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Superconvergence relations for vector-meson —baryon scattering are saturated with the baryon octet (8)
and decuplet (8*).The sum rules are selected by the infinite-momentum limit and evaluated at zero momen-
tum transfer. Using SU(3) invariance at the vertices and retaining terms to all orders in p'/3P (p, is the
vector-meson mass and 3II is the baryon mass), a nontrivial solution is obtained for all vector-meson —baryon
couplings. For degenerate octet and decuplet masses, this solution is consistent with collinear U(6) sym-
metry for the vertices and agrees with the corresponding result previously obtained by Oehme on neglecting
corrections of order p'jAP at the 8—10 and 10-10 vertices. If the octet and decuplet mass splittings are
retained in a subset of our relations, the deviations from collinear U(6) invariance at the vertices are ob-
tained. Consideration of the pB scattering processes using only isospin invariance at the vertices and p
dominance of the isovector form factors leads to broken collinear U(6) relations between the magnetic mo-
ments of the baryons. The question of higher intermediate states in the saturation is discussed briefly.

I. I5TRODUCTI05

SUPERCONVERGEXT sum rules for vector-meson—
baryon scattering have been previously derived. '

Complete saturation of these sum rules with an octet of
spin- —',+ (8) and a deciment of spin-~a+ (8*)particles gives
a consistent set of relations for vector-meson —baryon
couplings. Using SU(3) invariance for the vertices as an

input, it was shown that these relations have a unique
solution corresponding to collinear U(6) symmetry for
the vertices. In obtaining this result, the following ap-
proximation was made: In the amplitudes involving
8—10 and 10—Io transitions, corrections of the order
0(ht'jM') (is is the meson mass and M is the baryon
mass) were neglected and an 351 transition used at the
8—10 vertex.

The purpose of this paper is to examine the results
obtained from the superconvergence relations avoiding

any approximation in the evaluation of the truncated
sum rules. A larger number of equations is obtained,
and, in general, the solutions for the extra terms in the
general vertices are such as to make the relations, which

were previously obtained to lowest order in is'/3II', valid

to all orders. Thus, for example, one obtains an M1
transition at the B*BV vertex as a solltioe to oui

equations, as well as relations involving quadrupole
vertices.

The sum rules are arrived at by using microscopic
causality and unitarity. They are then selected with the
help of the infinite-momentum limit and evaluated at
1=0. Thus we will obtain solutions for our truncated
sum rules which correspond to a collinear symmetry.
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The choice t={)has been previously discussed in some
detail. '

In Sec. II we examine the diferent equations ob-
tained by truncating the sums over intermediate states
with the octet and the deciment baryon states. The
various relations are obtained both by considering the
scattering of different particles and different helicity
transitions for the initial and final baryon along the
direction of infinite momentum.

In Sec. III we examine the relations between the
diverse vector-m. eson —baron vertices which emerge from
the sum rules obtained in Sec. II. We discuss the solu-

tions and compare them with the collinea, r U(6) pre-
dictions. Lastly, in Sec. IV, we consider the possible use
of a subset of our sum rules for the purpose of relating
sylinnetry breaking at the vertices to symmetry break-

ing in the masses. The particular case of p-meson scat-
tering on the various members of the baryon octet is

discussed briefly.

D. TRU5'CATED SUM RULES

The relation between the matrix elements of an equal-
time commutator of two local currents and the absorp-
tive amplitude for a scattering process has been pre-
viously examined in some detail. ' ' As a consequence of
microscopic causality we have

= polynomial in K, (2.1)

where E= a (qr+q2), cr and p are space-time indices, and

i, j a,re SU(3) or isospin indices. If we consider the
infinite-momentum limit of Eq. (2.1), that is, the limit

s R. Oehine and G. Ventnri, Phys. Rev. 159, 1283 (1961); G.
Venturi, ibid. 161, 1438 (1967).' S. Fubini and G. Furlan, Physics 1, 229 (1965); R. F. Dashen
and M. Gell-Mann, in Proceedings of the Third Coral Gawes
Conference on Symmetry Principles at High Energy (W. H. Freeman
and Company, San Francisco, California, 1966);R, Oehme, Phys.
Rev. 14', 1138 (1966),
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p=-,'(pt+ps) ~~, and project out the residues of the
vector-meson poles at q

2= —p, 2, we obtain a strong
interaction sum rule

dv Grg(v, qr, qs)

and similarly for Hs(q'). Also P= p;+pf, q=p,—pr and
in the above i, j, and k are SU(3) indices and m* and m
are the mean masses of decuplet and octet, respectively.
H~, B~~, etc., are, respectively, Sachs magnetic dipole
and magnetic quadrupole form factors, etc.

