
U(6)QxU(6)QxO(3) with collinear U(6)QxO(2) invariance
for the vertices. These sets then separateIy saturate the
sum rule for t= 0 and the results for the lowest multiplet
remain unchanged. .' Similarly for the baryons it may be
possible to introduce higher states in sets corresponding
to higher representations of some suitable group con-
taining U(6)QxU(6) so that each set separately satis6es
the superconvergence relation for 3=0 .

In general, the saturation of our sum rules with
particles of definite mass and spin corresponds to a
power-series expansion of the integrals over absorptive

~Recent calculations by Oehme, as well as by Freund and
Rotelli, for the case of mesons, indicate that this is indeed what
happens if higher representations of U(6)QxU(6)8)0(3) are in-
cluded (private communication). See also P. G. O. Freund, R.
Oehme, and P. Rotd. li, Phys. Rev. (to bc published).

pMts Mound I=O. Thc cxRct satuI'ation fol' R finite
interval in t requires, of course, an infinite set of par-
ticles with unlimited spin. In order to saturate our sum
rules for small 6nite values of t, we may try to use the
sequence of states which saturate the forward super-
convergence relations. The nonforward superconver-
gence relation will certainly imply stringent additional
restrictions on the mass spectrum and on the vertices.
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This paper investigates what remains of crossing symmetry in theories that are conventional local Geld
theories in all but one respect: that in6nite irreducible representations of the homogeneous Lorentz group are
used. Only vertex functions are studied here; results for scattering amplitudes will be reported in a sequel.
It is found that: (i) Form factors for scattering (t (0) and form factors for annihilation {/)4') are strongly
related to each other by the requirement that the interaction Lagrangian density be local, but they are no]
connected by analytic continuation. (ii) In the case of half-integral-spin Acids, the empirical fact that the
parities of particles and antiparticles are opposite makes it necessary to use a pair of conjugate irreducible
representations, rather than a single unitary irreducible representation. An analog of the Dirac equation
allows one to avoid parity doubling and to ensure a proper physical interpretation, provided that quantiza-
tion is carried out with anticommutators.

I. INTRODUCTION

OCAL 6eld theory possesses a number of "good"
& properties of a general sort, such as microcausality

and crossing symmetry; and some "bad" specific prop-
erties, for example, the fact that the 6rst Born approxi-
mation is an extremely poor representation of experi-
mental form factors. Infinite-component 6eM theories
were 6rst introduced because of the ease with which they
can accommodate internal symmetries of the type of
SU(6), but even apart from SU(6) they turned out to
have considerable intrinsic interest. In these theories the
Grst Born approximation to the form factors is remark-
ably similar to the best parametric fits to experimental
data. ' On the other hand, it is not clear that their gen-
eral properties are satisfactory. ' In a previous paper'

Supported in part by the National Science Foundation.' See, e.g., G. Cocho, C. Fronsdal, H. Ar-Rashid, and R. White,
Phys. Rev. Letters 17, 275 (j.966).

~ See, e.g., E. Abers, I. T. Grodsky, and R. K. Norton, Phys.
Rev. 159, 1222 (1967).' C. Fronsdai, Phys. Rev. 156, 1653 (196'i).

it has been shown that locality, in the dual sense of a
local Lagrangian density and local commutation rela-
tions, can be satis6cd, and that the conventional rela-
tion between spin and statistics is at least favored. The
purpose of the present paper is to show precisely what
are the crossing properties of a sample in6nite-compo-
nent "local" Geld theory.

The conclusions that have been reached here, with
regard to vertex functions, are as follows. The require-
ment that the Born approximation be given by a local
interaction Lagrangian density implies that scattering
and annihilation form factors are strongly related to
each other. However, the form factors for the two chan-
nels are sot related to each other by analytic continua-
tion in the invariant momentumt ransfer. This does not
mean that analyticity is lacking, but only that the
analytic continuation of a vertex function from negative
to positive values of the invariant momentum transfer
has no direct physical significance. In the case of han-
integral-spin theories, it is found (as first pointed out to



us by Leutwyler4) that the use of unitary representa-
tions convicts with the empirical fact that particles and
antiparticles have opposite parities. A satisfactory
theory can be constructed with the aid of two conjugate
"almost unitary" representations that are related by an
analog of the Dirac equation. In such a theory, crossing
symmetry is found to be similar to the integral-spin
case, with some additional features that are familiar
from the Dirac theory. Although a simple model without
internal degrees of freedom forms the main basis for the
exposition, it is shown that all the results are quite gen-
eral. In particular, it is shown that the Dirac-like equa-
tions for the half-integral-spin case can be extended to
SL(6,C), and the Dirac-Majorana matrices are calcu-
lated for this case.

