufBce for the Gursey-Radicati mass formula.
%hen we discuss the (70,j. ) in Sec.3, we will extend the formalism
to include p-wave quarks. Particles with higher / and higher
principal quantum number can be treated in a similar way.

This formalism is that given by M. A. B. Beg and y. Singh
Phys. Rev. Letters IB, 418 (1964), translated into second
quantized form using Bose operators.

2. DERIVATION OF THE GURSEY-RADICATI
MASS FORMULA

We use a simple formalism with Bose operators to
derive mass formulas in the symmetric-quark. model.
Let u t and a 1 a=Au, 2 =1, 2, 3 for SU(3), a= 1, 2 for
SU(2) s, '9 where S stands for ordinary spinj be a set of
Bose creation and annihilation operators for s-wave
quarks. '0 In terms of these operators, the generators of
SU(6) are

I ~=a ~a~—6b„~Ã, X=u,"a&.

Relevant subgroups of SU(6) are given in. Table I,
where X=X„+Xi is the quark-number operator,
X„=up, u"' and S),——a3, a" are the nonstrange and
strange quark-number operators, respectively, and S„
and 5), refer to the corresponding quark spins. The
reduction chains which occur are SU(6) —+ SU(3)
&(SU(2)s, and SU(6)-+SU(4) &SU(2) s„with SU(4)~
SU(2)r)&SU(2) s„.2i

TmI.E I. Generators of relevant subgroups of SU(6).
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The Casimir operator C2&@ can be eliminated in favor of
J(I+1) LJ=S in the (56,0+)g to give a more familiar
form of the Gursey-Radicati mass formula. '4"

The Gursey-Radicati mass formula predicts the
foHowing equalities:

1V+g= s {3A+Z), (2)

the Gell-Mann —Okubo formula for the octet;

(3)

bb Octet dominant operators either are a singlet under SU(5) or
lie in an octet and have I=F=O.

"We give one sample of the manipulations leading from the
second quantized form listed to the form in terms of the quantum
numbers of the observed particles. Consider T4068. The irreducible
405 must be symmetric separately in upper and lower indices, and
traceless:

(T4068) p"=a tap~a'a' —s(~ '~p'+& 'ep'+&p'n '+&PV ')
+(I/56) (S &b»b+5 bS»&)u,

where' =a„ta„~aI'a" and q„P=a ta„taPaI'. The I= 7=0 member of
the S=O octet is Egg~(T40P)g, , ~~~ II~, which simpli6es to the form
listed. The 6rst term of the form listed is

pg~agrr, any a~~a+~
—byes(a~ tgcgg~tgeb 55bsg~ tg&&b+g~tgebg~ tg&&b)

=kys" Llxc+HxciV, Ic'+ b Sc'lV g+ b
'I'—

The result, listed is obtained by using thc identity

IAclcA IA&&1k A+PAb I Ag'+ (Ibb}b

and adding the second term.
'4 Using the Bose operators, it is straightforward to show that

Cg(8) =C~(') (S)+-',Ã'+E for symmetric representations of SU(6).
For X=3, this reduces to C2(3) =2S(S+1)+$, valid for the 56.
This last result was 6rst given by Sdg and Singh, Ref. 21.

2' P. Federman, H. R. Rubenstein, and I.Talmi /Phys. Let,ters
22, 208 (1966)g studied the 56 from the point of view of two-body
dominance, but did not use the SU(6) symmetry systematically.

Some other relevant objects are the Casimir operators
for various SU(e) groups. For example,

C2&@=I~~I~~ C2&@=I~~I~",
Cs"&(S)=S.bSb =2S(S+1),
Cs"'(I)= gy~dr&"= IgsII&" ', Fs=—-2I(I+1),

where we added a distinguishing letter in those cases
where the same SU(rb) group enters more than once.