Ke will also need the following general vertex:

where v= —2P K t= —(qt —qs)s

a;, (v, f) is the absorptive part of an tnvanant coeKctent
in the spin-space decomposition of the amplitudes for
BV —+ BV, BV —+ B*V, and B*V—+ B*V scattering.
The requirements for convergence of the sum rule
Eq. (2.2) and the high-energy behavior of a;, (v, t) have
been previously discussed. '

In general, one finds that our sum rules must be
evaluated near 1=0.Let us denote by AJ~ the helicity
change for the initial and final baryon along the direc-
tion of infinite momentum. Then if we consider 6J~ odd
transitions for the VB* +VP reactio—n and use SU(3)
invariance at the vertices, we find 3=0 as a requirement
for consistency with our truncation in the intermediate-
state sum. ' Indeed, saturation for a finite interval in t
requires an infinite set of particles with unlimited spin.
Ke will return to this point. in Sec. V.

Let us then consider our sum rule Eq. (2.2} for the
various vector-m. eson —baryon scattering processes. For
t= 0 we may evaluate it by explicitly choosing pt ——ps ——p
and qt= qs= E with p K=0 and take the limit P

—&~.s
Ke limit our intermediate-state sum to the baryon octet
and decuplet and obtain diferent sum rules for the
diverse values of d Jr. Invariance under SU(3) is as-
sumed at the vertices. Ke define the following matrix
elements:

XD,v(qs)+q P„(m+m*)-'Dsv(q')

+ q q„(m+ m*) 'D4v(q') jysl(P;) . (2.6)

For the above Eq. (2.6), conservation of the vector
current implies

m*—m
D '(q')+ "(q')+ ."(q')

m +m
g2

+— — D4 "(q') =0. (2.7)
(m*+m)'

Moreover, the relation between the diverse form factors'

(m*+m)
D v(qs)

2m~

g2 ——j.

Dr "(q')=-
)»

=De'(q') = —D4'(q'), (2 8)

leads to the generalized F1 form for Eq. (2.6)

(8 8 10) Dsv(q')
«0&(pr) I V-'(0) I8 (p))=l .(i j k 1 (m+m*)'

X» p »Ppqvi(pf)N(p') (2 9)

d„,,,(„,)=0, (2.2) &10&(p ) I V.'(o) I8 (p'))

8 8 10'
I .(pr)L~..D "(q')+'v.q.( + ')-'

i j

&»(p.) IV. (0}I8'(p;})

8 8 Sg= iu(pr) v3 sty„Gsrr(q')+iP„Fs~(q') j
z g k

8 8 8d
+4/5/3)l Ii

X(V.G "(q')+iP.F "(q')j N(p;), (2 3)

&10~(pr) I V. (o) I loi(p, ))
10 8 10= (V'6) . . i~-(pf) h.~-pH~(q')
z

+7„(q.qp/4m*'}Hsr(q')+iP„)b. pHs(qs)

+(q qp/4m*')Hs(q') j)wp(p;), (2.4)

Fs'(q') = (1/2m) LG~'(q') —Gz'(q') j(1+q'/4m') ',
Hs(q') = (1/2me) LHsr(q') —Hz(q'))(1+q'/4me') ', (2.5)

In our calculations, however, we shall use the general
form Eq. (2.6).

Since we project out the residues at the vector Ineson
poles we need the following form-factor decompositions:

Gz.~"(q') =gz,~'"fw'/(q'+I ')
+&p , ,rzs'r(rq'), (2.10)

D,"(q')=d;f vt '/(qs+I ')+ v '(q')

Hz, ~(q') = Iiz, srfvt '/(q'+I ')+ v s,z,~(q'),

Hz, sr(q') =4,srfvt '/(q'+p')+v 4,z,~(q'),

(2.11)

(2.12)

(2.13)

where in the above the q, (q') are regular at qs= —ir'
The g, d, and h are renormalized vector-meson —baryon
coupling constants and fv is a constant associated with
the vector-meson pole. %e note that in the homogeneous
equations obtained from superconvergence relations the
factors psfv will cancel, and we are left with relations
between the various coupling constants.