This representation is equivalent to a unitary represen-

tation if
(X+1)'(1. (2)

Reduction according to the rotation subgroup reveals

that the spin j has a simple spectrum consisting of the
values 0, 1, 2, . . . The basis for the contragredient rep-
resentation is a tensor f, with indices as follows:

II. INTEGRAL-SPIN THEORIES

Let lp(x) be an in6nite-component 6eld that trans-
forms according to a unitary irreducible representation
of gl.(2,C) For d.efiniteness, consider the particular
representation D(1V,O) whose basis is the traceless sym-
metric tensor

P1 PN'

transformation properties. It turns out that, except in
the case when (6) reduces to the special form (5), there
are always solutions for spacelike momenta. Therefore,
in order that our considerations be strictly relevant to
physics, it is necessary to generalize the Majorana-like
theories considered here. '

Suppose that the positive frequency components of
f(x) create a set of particle states, then antiparticles, if
they exist, must be described by a field that transforms
contragrediently to tP(x). Let, this 6eld be denoted by
4'&.)(&) or

p] ~ ~ a pQ(c)

where the subscript means "charge conjugate field. "
The negative-frequency components of P(x) may now
be given a physical interpretation by means of the
identification

On this background one may set up a local theory of
free fields based on the Lagrangian density

with local, canonical, Bose-Einstein commutation rela-
tions. The logical coherence of such theories cannot be
guaranteed at the present time. The limited aim of this
work is to find out what type of crossing symmetry they
exemplify.

In order to study crossing symmetry with the least
possible technical complications, we introduce a con-
ventional scalar neutral field A(x), and a local, non-
derivative interaction Lagrangian density

The fact that D(E,O) is equivalent. to a unitary represen-

tation means that there exists a positive definite matrix

p such that the relation

is consistent with the transformation properties of g*
and of P. ff the rePresentation is made unitary, by the
introduction of properly normalized basis vectors in

Hilbert space, then p is the unit matrix. Consequently,
the matrix p may be regarded as the metric in Hilbert

space.
The x-space properties of the 6eld P(x), in the absence

of interactions, may be characterized by complete mass

degeneracy,
(p' —nz'g (x) =0,

pr more generally, by a mass spectrum determined by
a wave equation of the form

Here g is a couphng constant and ~ is short for the
invariant

(12)

where the four-vectors p and q both have positive en-
ergy components. This process may be compared with
an annihilation process in which a particle and an anti-
particle are annihilated by the external source. In this
case the amplitude is

g(olkw(p)|t(q) l j,j')A(p+q), (13)

p] ~ ~ opg y

In the lowest order in the coupling constant there are
two different scattering amplitudes. First, there is the
scattering of a particle with spin j by the external source
A(x), with or without change of j; this is characterized
by the amplitude

(6)

where I'&" is a set of constant matrices with the requisite

4 H. Leutwyler (private communication).

where again pp and gp are positive.

~ Equations that have no unphysical solutions have been found
by Y. Nambu and by the author. See Y. Nambu, Phys. Rev. 160,
1171 (1967); C. Fronsdal, ibid, 156, 1665 (196/}.
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Crossing symmetry, to lowest order in the coupling
constant, is simply the statement that the same con-
stant g appears in (12) and in (13). To see what this
means we must evaluate the "kinematical factors"

E.'(«) = (i'I P(p)4(v) I i&,

E~ '*(~)= (ol 0(.)(p)4(v) I J,i'&,

«=(p c)', —~=(p+v)'

in the relevant regions of t or s; that is, for negative f

and positive s, respectively. Taking j=j'=0 for sim-

plicity, one finds'

sinh[(&V+1) sinh 'L«(« —4m') (2~') 'j'"]
5+1 «« —4m' 2m'-' '"Eoo(«) =

( )I( )( ) ]
sinh[(1V+1) sinh-ILs(s —4m') (2m')-')'"]

Eoo (s)=
{Zy1)L.(s—4m')(2m')-'j'"

Here crossing symmetry, in the conventional sense, ha, s
been completely obfuscated.

6This result was reported in Proceedings of the Third Coral
GaÃes Conference on Symmetry Principles at High Energy (W. H.
Freeman and Company, San Francisco, California, 1966), How-
ever, at that time the analytic structure was not well understood.

Both functions have the same functional dependence on

pg, and the correct branch of the inverse sinh is, in both
cases, that which is analytic in the neighborhood of
pq= m'. Thus E00(«) is regular at «= 0 and has a square-
root-type singularity at «=4m', while Eoo*(s) is regular
at s= 4m' and has a square-root type singularity at s= 0.
In the special case of non-negative integer values of E,
the functions are entire functions, analytic in the whole
complex plane of their respective variables.