Now we derive the Gursey-Radicati formula. %e
ignore the one-body operators since they do not give
anything which wiH not occur in the two-body oper-
ators. The two-body operators all have the form
e ~upt3f~q &u~u', where the coeS.cients M must be de-
termined to make the operator lie in given SU(6) and
SU(3) irreducibles, satisfy octet dominance s' and have
5=0. The method of construction of these operators is
elementary and so we will just list them in Table II,
together with their form in terms of quantum numbers. 2'

The numerical matrix yg~ is diagonal and has diagonal
elements ~» 3, and —3. The Gursey-Radicati formula
for the (56,0+) results follows:

TABLE II. Forms of the two-body operators.

Operator Second quantized form

T ' a ta ta~aP

T ya"ag, a„a 'al'

T405 aa aaf a 'a
—(5/7)a„ta„ta&a"

bbbb ysAEgk tgcbtgcaa&&b

—bgsb~gb a g")

Form in terms of
quantum numbers

N(E—1)
(N 1)Y-
Cd'& —(8/21}lP —(16/'l) A'

I(I+1)—-'„y —-', Cb&'&

—(5/24) (X+5}y

the equal spacing for the decuplet, and a relation be-
tween decuplet and octet. The average of the erst three
mass differences in Kq. (3) is 146 MeV and the last
number is 124 MeV, so the best one can do in 6tting the
(56,0+) is to get within 11 MeV of all the masses.

l—1) 213)

~here the ut's create s-wave particles as before and. the

TABLE III. Summary of the parameters used and the
resonances predicted.

Symmetric, S'=0
Antisymmetric, S=0
Spin-orbit

Fixed
by

(56,0+)

(70,1 )
(70,1 )

No. of No. of
parameters resonances

8 in S6, I.=O+
4 30 in 70, I.=1
2 11 in 20, L, = 1+

3. ANALYSIS OF TWO-BODY FORCES FOR
s- AND p-WAVE PARTICLES

With arti6cial single-particle space states, at erst
sight the following two-body parameters enter for s- and

P wave l&articles ' s s~ (s P)bum~ (P P)by~, &=sp {PP)by~, &=bi

(s-p),„b,, and (p-p),„b;. Since with relative coordinates
only two kinds of relative space states among s- and
p-wave particles occur: b=o, which is symmetric in

space, and l=t which is antisyounetric in space, we
must reduce the number of two-body parameters in
some way. The simplest way to make this reduction is to
identify all the 3=0 cases and all the l=1 cases. The
3=2 case does not contribute to the (70,1 ) and (20,1+).
This procedure has the virtues of being simple and of not
introducing any more parameters than one would have
in the more careful treatment with relative states. VAth
this assumption the two-body parameters determined
from the (56,0+) and the (70,1 ) completely determine
the (20.,1+'). The predictions about the (20,1+) which can
then be made are a good. check on this assumption;
however, we expect the results for the (70,1 ) to be
more accurate than those for the (20,1+). Table III
gives a summary of the parameters used and the
resonances predicted.

To derive the mass formula for s- and p-wave par-
ticles, it is convenient to introduce Bose operators c;
and c '= (c.;t)t, i=0, 1, 2, 3, with
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bt's create p-wave particles with g= 1, 2, 3 corresponding
to magnetic quantum number —1, 0, 1, respectively.
The generators are similar to those given above, with
the c's replacing the a's. For example, the generators of
SU(6) are

I ~=c,tc&'—-'8 t'S, E=c„,tcI".

The one-body operator is

M IV +M&IV&,= (-,'M +-'gM&, )X+(M —M&)I',

where in a naive model 3II„and 3Iq would be the non-
strange and strange quark masses. The S=O terms can
again be manipulated into the form of quantum
numbers; however now quantum numbers for both the
SU(3) and SU(4) chains occur, and the observed
resonances are, in general, not eigenstates in either
chain. In Table IV we list the two-body operators in
terms of quantum numbers. The second quantized
forms from which they were derived can be written
down easily in analogy with those given above for the
(56,0+). The new superscript on the left indicates the
SU(6) two-body state on which they act. The S=O
mass formula which results from the terms given in
Table IV is