' R. Oehme, Phys. Letters 14, 518 (1965).
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VVe erst consider VB~ VB scattering. For 3=0 Also from 8 exchange
(q&= q2=&), we have only AJ p ——0, and we obtain the
following equations by employing the usual crossing-
matrix technique: From 8 exchange in the I channel

5
gzrgzr —gssfg~r+ gz g—z

4m' g

5 p,
'

g~'g~" =0.
9 4m'

and from 10 exchange

gz'gs" —g—~'-g~"
~

——,'~=0, (21~)
4m2i 4m'

j.
-L—p'+ (m*—m)'$dgdg+ d,d, —x4p'+-- (p'+m*' m—')' + dada

3m*' (m*+m)' 3m*' - (m*+m)'

2pm 2
&( ——,'p'+ (pn+m*' —m')~ L

—p'+(m~ —m)'j+ Ad2 — +—{m ' m ) (m m)
3m~2 m*+m 3m*2 3m*2

4m 2m' 2 2@~——+ — —-- {—pn —m~'+m')+ dsd2

(m*+m)~ 3m* 3m* 3 3m* (m*+m)'

2
X —p'(m* —m)+ =(m*—m)(p'+m*' —m')' . (2.1&)

3 3m*2

Ke must also consider our sum rule for the VB*—+ VB reaction. Ke vrill have diferent sum rules for the diverse

&J~=h. For h even (0 or 2) we have the following: From 8 exchange,

Froln j.o exchange

Hence from Eqs. (2.18) ang (2.19),

For AJ~=O, we have

31'~(h even) —C'(h even) =0.

—~~I'q(h even)+Fr(h even) —C(h even)=0.

I'q {h even) = ~3 Ff(h even),

Fg(h even) =2C(h even).

(2.18)

(2.19)

(2.20)

— 4 4 4p' 4(m —m*)'
&.(h=0) =g ' (m —m*)d +- —(m —m')d2 — d2 ——— d3-

m*(m+m') m'(m+m*)

4p' m
2

( + Q)2

p 2 2p 2m 4m
— (g~'—gp') 1— — drL —p' —2m(m —m) j— d2 1+ + (m —m*)d2+ —

—,da

m 4m2 m* m+m' m* m* (m*+m)'

2m p2 2m p
&& +-- —p'~ 3m+m*+

~

—(m' —m*') —2m+ —,{2.22)
m*i m* m*

where, of course, the indexi refers to the synnnetric (d) or antisyrnrnetric (f) octet combinations. Also,

C (0=0)= —---d h -'+ +-— h 1— — — — (h~ —hg)i 1—— — (h~ —hg) (2.23)
3~8 MI9 4~2 2~2

For QJJ =2

1;(h=2)= 2p p' ' 4p' (m*+m) p,
'

m(m*+m) 4m'

~~

d2(gm' —gz') — d3 g~r' 1— —(gm' —gz') (2 24)
m*+m 2m 4m'

p P
C(h=2) = —— d3 2h~+ -- (h,~—hp) 1— +(p'/6M~)(hjr —hp)

2M' 3%2 4%2
(2.25)
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Let us note that for Eqs. (2.23) and (2.25), we have used an M1 transition fEq. (2.9)$ at the B~BV vertex, and.

we have taken octet and decuplet masses as degenerate with 3f the mean multiplet mass. The reason for this
simpli6cation will become apparent when, in the next section, we discuss the solutions to our equations.