In conventional local held theory, crossing symmetry
means that the function Eoo(«), continued analytically
from the physical region of t, which is the lower side of
the negative real axis, through a path that passes be-
tween /= 0 and k=4m', to a point s on the upper side of
the positive real axis to the right of the point 4m', co-
incides with the function E00*(s) evaluated at that
point. We see that our functions satisfy this type of
crossing symmetry only if E is a non-negative integer;
that is, only if D(E,O) is finite-dimensional. When I)I is
lll tllc I'ange (2), wl11cll ls thc 1'Rllgc 111 wl11cll D(A, O) ls
unitary, there is no finite path of analytic continuation
tllat collllccts Eoo(«) to E00 (I) 111 'tllcll' I cspcc'tive
physical regions.

Although the difference between crossing symmetry
in conventional theories and unitary theories appears to
be a subtle onc ln gcnclal, lt. tulns out to bc quite
dramatic in special cases. To illustrate, let us take
E=——' to obtain

E„(«)= (1—«/4m')-'",

E00*(s)= (s/4m') '".

III. U5'ITARY THEORIES WITH
HALF-INTEGRAL SPIHS

Consider now the representation D(X,E), whose basis
is the symmetric spinor tensor

jQ 1 ~ ~ o gg j))r&1" ~sr+I

This representation is equivalent to a. unitary represen-
tation if 1V= ——,'(k+2)+ip, p= real; reduction according
to the rotation subgroup reveals the spin content
J=-',k, —,'(k+2), . The basis for the contragredient
representation is

and unitarity means that there exists a positive-de6nite
operator P, the metric operator in Hilbert space, such
that the relation

is consistent with the transformation properties of )p and
of f*.

Let us postpone questions of canonical commutation
or anticommutation relations and postula, te, for the
present, only the wave equation (5). As before, let the
charge-conjugate Geld )p(,)(x) be identi6ed with p(x),
and let us introduce the interaction Lagrangian (10).
Then we may calculate the kinematical factors E';,.(«)
and E,I ~(s) and investigate the behavior of these func-
tions undcl convcntlonal CI'osslng.

Physica, l application of this type of model is not pos-
sible unless a parity operator exists. If E is the operator
of spRcc rcQcctlon, and lf )p(x) tl'RIlsforlns Rccoldlllg to
D(——,'(k+2)+i«), k), then PP(x) transforms according
to D(—~(k+2) —ip, k). Consequently, the operator of
intrinsic parity exists within the space of a representa-
tion D(Ã, k) if S=—-', (4+2) only. Taking J)I= —-',

)&(k+2), one has, in momentum space,

I'P(u, po)=+(—1) "V(—y,po). (19)

In the case of half-integral spins, particles and anti-
particles have opposite parities, and since the charge-
conjugate field is related to )p by Eq. (8), it follows that
the double sign in (19) must be coupled to the sign of
the energy. For positive frequency components,

W(1),po) =(—1) "V(—u,po),
I'4(.)(n,po) =(—1)~"V(.)(—n,po).

Now we shall see that this gives trouble for crossing
symmetry.

Explicit evaluation' of Ep(«) gives, for E=—s', k=1,
E,.;(«) = (1—«/4~2)-»'

&&~"{p)Lk~~'+2p~'Vs'j»4), (»)
where u" (p) and NI)((I) are the Pauli 2-spinors associated
with the two spin-2 states. The two terms in brackets are
parity conjugate, and the whole expression is invariant

~ The calculations are carried out in Appendix A.
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under space reRection. Similarly„

E;;*(s)= (s/4'') '"
XN(.)"(p) Ll ~~'+ 2 p~'C~'3~~(V). (22)

Hut this is odd under space reflection. In other words,
if particles and antiparticles have opposite parities, and
if they are assigned to a pair of mutually contragredient,
irreducible representations, then parity conservation
forbids the single-quantum annihilation process. In such
circumstances there can be no meaningful concept of
crossing symmetry. This was first pointed out by
Leutwyler, ' who also suggested the following remedy.

Suppose that, instead of one irreducible representa-
tion, we have two, D(X,k) and D(lP, k), with bases tp

and |P', that are parity conjugates in the sense that, in-
stead of (20),

(23)

for the positive energy components. Then, to the inter-
action Lagrangian (10) must be added the parity con-

jugate, and the kinematical form factors become

A;(&)=
&j'I |t(p)0(v)+0'(p)4'(c) I i), (24)

IV. UNITARY-CON JUGATE REPRESENTATIONS
AND FIRST-ORDER WAVE EQUATIONS

The foregoing arguments for the relevance of pairs of

parity-conjugate irreducible representations linked by

It is true that the procedure adopted below can be applied to
this pair of representations if k=1, since a set of Majorana ma-
trices that links them exists. This alternative was developed by
A. 0. Barut and H. Kleinert, Phys. Rev. Letters 18, 754 (1967).
We have rejected this possibility because it is too special; it does
not generalize to representations D(1V,k) with k&1, and it has no
analogs with larger groups.