M=+ M;x,T;,

where the normalization factors

&i= (I'i, max 2'i, min+ 1)

are chosen to make all the terms contribute in com-
parable ways in the two-body system; the M's are then
reduced two-body matrix elements. Note that for T= Ig,
the third component of the isospin, the factor becomes
the standard (2I+1) '. These normalization factors
are, in the order given in Table IV: —'„—„g, 9/28, g, ~„

5, 5. Notice that for a sytmnetric representation the
terms acting on the 21 reduce to those considered in
Sec. 2, and the terms acting on the 15 vanish. For later
numerical work it is convenient to write the S=0 mass
formula in the form""

M =IVg+$&F'+I&Tg[Cg&g&+2S(S+1)]

+~gLI(I+1)—:I"+S.(S.+1)—S~(S.+1)j
+1V i (Cg&'& 45/2)+ IVg[F ,'—+I (I+1) ,' I'—g———
—S (S +1)+S&,(S&,+1)j
+X,LCg&» —2S(sy 1)——gg]

+advt Cg& & —2S„(S„+1)——,'Y' —SF—15/2j, (4)

where X4 through IVz inclusive vanish for the (56,0+).

' Except for the terms with C2( ), these terms occur in Beg and
Singh, Ref. 21. Our two-body dominance assumption provides a
rationale for the particular choice of SU(6) irreducible operators
made by Beg and Singh. We also relate different (SU(6),L) super-
multiplets. Beg and Singh LPhys. Rev. Letters 13, 509 (1964)j
discuss the 70 in abstract SU(6) (without orbital excitation).

2 A. W. Hendry t Nuovo pimento 48, 780 (1967)g studied the
56, 70, and 20 in a way similar to Federman et at. , Ref. 25.

TABLE IV. The two-body operators in terms of quantum numbers.

Operator

21+ 1

21+ 8

21+4 1

21+ 08

11&+11

15+8 8

7189
1ST 8

Form in terms of quantum numbers

—',Lcg&'&+ P/6)Ã' —/Ãg
-', LCg&4& —2S&, (Sg+ 1)—r' Y' ——',Cg&'& j+2 (-,'&V —1)Y

gK'g"'+»(5'+1) —(3/7) 6'.&'&3

g Li (1+1)—-' y'+5'Q (~ +1)—5'~ (5'&,+1)3—'2 Lcg"&

+25'(~+ 1)3—g'g Lcg"'—25'& P&+1)—4 y' —an" 3
+21/4(X/3 —1)y

—;(—C,«)+-,'X2+5@)
—-', [Cg&4& —25&, (S&,+1)—-', yg —-'Cg&'& /+ (-',)V+1)F
K&g&"—25'(5'+ 1)3——'o&-"g&g&

'gP(1+1) 41"—~.(~ +1)+»(%+1)] T'RE—cg"&
—2~ (~+1)i+ 1'6 r&-"g'"—25'& y&,+1)—4 y' —g 6'g'ol

'8 We keep the off-diagonal matrix elements of the spin-orbit
operators in the (70,1 ); however, we drop the matrix elements of
these operators to other supermultiplets (configuration mixing).

The S;are related to the one- and two-body parameters
introduced above by

-gM„+-',Mg —(21/8) ("M&')+ (45/8) (&gM&&)

= IV g (45/2—)Si—-'„kg —-', Xg—(15/2) I&r g,

M„—M&&+-g ("Mggg) = IV&+Xg—81V7,

("M,') —("M~') = 41Vi+ (20/7) Xg+ (10/21)Xg

y (2/15)cV, +-', IVg+ -', I&r7,

(g&Mggg) (&gMggg) —12&V + (2]/4)~3 g/5

("Migg') = 10IVg+ (5/3) Xg

(g&M4ggg) = (56/9)Xg,

(&gM «&g') = 101K&&+(5/3) Ãg,

("M&ggg) =5/g.

Note that only the 405 and. 189 two-body parameters
can be separated individually from the one-body
parameters.

The SU(6)-symmetric terms u+PCg&g&, above, lead to
equal spacing among the (56,0+), the (70,1 ) and the
(20,1+) in increasing order.