One also has sum rules for 6J~ odd(= 1). In this case we have the following two equations:

I'g(h odd) =0

I'y(h odd)=C(h odd).
ForLLJp ——1 (-,' —+-', ) we have

I';(h=' -', ) =(m*+m) —'d L
—4g '+4(g '—

g ')(1—
y, '/4m') 'j

8 )-I— 2 2-

+ dl (m m )ghr+(ghh ghh)~ 1—
~

4{m m )+
(m+m*)'

2p p p
C'(h=-,'~-', )= dh —h~ 4— + h~ 1—2' '

3%2 33'2 4%2

(2.27)

(2.28)

+(4 Sp'/3M—')(h~ h~) (1 —Ih'/4M—') ' (Ih'/3M—') (lihr h~) .—(2.29)

4 2 p2 -1 — 1 1 ( ~2 )—1

I'{h= ~ )=dh g~'+ (m+m) 1 (g~' g~') dm 4g~'+ (g~' g&')~1
to* mtg 4m' m*+m m 4 4m'~

2p 2
,

m' p
X 4m+ — — (m' —m*') + ds 4gM +m 2m + (gM gE )

m* m* {m~+m) ' m~ m* ns

21 -1- m 2
X i— — —4m ns —m* 2p, ' 2 — —— m2 —tn*2 m m*, 2.30

C'(h=~ ~ —~h)= — da 4r —4— +&~ — + — ~+{h~—hjh) 1—
235 3M' 3MI 12M4) 43II'

X 4——— + +(h~—hs) 1—
i i + — —

i
. (2.31)

4M'I (3M' 12M' 24M')

Again, in Eqs. (2.29) and (2.31) we have used an M1 transition at the B*BVvertex and taken the B and B*
masses as degenerate. The above are all the relations one can obtain from the VB*—+ VB reaction sum rules by
directly using SU(3) invariance at the vertices and choosing /= 0, as required by our truncation in the saturation.

The last set of relations we obtain are the ones from VJ3~ —+ VJ3* scattering. As usual, we shall limit our inter-
mediate state sum to one-particle baryon octet and decuplet states and evaluate our sum rule at (=0. Here we shall
directly use an M j. transition at the B*BVvertex and take the 8 and J3~ masses as degenerate. Again we will ob-
tain di6erent sum rules depending on the helicity transitions along the direction of infinite momentum for the B~
states. For 3=0 we will only obtain equations for DJ~=h even and we have

{—y'/18M') (1—p'/4M') dade+ 0'(h even) =0.
For M~ ——0 we have two cases, hJ~ ——0 (2 —+ —,'),

pm
-2- p2 ~4 p6 p2 ~4 p2 2

O{h=k~ 5)=~ 1— 4r + +hs 3
— + —

h1hr 1—
4M2 9M2 12M 4 36M' M2 9Mh 144M6 4M'

(2.32)

+ha' (1—
) +h~h —hgh (1— )(1— )+4irh r (

— )
(

Xi 1— +h~h~ 1— i, (2.33)
18M 4M)

'
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and 44(Jz =0 (-,', —,'-),

p2 —2 - p2 2 4p2 4@4 ~4 ~2 rr 8/ ~2
O(h=-', —,')=(1— 1— 4— + h '+ — 1—

~ ~

-', — hrr'+(h —h )'
4~2 4ZlI2 93rr2 9~4 123rI4 4~2) ( 33Ii2

X 4— ——— 1— —,— h~ —hp '—h~h~

p 2 8@2 4@4 p, p Sp, p p+h (h h)(1——— —8— + +h (firr —fi ) 1— — — + — fi (h h)—
4.M 2 93P 3354 435' 33P 18&4 9M' M2

1— -', 1— — h„,—hE h~ —hE ~x — 1— — 1—

Lastly, for AJAR
——2 (oo

—9 ——',),

~4 ~2 2 ~2
1— -,'— hfhr(h, )r hg) . (—2.34)

6M' 4' 3' 2

Zh~ ) 8 2Zhz 2Z44 Z48 p2 ' y'
o(h=2)= 1—

~

h3z' ———- — +he' — +h~' 1—
434'f 9hf' 934' 18hf' 3ilP 9hf'f hhf') 1443P

~4 ( p2 2 ~4 7p—h,.z h))zhs+ hslzs —- -- -+-
36M' ( 4I(fI' 9zlfI4 3M' 363I' 36&V'

p2 p4 p' p4 p+hrrhrr(1 — - — —+- —h h 1— (2.35)
4$I2 12354 24M' 183'4 4%2

The above are all the relations one may obtain on
considering the various vector-meson —baryon scattering
processes and limiting the intermediate-state sum to the
baryon octet and decuplet. Let us note that for finite
smail 3 our equations would have corrections of 0(t/M')
or higher. Consistency to higher order in t may be ob-
tained by including higher states in the saturation.