1~ *( ) =&0I4()(p)tk(c) —« '(p)0'4) ID'), (»)

both of which are reQection invariant and different from
zero.

Two representations D(E,k) and D(1P,k) are parity
conjugates if A+1P = —k—2. Thus, if both are

unitary, then 1V= ——,'(k+2)+ip, 1P=——,'(k+2) —ip,
p= real. However, we do not believe that this choice of

representations is satisfactory. It amounts, in practical
terms, to parity doubling, a concept that has never

found support in nature. It is, in fact, necessary to
double the representation space when one deals with

the half-integral-spin fields because annihilation must

occur, but at the same time it is important to avoid

parity doubling. One way to accomplish this is to im-

pose a wave equation that effectively identifies the par-
ticle contents of the two representations. This leads, as

we shall see, to the use of nonunitary representations,

although physical unitarity, in the sense of conservation

and positiveness of probability, will be preserved.

a wave equation receive support from different con-
siderations. Efforts to quantize with anticommutators
have shown' that this requires the existence of a set of
Majorana matrices 2» that transform among them-
selves like a four-vector, and a relation of the type

(26)

between the coniplex conjugate and the contragredient
6elds. In order to achieve the correct normalization of
the particle states, it was found necessary to impose the
condition that all the eigenvalues of Zp equal +1, which
implies the inverse relation

(2"I)

In addition, it is possible, but not necessary, that the
relation (18) still holds. In general there are two fields,
|P and |t*, and their contragredients, P and lk*, linked by
a pair of wave equations that are very similar to the two
halves of the Dirac equation.

The simplest possibility is to select a unitary, irre-
ducible representation that allows the existence of parity
operator and Majorana matrices acting within the ir-
reducible Hilbert space. This approach was followed by
Majorana, ' who found the only representation with
these properties: D(——,', 1). In such a theory, the field
has only positive- (or only negative-) energy Fourier
components. An alternative, which allows for both signs
of the energy, is to use a pair of these representations.
Neither possibility will be investigated here, for two
reasons. Firstly, both theories forbid annihilation.
Secondly, it is necessary to develop a theory that is
capable of generalization to more interesting models,
employing groups that are larger than Sl.(2,C); familiar
examples of such groups do not have representa-
tions with all the special properties that characterize
D(—2, 1). In contrast, the following procedure will be
shown to be typical. '0

A variety of methods may be employed to determine
a11 pairs of irreducible representations that can be linked

by a first-order wave equation. However, this is not the
place to exhibit these techniques, since the result for
SL(2,C) has been known for a long time. "The result
is that two irreducible representations D(X,k) and
D(1P,k) can be related to each other by a first-order
wave equation if and only if E—E'=0 or &1."The
requirement that the representations be parity conju-
gates gives the additional condition E+E'= —k—2.

'This is the only irreducible representation with half integral
spins that admits Majorana matrices. See Z. Majorana, Nuovo
Cimento 9, 335 (1932). The Majorana theory was later redis-
covered and generalized; see I. M. Gelfand and A. M. Yaglom, as
quoted by M. A. Xaimark, in Linear Representations of the Lorents
Group (Pergamon Press, Inc., London, 1964).

'0 See Appendix B."See Naimark's book, Ref. 9.
"The exceptional case of the pair D(—~3+ip, 1) was discussed

above.
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on we shaH take Io = 1)

" (—)'E(2&+2)!7'"
(28)X=——,'(0+3), S'= ——,'(0+1) .

Since the solution Ã=E'= ——,
' has already been re-

jected, a unique solution remains,

The two representations D(E,k) and D(X',k) are not
unitary, but unitary-conjugate to each other, which
means that f* transforms equivalently to the contra-
gredient of P. This situation is strictly analogous to
what is familiar in the Dirac theory.

It is convenient to normalize the basis vectors so that
P* transforms precisely like g'. Then, the usual expan-
sions of the generalized tensors take the form (from now

X~A~, ...~„,s' "b~ „s~+~ S s~ (29)

and similarly for P', the coefficient being

(-)~L(2~+2) ~7'"/(~+1) t.