The spin-orbit two-body operators cannot conve-
niently be put in the form of quantum numbers in the
SU(3) or SU(4) chains because the spin-orbit operator
breaks the SU(6) I.Scoupling model an-d has off-

diagonal terms. "These terms can be evaluated either
directly from their second quantized expressions, which
we give below, or using standard 3j and 6j techniques.
This is the only place in which the states in the (70,1-)
are needed; since these states are easily written down,
we will not tabulate them here. We computed these
independently by both methods as a check on the
calculation. We kept the 5= 1 operators in the BS, since
this is the smallest irreducible of SU(6) from which
spin-orbit operators can be constructed. Recalling that
spin-orbit operators act only on the 15, and using the
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We write the total spin-orbit operator

&sT'z, s'+&s&r, ss, (7)

and give these operators in the SU(3) chain, in the
Appendix.

The S=2 (tensor forces) act only on the symmetric
space states and occur only in the 405 of SU(6). We
drop these terms here because there is not enough data
at present to evaluate them. It is worth pointing out
that only these terms resolve the degeneracy between
the J= ~ and —,', 6 and 0 decuplet resonances; conversely,
the splittings of those resonances will determine the
octet-dominant tensor forces.

4. ANALYSIS OF DATA FOR RESONANCES
IN THE (70,1 )

The erst step in the analysis is to determine where
negative-parity baryon resonances with given J, I, and
F quantum numbers can fit in the (70,1 ).The possible
placement of resonances is shown in Table V, where the
expressionunderplacementis (dimSU(3), dimSU(2) s).
Since there are not yet enough uniquely placed reso-
nances known experimentally, we used the following
experimental indications to place some of the non-
unique resonances: the quartet octet lies higher than the
doublet octet, and the doublet octet lies higher than the
singlet. "We used the table of Rosenfeld et al.32 for the
experimental data. Their table lists nine particles which
they consider well determined, whose quantum numbers
are such that they could fit in the (70,1 ); however, two
of these might be S-wave threshold effects. The re-
maining seven particles are listed in Table VI, assigned
as described above. It should be emphasized that later

TABLE V. Possible placement of resonances in (70,1 ).

Resonance JP Placement Unique'

3l, A, z,
b, , Q

E
A

5—
2
1—
2
1—
2
1—
2 p

1
2

3—
2
3—
2

(8,4)
(10,2)
(8,2), (8,4)
(1,2), (8,2), (8,4)
(8,2), (10,2), (S,4)

Yes
Yes
No
No
No

"L. I. Schift, Quantum 1Achanics (McGraw-Hill Publishing
Company, Inc. , New York, 1955), p. 146.

"These expressions are valid for the (70,1 ) where the spin-
orbit terms act on an (s-p),„», space state.

"Strictly speaking, this holds only for the N and A for which
the two octets mix (together with the singlet for the A.) but the
decuplet does not enter.

"A. H. Rosenfeld, et ale. , Rev. Mod. Phys. 39, 1 (1967).

standard l= 1 matrices, "we have'

sr —(bA, ta t b .tak t) (bAsr'ar br raA o) o oa. i.i (5)

and

Tr;s =ya (bAoi"a&t b&g—tag, t)
0( (b~'r ar 'b»—a")'~s'I ' . ('6)

TAsLE VI. Well-determined resonances in the (70,1 ).

Resonance

~(14OS)
X(1519)
X(1525)
ar(1570)
E(16'70)
z (161'0)
Z (1768)

1—
2
3—
2
3—
2
1—
2
3—
21-
2
5—
2

Placement

(1,2)
(1,2)
(8,2)
(8,2)
(8,4)
(10,2)
(8,4)

Unique'

No
No
No
No
Yes
Yes
Yes

on we will allow mixing among all the resonances that
can nllx.