The equations obtained on using the SU(3) density
algebra,

LVo'(z), Vo'(x')]*, , = if;,h Vo'(x)()'(x —x'), (2.36)

by 2EIs(0) and —;Hs(0)for &J„=0 (-', 9 —,') and zh Jz ——0
(-,' + —,'), respectively.

err. HIGHER-SmrMETaV RESULTS VROM
TRUNCATED SUM RULES

I et us begin by considering the equations obtained
from V8 —& VB scattering and the VB*—+ VB re-
action. In particular, for the latter case we shall first
consider only the equations which involve the B*BV
and BBV vertices. For this purpose, we define the
following ratios:

may be deduced from our previous equations by re-
placing )(4' —9 q', gzr —+ Gzr(q—'), d, —9 D;(q'), and
similarly for the remaining form factors. Moreover in-
stead of zero for the right-hand side of Eqs. (2.14) and
(2.15) we have Gs~(0) and Gs"(0), respectively. Also,
Eq. (2.18) for DJ&= 0 would read

b=gs /gs 1 v=gzr /gzz 1,

n =gzz"/(2m/zh) gr~, ()8= —(fo/Ch,

3 p2
$2—

16 4m2 gEf '

(3.1)

(3.2)

(3.3)

2(m*—m)
1' (q') C'(q') =

Then from VB —9 VB scattering, Eqs. (2.14)—(2.16),
we obtain

(m*—m)
X D (0)+D '(o)+, D (o) (2 3~)

m +m

ks ~'/k)z= '8 (4' &')—
~'/k~= (6/5)(1 ~'—/f~'),

~2 $,2 —()2

(3.4)

(3.5)

(3.6)

with corresponding changes in Eqs. (2.20) and (2.21). From the VB*~ VB reaction, Eqs. (2.20) and (2.26)
Lastly, the right-hand side of Eq. (2.32) would be given for AJz ——2 and DJ&=1 ($ ~ —,'), respectively, we
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obtain (3.15)—(3.17), we obtain in both cases

2m m ( p m 3„.) P
—p' —2m(m* —m) jd, = (m m—~)

m+m*

=(1-b )(!-&.), (3.7) p'(5m' —m*')
-+ da. (3.18)

(m*+m)' (m+m*) 25$ fS P
o(bn —1)=(a b2+ 1— — . (3.8)

2m m +m m 2m Note that Eqs. (3.18) and (3.17), which yields
d3 are not the results corresponding to a general-

ized Ml trallsitioil PEq. (2.8)$ which read
to Eq. (3.4). From Eqs. (3.4) and (3.5) we have

4(1—34) t~(1 35~—)

6/5+ hz 6/5+ br
(3.9)

p

(m+m*)2

(m+m*)
d2=da. (3.19)

2m~

However, Eqs. (3.17) and (3.18) correspond to an M1
transition for te=m~. Ke note that had we used the
generalized M1 form Eq. (2.9), instead of the general
vertex Eq. (2.6), in evaluating our sum rules, we would
have obtained tn*=nz as a requirement for a nontrivial
solution. The results given by Eqs. (3.12), (3.15), and
(3.16) have been previously obtained by taking m~ and
m masses degenerate, directly using an 351 transition
at the B*BVvertex, and retaining only terms to lowest
order in p'/M'. '

%e now briefly comment on the possibility of alterna-
tive solutions to our equations obtained by choosing
b'=0 or Eq. (3.13). In the following for simplicity we
shall take the B~ and B masses as degenerate with 3f
the mean mass. Then on de6ning

whence, for PWO, we obtain

~ =3(3-2~.)/(6+5~.),

~.=3(3-2~ )/(6+5& ).
(3.10)

As for the choice 8'=0, we will later return to the pos-
sibility of alternative solutions to our equations. If we
consider Eqs. (3.6) and (3.8) we obtain