Kith this normalization the noncompact generators of
SJ.(2,C) take the form

1+2
SoolpAi. ~ ~ A(+g (Wo)& (/+1) %ted " 2 1(X+ )(2/+3)

2{2&+3)

XS[&4 'P~, ...~ '" '+(&+1)4,%~~,- ~„,'" '—2&(&+1)(2&+1) '4 'g~~ ...~ '" '7

+tL(/+1)/2(3+1)7"'&[4 '4 f~,- ~„,'" '—
(&
—1)(2&+1) '4 '4

—t(2t+1) '&A, 4, 'pAA3" A, +,
'" '+(&—1)L2(2&+1)7 '8 s'8 ~'p s "' '] (30)

&&a=&ohio —&o&ao',

&&o= &so'~o —&o&so.
(34)

The result is that ZI, and Zq have the same matrix ele-
ments as isoo, except that (i) the sign of the first term is
changed, and (ii) the factor E+oo is replaced by —(/+1)
in the formula for Zo and by +(/+1) in the formula for
Z~. This difference in sign between Zk and Z~ corresponds
to the fact that three of the Dirac y matrices are non-
Hermitian.

In order to simplify the notation, and to stress the
similarity to the Dirac theory, let us introduce

4'= (,) 4'= (A0') .

and similarly for the action of soo' on P', with E re-
placed by E'.

The fact that our two representations may be related
to each other by a erst-order wave equation is obvious;

mp~ ~ B1 &N ps +N+2j/j—~ ~ Bl K+I

(31)
ygf ~ ~ Bl' ' 'Bx+\ —gp~ Bx+1$~ ~ +1' ' 'BN

These equations are of the form

mg =Z„p„iP',
(32)mf'= Z„p„iP.

In order to determine the matrix elements of Z„and Z„
we transform to the rest system and expand iP and iP'

as in (29). The result is

(~o);; =(~.);; = U+-.')~ '.
The remaining Z matrices may be calculated by means
of their transformation laws:

Here f and f' are fields that transform contragrediently
to iP and g', respectively. %'e have noted that f trans-
forms like P'*, and P' transforms like |t*;consequently,
we may identify

/0 1

0

The wave equation (32) becomes

/0(F„p„—m)&=0, 1'„=
~

0

(36)

&=(-1)-"V.
In the rest system, the wave equation reduces to

CpoV+ o)& ~74'= 0. (41)

This shows that the eigenvalues of p are +on(j+-') '
and that the sign of the energy is related to the sign of
the eigenvalue of P. Consequently, the parity of the
antiparticle is opposite to that of the partide.

Finally, we note that this theory, if it can be quan-
tized at all, can only be quantized with anticommu-
tators. For the invariant inner product,

44 = (1/~)4 F.P.4
=(1/~)B"&.P.~'+~*~.P.~7 (42)

This may be derived from the Lagrangian density

Zo ——y(x) (F„p„—m) y(z), (3g)

which is Hermitlan since

FP=PF„t, (39)

exactly as in the Dirac theory. Note, however, that
PWFo. The operator of intrinsic parity is
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has the same sign as the energy; hence it is positive for
particle states and negative for antiparticle states.

spin —,'. Thus, we write

V. CROSSING SYMMETRY

Ke are finally prepared to investigate what crossing
symmetry means in a theory that (i) contains only half-
integral spins, (ii) contains antiparticles with parity
opposite to that of the particles, (iii) is unitary, in the
sense that the probability is positive definite when

quantized with anticommutators. Our model does not
have a reasonable mass spectrum, and for this reason it
is unlikely that it can be made into a completely con-
sistent field theory, but it comes closer to that goal
than theories considered previously.

To the free Lagrangian (38) we add a local interaction
with an ordinary scalar field A(x):

Zr =ggQA
=gEW(x)0(x)+0'(x)W'(x))~ (x)

Projecting out the spin- —,
' components, we obtain"

(-', ~(P(PP)=-', (s'—1) '(Ls—(s'—1) '"sinh '(s' —1)'"]
XuA(p)uA(q)+p —1+s(s'—1) '" sinh '(2' —1)'"]

Xu"(P)PA~qz ua(q)}, (44)

(-,'
~
lt /lt /~-,')=-,'(s2—1)-'[L—1+s(s2—1)-»2

Xsinh —1(s2 1)1/2]u'A(P)uA/(q)+[s (s2 1)—1/2

Xsinh-'(s2 —1)'"]u"(P)PA qa us'(q)}. (45)

s= pq/m2.

The kinematical form factor is the sum of these two ex-

pressions. In the case of scattering, the wave equation
reduces to I'= u and u'= u; hence

where the dotted spinors are dined by the Dirac
equations

muA(q) = q„A~u/1(q),

mu~(P) =uA(P)PA~, scattering case
= —u"(p)PAs, annihilation case.