For the symmetric space parameters we kept the
parameters that are determined by the 56. We de-
termined the antisymmetric space parameters as follows.
First w'e neglected spin-orbit forces and estimated the
5=0 antisymmetric space parameters from the central
masses of the I. Smultip-lets. We used iY(1525),
h(1670), Z(1768), and estimated the fourth parameter
by assuming Misos/Miso~M4oss/M4os'. Since there are
more resonances than parameters, we predicted the
remaining particles from the parameters we had chosen,
neglecting, of course, spin-orbit terms. These predic-
tions, which took account of the SU(3) mixing between
the A's in (1,2) and (8,2), agreed rather well with the
experimental data. We then estimated the two spin-
orbit parameters from the large splitting between the
singlet A. 's with spin —', and -'„keeping the SU(3)
mixings which had been determined in the earlier step
for these A' s. We used these spin-orbit parameters to
predict the spin-orbit splittings in the quartet octet; the
results were encouraging but could be improved by
adjusting the spin-orbit parameters, which we did. At
this step of the calculation, we programmed all of the
particles in the (?0,1 ) including diagonaliza, tions of all
the mixings Lboth SU(3) and spin mixings]. We
arranged the calculation so that inserting the six
parameters to be varied gave the masses of all the
isospin multiplets in the (70,1 ). In order to find the
best set of parameters, we introduced a figure of merit
equal to the sum of the squares of the differences be-
tween the calculated and experimental masses for the
seven well-established particles. We then searched,
using the computer, for the values of those six parame-
ters which minimized the 6gure of merit. During this
search, we found no evidence for the existence of local
minima; however, we did not attempt to exclude this
possibility in a systematic way. The final figure of merit
was 286, which means that in the least-squared sense the
theoretical values are on the average 6.4 MeV from the
experimental values. In fact, the worst fit particle, the
A(1520), was 11 MeV away from the theoretical value
and contributed almost half of the total figure of merit.
By comparison with the accuracy of the Giirsey-
Radicati formula for the (56,0+) this fit is good. We
want to emphasize again that a priorithere is no,
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0 2031
1851M, 1815?

853 1705M ]701M g 1759
Z 1763, 1768~ 1572M 1612M 6 1676
A. 1763 1808 1815
E 1672, 1670* 1744 1784 1954 I 1933?

Z 1798M
A. 1635, 1682?
S 1520, 1525*

2031
]850M
1692M
1676, 1670*

f 799M
1827M
1705M, 1670?
1563, 1570*

A. 1531) 1519* 1402M, 1405"

guarantee that one could 6t the intricate spin-orbit
splitting of the particles with only two spin-orbit
parameters. Table VII lists the calculated masses along
with the well-established experimental particles and
some other particles that are not as well-established. ~

TABLE VIII. Mixing amplitudes for resonances in the (70,1 ).
The E's are essentially unmixed.

TA&LE VII. Calculation versus experiment for (70,1 ). Asterisk
stands for well-established input resonances; question mark stands
for resonances less well established; superscript M stands for
resonances mixed by more than 20 j0. The left columns are
calculated masses. The right columns are experimental masses.

Note that none of the undiscovered resonances have
mass less than 1550 MeU. %e want to call particular
attention to the following predictions: a Z(s ) at 1572
MeV, an accidentally degenerate A (ss ) at the same mass
as theknownZ(s ) at 1768MeV, and (-', ) and (-', )
at 1101and 1705 MeU, respectively. This calculation at
the same time produced the mixing amplitudes which
are tabulated in the SU(3) basis'4" in Table VIII. We
remind the reader that the mixing probabilities are the
sguares of these numbers. The mixing amplitudes can be
compared with experiment using branching ratios for
various decays.

Our analysis resulted in values of the mass parameters
which we introduced. Those for the antisymmetric space
terms are generally comparable in magnitude but
smaller than the similar parameters for the symmetric
space terms. The results are"

(st3E ') —("3l ') =—291.5 MeV,

("cVsss) —(tsMsss) = —22.9 MeV,

M4pg = 199 MeU M4p- = 121 MeV

Mysg =36.8 MeV, M~8g'= —103 MeU.