In this notation,

Ep(t) = (1—t/4m') —'

sinh 'Lt(t —4m') (2m2) ']"'
X

[t(t—4m') (2m') 2)1/2

E-:;*(')=A(/4 ') '

sinh 'Ps(s —4m')(2m') ']"'
X XX.

Ls (s—4m') (2m') —']'/'

Does this theory possess crossing symmetry? Cer-
tainly it violates the rules of crossing symmetry in the
conventional sense. In a more general sense, "crossing
symmetry" is a set of rules that relate E(t) to E (s); the
details of the rules are a property of the particular field
theory under consideration. Thus, in the Dirac theory,
one writes

E:—:(t)= x(p)x(q)D(t)

E ..(t) = (s+1)—'[1+(s'—1)—'" sinh —'(2' —1)'"]
XQ pg5A +2PA qE )uB~ (46)

which has positive parity. In the case of pair annihila-

tion, the field lt (x) must be represented by its negative-
frequency component, so that I'=u but u'= —u, and
thus

E11+(s)= (z 1) 1L1 (s2 1 )
—1/2 slnh —1(s2 1)1/2)

Xu L2hA —pA qg )u//, (47)

which also has positive parity, since in this case

u(p) =u&.i(p)C ',

and the intrinsic parity of u(, i(p) is opposite that of u(q).
(Note: ln the above formulas p and q are the physical
four-momenta, with positive energies. )

In order better to appreciate the meaning of these re-

sults it is useful to introduce Dirac four-spinors to de-

scribe the particle and antiparticle wave functions for

and postulates that the same expression gives E;,*(s)'
when D(t) is continued analytically, along a selected
path, from negative values of 3 to the point s&4m'. A
similar postulate could be made in the integer-spin
theory with equal masses studied in Sec. II. In that
theory, application of Feynman rules to the calculation
of corrections to the bare vertex AtA gives a corrected
scattering vertex of the form 1P1PAD(t) and an annihila-
tion vertex of the form ip(PAD'(s), where D*(s) is the
analytic continuation of D(t). Such a simple result does
not remain valid when the mass dengeneracy is lifted,
because the spin dependence of the propagators intro-
duces, in each order of perturbation, a more complicated
spin-dependent correction. In the half-integral-spin case
there is no avoiding the spin dependence of the propa-
gators; therefore, there is probably no simple way to ex-
press the crossing symmetry of the theory in terms of
the physical amplitudes. The fact remains that the
Lagrangian density 22+Sr given by Eqs. (38) and (43)
implies an intimate relationship between "crossed"
amplitudes.
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In Appendix 8 we show that the preceding treatment
of the half-integral-spin case can be applied with no
additional diKculty to a theory with internal degrees of
freedom.

out:

'rl -r. (r+r+-,', n —
1)($+-',n, —1—

r)QN"'=
r=O r S—i

VI. DISCUSSIOÃ

Two lines of future research are indicated. Firstly,
the present discussion must be extended to include
crossing properties of scattering amplitudes. This is
more involved than the case of vertex functions, be-
cause of the appearance, in the first Born approxima-
tion, of the one-particle propagator. Secondly, once the
nature of crossing in infinite-component theories has
been established, it is important to determine whether
or not those experiments that are usually quoted in sup-
port of conventional crossing are in conQict with the
predictions of such theories. In particular, the consist-
ency of the various determinations of the pion-nucleon
coupling constant and the verification of certain dis-
persion relations are areas that should be investigated.

XL( ])ryN+)n r+(—1)i+)ny N —,n+—rj (A5)

i+-,'22+.V—1q
I(pq)

N-1

i Jq—i+1—S
(X2F&

2
'

2
; —N—',I+1; (qq) ') (A6)

where
yk1 m 2{pq~L(pq) 2 m4)1/2) (A7)

For practical calculations the following simple formulas
are to be preferred:
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QN(1 $n) —
(y 1/y) 1(yN+ n

y
N $n)— —

8
Q (i+1)—(2j+22)—1 Q (i)

Bs

z= pq/m'.

(A8)

(A10)

APPE5 DIX A. EVALUATIO5 OF
THE FORM FACTORS

It is required to calculate the contribution to

When 22=2 and k=0, the quantity (A3) reduces to
I"2 QN(», w—h—ich according to (A8) is the function

(y—1/y) '(y"+'—y
" ')

(z2—1) 1)2 sinhI (1V+1) lny]3

Al ~

AN+2(p)qpA A Bl ~ ~ BN(q).
from the erst terms in both expansions; that is, the
quantity

which, properly normalized, gives us the functions (13),
(14).

When k/ 0 it is convenient to rearrange the expres-
sion (A3) by writing

)pAl' ~

Ak(p)pB Ak+1~
~ ' 'pB AN+kS)pA "A (q)~

+1 ~ ~ ~ JjiVXgA Jg+.1 gAN+Q ~

(1/m')qABpgB= 2z (1/m')—pABqgB

(A2) The result is

This is easily rewritten in the form'

» (pq)&"' ""k(p)(qA("pB ")

g Gk(z)(iA( ~ ~

Ak(pA Blqz Bl) ~ ~ ~

L 0

X(pAl qzl ))pzl ~ ~ B(A1+1 -Ak3 (A11)

where
X(q', *'Pk )q, ;A„„(A3) '(..k. )(rl.(.

.j)Gl(z) =
gjk') /iq

"3(pq) =Z . II . I(—1)*+'QN—+"')(pq) . (A4)'
2i &ji X(—1)'+'+'Q;, "'( )(2 )

' '. (A12)

G,(z) =QN(» QN, (')+2zQ ("—, G (z) =—QN") ~

When 24= 2 and k = 1, (A11) reduces toThe Q functions have been evaluated in the following
cases: 22=2, 4, 6, that is, for degenerate representations Go(z)4'"(p))pA(q)+(1/m')Gl(z))p'(p) pA qB O'B(q) 3

of SI.(2,C), Sl (4,C), and Sl (6,C); k = 1, 2, 3. The fol-
lowing formulas hold in all those cases, but a derivation
for general values of e and k has not yet been carried
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Tf 1V= —2, (AS) and (A9) give

Q (0) (y(/2+y —1/2) —1 — (2»+2)—1/2

Q, (0) (2»+1)(2»+2)—1/2

Q (1) 1(2»+ 2)-s/2

Q —"'=—(s+-') (2»+2) "'
or

G()(s) =G,(s) = ——',(2s+2)—'"
which is the result used to calculate K;;(/'), Eq. (21).

If 22=2, k=1, and E= —1, then (AS) and (A9) give

QN ')= lim [(1V/1)(1V+2)] '(y —y ') '
N~1

(yN+1 y N 1) = ($2 1) 1/2 cosll 1$,

QN("= —-'s(s' —1) '" cosh 's+-', ($'—1) ',

QN 1")=(1—s ') '/' cosh 's —1/(1V+1)

Q
(1 = —1($2—1) 3 2 cosh 1»+2»($2—1) 1

or

Gp(s) =-,'(s' —1) '

[»—($2 1) I/2 Slllh 1(S2 1)1/2

Gi(s) = —2(»' —1) '

X[1—s(s'—1) '" sinh '(s' —1)'"]for /Y= —I.
If m=2, &=1, and iV= —2, then

QN"' ———(1—s ') "-' cosh '$=1/(1V+2),

QN 1("= —(2$'—1)(s'—1) '" cosh '$+2s/(1V+2),
QN("=-,'(s' —1) '" cosh 's —-', s(s' —1)

—',
Qv 1

1 =1(3 2$2)s($2—1) 2 2 cosh is
—-'(2s' —1)(s'—1) '+1/(1V+2),

or

G(&(s) = —-'(s' —1) '

X[I—s(s' —1)-'/' sinh-'("- —1)'/2],

G,(s) =-,'(s' —1)-1

)&[»—(s'—1)
—'" sinh —'(s' —1)'"]for /V= —2.

These are the formulas that were used in Eqs. (44) and
(43).

The complete calculation for the case m= 6 and k=3
has been reported previously. '

APPENDIX B. CROSSING IN SL(n, c)

M~e introduce a pair of representations

BI ~ ~ oB1V Ar'
NA I ~ ~ ~A1V+/Tp ) PN'Al "A~@/+I,

which are not necessarily unitary, their contragredients

Al ~ ~ AX+& .I.&,& &,AI .A1V'+a~ ~~ ~ ~ ~~

N&I" &g, ~N'&I" &g'

and complex conjugates

Al ' ~ AN+Is sli I r Al ' 'A1v +!b
N Bl~ ~.By

In order that these exist we must have 1P=iV+1. Zp is
then given by the trace of ZAB.

Introduce an invariant inner form in the doubled
space exactly as in SL(2,c):

I=IN+IN" =4AN+gN4N'

Then for I to be Hermitian we must require that AN be
equivalent to fN *, and pN to (//N*. Therefore, there
must exist a matrix /tl connecting AN to AN. *. Deter-
mine PN as follows. The expression

o N(/ NP N (84)

is an invariant. '5 Using

p N —p Nge N'
(p

N'
p N'pe N)

Q g Np Nge N'g N

and this can be true only if

Bg N PNh/ Bge N'—
Using formula (VII-15) of Ref. 14,

—(Ã—t)g/+1' =P/ "(E*
1)V*/+1"—

which gives
(),—1V"—1)!

p/ = (—)' — f(-'~r, -"('),
(/. —1V—1)!

where f(N, 1V') is arbitrary and will henceforth be
Ignored.