Particle (mass) (J)

x(1402) (-,')
X(1705)(-,')
x{1815)(-,'}

Amplitudes: (S,SU{3))
(-:,1) (l,8) (l,8)

0.76 —0.65 0.02
—0.62 —0.71 0.35

0.21 0.27 0.94

The spin-orbit parameters, which for convenience are
normalized using the diagonal terms of their contribu-
tions to the observed resonance states in the SU(3)
basis, are

3fL,.8'= 35.4 MeV, ML, 8'= —189 MeV.

X(1531)(-,')
~(1635) (-;)
~(1808) (-;)

Z(1612) (-,')
Z(1692) (-,')
z(1827) (21)

Z(1572) (-;)
Z(1759) (-;)
Z'(1798) (-',)

=-(»01) (-:)
~ (1799)(j)
" (1850) (-')

=-(»o5) {-:}
=-(»») (l)
"-(1954)(-;)

—0.99
—0.10

0.12

(k,&0}

—0.63
0.70
0.35

—0.67
0.72
0.19

—0.57
0.35
0.74

—0./0
0.60
0.39

0.14
—0.94

0.32

(-', ,8)

0.03
0.47

—0.88

0.37
0.54

—0.75

—0.31
0 74

—0.60

0.06
—0.50

0.8/

0.08
0.33
0.94

(5,8)

0.78
0.54
0.32

0.64
0.44
0.63

0.76
0.57
0.31

0.71
0.63
0.31

+ V. S. Bhasin, D. L. Katyal, and A. N. Mitra [Phys. Rev.
161, 1546 (1967)) also studied the (70,1 ) in the symmetric
quark model. Although they used the ideas of two-body and
octet dominance, they did not try to Qnd the most general mass
operator with these properties, and did not make an SU(6)
analysis of their operators. They did not find a quantitative fit to
the well-established resonances. They assigned $(1570) to (8,4)
citing Dalitz's analysis, Ref. 4, and the decay analysis of Mitra
and Ross, Ref. 34, while we assign it to (8,2) on the basis of its
mass. The (8,4) assignment for Ã(1570) depresses the predicted
masses of the other resonances.

It is interesting to note that the octet term has opposite
sign and is about six times larger in magnitude than the
singlet term.

Ke emphasize that the strong mixture among J"= —,
'

and —,
' resonances in the (SU(3), SU(2)s) basis implies

that the Gell-Mann —Okubo mass formula will not be
valid, and that it ma%.es no sense to try to group these

particles into octets or decuplets.

'4A. N. Mitra and M. Ross [Phys. Rev. 158, 1630 (1967)]
studied decays of the (70,1 ) in the symmetric quark model.
We will make a few comments about such decays, even though
we have not made a systematic analysis of them. Mitra and
Ross find a kinematic eRect enhancing S-wave decay into high-
maSS meSOnS (~ and q OVer 7r} WhiCh prOVideS a meChaniSm tO

break SU(3} in decays; however, they do not introduce an
explicit octet-dominant SU(3)-violating term in the decay inter-
action. We suggest that such SU(3)-violating terms be allowed,
and that their magnitude, relative to the SU(3)-conserving
ones be determined when the experimental data is sufhcient.
The spin-orbit terms which we found give one example where
the (octet-dominant) SU(3)-violating terms are larger than the
SU{3)-conserving ones. (See footnote 35.)

G. 8. Yodh LPhys. Rev. Letters 18, 810 (1967}j analyzed the
decays of h. (1519) assuming strict SU(3) symmetry and found a
conflict between the singlet assignment and the experimental
branching ratios. Our analysis suggests that an SU(3)-violating
term in the decay interaction is necessary to resolve this conflict
[Yodh's interpretation (b)g.

36The X; introduced in Eqs. {4) and (7) are, in order (and in
MeV): 997.5, —168.1, 16.69, 19.45, —79.95, —20.51, 7.1, —12.98,
2.08, and —26.99.
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S. SUMMARY AND OUTLOOK

We studied the symmetric quark model of baryons
(in which the baryons are composites of three quarks
with wave functions symmetric in the visible quantum
numbers) with orbital excitation of quarks using ap-
proximate phenomenological SU(6) symmetry with
spin-orbit coupling to resolve the degeneracy among
resonances with the same I- and S but di6'erent J. To
reduce the number of possible mass formulas, we as-
sumed dominance of two-body contributions to the
mass operator in addition to the octet-dominance which
is usually a part of an approximately SU(3)-symmetric
theory. We showed that octet- and two-body dominance
vield the Giirsey-Radicati mass formula for the (56,0+),
thereby giving a derivation of this formula free of
perturbation theory. The same principles, together with
dominance of spin-orbit operators lying in the lowest
possible SU(6) irreducible, lead to a ten-parameter
unified mass formula for the 49 isospin multiplets lying
in the (56,0+), (70,1 ), and (20,1+). The large SU(6)
symmetric terms in this formula obey an equal spacing
rule which places the (20,1+) above 2 BeV, so that the
1V(1400) resonance cannot be placed in the (20,1+).We
found a quantitative 6t for the seven well-established
negative-parity baryon resonances which can be placed
in the (70,1 ), and predicted the remaining resonances
in this supermultiplet. For this 6t the octet spin-orbit
term was (in magnitude) about six times as large as the
singlet one (and opposite in sign).

A table of higher supermultiplets in the symmetric
quark model with orbital excitation was given earlier. "
Here we emphasize that the (56,1 ) is spurious and does
not occur in the quark model, so tha, t the (56,2+) is the
next 56 above the (56,0+), just as in the Regge theory.
Several authors have pointed out that the Z(2035) and
A(1920) fit in the 'D7~2, and Z(1910), A(1820) and
F(1688) fit in the 'D5~& of this supermultiplet. Only
tensor forces split the degenerate J multiplets here. It
seems premature to make a detailed study of the mass
formula for this case.

We point out an interesting regularity among nucleon
resonances which deserves further study. It is well-
known that there are two series of resonances of
opposite parity: 5((-',+2')+), m= 0, 1, 4, and
E((—,'+2m) ), x=0, 1, 3, where the number in
parentheses is J. In the symmetric quark-quark model
these opposite parity series can be united into one family.
Place the A's in the series (dim SU(6), 1~)= (56,(2e)+),
11 =0, 1, . 4, and the 1V's in the series (70, (2n+1) )."

APPENDIX: SPIN-ORBIT OPERATORS

We list in Tables IX and X the (real symmetric)
matrices of the spin-orbit operators Tl, .q' and Tl, .q' in

TABLE IX. Matrix elements of TJ..q'.

(8,4)
(10,2)
(8,2)
(1,2)

J 5
2

6 —4 —10
0 0
2 —4
4 —8

J 3
2

{8,4~ Tr. s'~ 8,2) —+10 —2

TABLE X. Matrix elements of TI,.g8. TI,.q' =0 on the 3 and
0 states. Tg.g'=-', Tl, .q' on the nucleon states.

Basis
states

x(8,4)
X(8,2}
X(1,2)

2
3

J 3

—-';+10 —-'+10
5/3
0

—3/3
—10/3

0

z(8,4)
z(8,2)
Z (10,2)

—,'.-v'10 —+10

0

3/3 —2

2
0

="(8,4)
=-(8,2)

(10,2)

——',+10 —+10
—1

0

5/3
8/3

—2
2
0

the SU(3) chain. The properly normalized spin-orbit
operator is

with

~7 We ignore complications due to admixture of spurious states
here.

88 R. C. Arnold, Phys. Rev. Letters 14, 657 (1965).

Then a plot of M' versus I.shows that both series lie on
a single straight line with equation

M'= 1 46+1.09K in (BeV)'.

This regularity suggests that something like the ex-
change degeneracy which was found for mesons" may
also occur for baryons.

When more supermultiplets have been analyzed, a
systematic analysis of the reduced two-body parameters
classified by SU(6) may be useful in revealing regu-
larities in the interactions.