Renormalizing according to

g N ~ g N/& N g
N' ~ g N'/& iV' (89)

we find that
((—1V —1)!

0 "=(—)' -- — (Illo)
()'—-~'—1)l ( ')*

'3 A Salam and J. Strathdee, Proc. Roy. Soc. (London) 292, 314
(1966)."C. Fronsdal, Trieste Report No. IC/66/51 (unpublished); R.
White, Lecture Notes on the SI (e,c) Symmetry, Summer School
in Theoretical Physics, Udaipur, India 1966 (unpublished).

"gP refers to the 3th SU(n) irreducible tensor in the decom-
position of $1v. We use the basis of Ref. 14:

, {2t+k+n—1)!(t—E—1)!
&!{~+0}!(s+k+n+E —1}!

For decomposition of these representations with re-
spect to the compact subgroup SU(22), action of opera-
tors, etc., see Refs. I3 and 14. For convenience we take
Re E'&Re%. %e know that a representation is unitary
if 1V = ——2'(4+22)+sp. We will determine 1V, 1P such
that the pair of representations )//N, )//N. admit the
de6nition of a four-vector Z„analogous to the case of
SL(2,c). Define the operators

(O'N)/'N') A p

~A (IN''N)A
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Similarly, PtN'=1/(PtN)*. Hermiticity of the invariant

(83) then requlles that (Pt ) =1t ol

(t X——1)!
nt N ——d («N-')* —. (H11)

(t—cV'*—1)!
The operators Zo and 20 can be simply calculated:

Note that (813) is true only for those tensors not in-
volved in the trace condition, i.e., all C;/ all D~. For
simplicity we restrict ourselves to such tensors.

Then the operator

+0 tr(QNQN'A ) Z tltt at 4t (812) can be made Hermitian by requiring that Zp=ZO or

Then, using the relation

N C1 ~ ~ ~ Ct+k, f, N R1 ~ ~ ~ 8]~ ~ ~

D1 ~ D t y't $1 "8t+y„-
—(1/a N)t)(b c) t+kt)(b B)t

(t—.V*—1)!(t—.')T —1)!

(t—,7'—1)!(t—cV'*—1)!

+t
2=

)
Qg

(813) which has the solution Real'= —2(k+n)+ —,'.
Now find the operators Zg, Z~ .

(815)

we find that in a general basis

(g ) —a N/a N'

and by a similar calculation

(814) Expand
~A (O'N4'¹) A

JAB Qa N—p N(D) (C 4't+1N'(C) (D AB
t

(816)

(81'1)

(~0) t=
~¹ gN

~N g¹ where tt! t~)N' is not irreducible.
But we have that

1 bA lPt(D) +(t+k)bD 4't(D)A
N'(D) C AB 0 1N' (D) (C)AB+ S

2t+k+n +tbA lp -(t)D +t(t+k)bD pt(D)A

t(t+k)
S[bD &A pt 1 '(D)' '7+terms proportional to bDc. (818)

(2t+k+n —1)(2t+k+n —2)

Then in the general basis given by (89),
&N +N

~A g (D) 4+1 (D) A +
CLg+y

«N' 2t+k+n
nq t(t+k)

X [bA (t t"'+ (t+k) Ptt tA+ tbA(t t 7+ ZbBbAPt 1N'7, (819)«1N' (2t+k+n —1)(2t+k+n —2)

where for simplicity we have considered a tensor with simple orthonormality properties (i.e., all C,&all D,),
Similarly, we find in a general basis

BgN'—.eN' a gN ngN ugN S
&A 1N& &A+

g ¹ «N atN 2t+k+n
ntN at+1N'(t+1)(t+k+1)

X [bA AN+tbAANB+ (t+k)bBgtNA7+ g,N„B (820)
«+1 atN' (2t+k+n+1)(2t+k+n)

The matrix operator

( o .)
may be made skew Hermitian. Requiring that

at-1N t(t+k)(t+2k+-', n ——,')(t+-,'k+-,'n ——,')- 't&

« '
— (2t+k+n —1)(2t+k+n —2)

(821)

The skew-Hermiticity condition further 6xes the
phases [along with (811)7. Finally, then, in the
"natural" basis,

we find the condition

N ~N' — g N gN' 1/2

But the condition that (—at 1 /a ')'" be real, along
with the fact that 1P=1V+1 fixes ImlV'=0, and thus

= —(t—1I~ABIt)= —(tl~BAIt —1)

-t(t+k)(t+kk+kn-2)(t+2k+-, 'n —;)-12

(2t+k+ n —1)(2t+k+n —2)
(822)