8 m2 - es m* p'
$s 1—g$s+ ——4 4—

3 ii' m*+m m 2m'—

3
Xi 1— — (bs —1)' =0, (3.11)

2)~

from which it follows that

ol

2m ( m* p )
bn= 1—3$s+ —

~

1— —
~$g

p(m*+m) k m 2m'i

(1—-$ +(2m/ )$s). (3.13)

Lastly, on eliminating &~ from Eq. (3.4),

(3.14)

Let us first examine the solution $g= 0; we shall later
discuss the solution given by Eq. (3.13).From Eq. (3.9)
for )~=0 we obtain

(3.15)br= g,

and from Eqs. (3.8) and (3.14),

=I (3.16)

(3.1'7)

Vfe may also examine the relations obtained from the
VB*—+ VB reaction for AJi ——0 and hJ~ ——1 (-,' -+—-', ).
On substituting our solution given by Eqs. (3.12),

(3.20)

from the VB~ —+ VB reaction, for both d,J~——0 and
1(-, ~ —P, we obtain

(
(1—~2)

4M2i E 4M2i

—82 I
2M i

(+2b
i

1— i+ . (3.21)
4M2i 4M2

The above relation is to be used in conjunction with our
previous Eqs. (3.4)—(3.8). These equations do not have
a unique solution. However, we must also consider the
remaining equations, obtained from the VB*—+ VB
and VB*~ VB* processes by employing the general
form Eq. (2.6) for the VB*B vertex. Then to lowest
order in y'/M' the solution Eq. (3.12) is the only one
consistent with a nontrivial solution for the B~B*V
vertex. This may also be true to all orders in p2/M2.
Hence in the following we shall restrict ourselves to
the,'solution Eq. (3.12), which is also consistent with
pole dominance of the electromagnetic form factors,
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p, p

4'~ 4JI gg~

and from Kqs. (3.6) and (3.16),

(3.22)

Let us note that the results which we have obtained
so far, from the solution Eq. (3.12), have involved only
the BBV and B*BVvertices and do not require m*= ns.
In examining the remaining equations, however, we
shall for the sake of brevity choose m*= m. Thus it may
be that the remaining equations require m*=m. Even
if this is the case, as has been previously discussed, it
may still be meaningful to consider the results, for
m*/ns, of a subset of the equations consistent with
mass splittings.

Then, restricting ourselves to our physical solution
Eq. (3.12) and taking 8* and 8 masses as degenerate,
we have

and lastly for d,J~=1 (-', —+ ——,'),

4

+a~--- 1—
2M 2 4M2)

~ ~

p' p4 p'
+ — — . (3.29)

3M~ 123'~ 243f6—

pe 2g2r——/(—1 p2/4M—'),

2n~/(1 —p'/4M-')

(3.30)

(3.31)

Comparison of the above Kqs. (3.26)—(3.29) un-
ambiguously leads to

(3 23) On using the above relations in Eqs. (3.26) or (3.27),
we obtain

2M

p )

/2M
&~= 72~/&2 &~= "~

I
gs'

I

' (3 23)
Ep

then, using our previous result for the B*BV vertex
(M1 transition for 222*= 222), we have for 6J~——2,

3( 4M') 3 ( 3M') 2M'

p' f p' 2M
3.26

4M' k 4M2 p

for AJ~=O,

2M a 2 p' '-2M 3p'
=— 1— n~ 1—

p $2r 3 4M' p 4M' 4M')

3p' 2M p' p' p,
' )

+~~ — ~~ +
2M' p 4M2 16M~ 32M2)

for aJ„=1 (-2'-+-2'),

3p2 p2

+g& 1
I 3 (3.27)

4M2)

'g M $$' 4 $1vi

X 1—— q~ 1— 3 28

We now examine the remaining equations obtained
from the B*V—+ VB reaction. We define

~/&~= 2n~;
whence by our previous results

gM j. p

and from Eqs. (3.28) or (3.29),

'Qg —1 e

(3.32)

(3.33)

(3.34)

—2&2—2g2r2+gz'=0;

for 6Jp 0(-', —+ -', ), ——
—(2/9) &'—(7/9) '+

and lastly for

AJAR

——2 (-,' ~ ——,'),
—~'+g2r2=0.

(3.33)

(3.36)

(3.37)

Again we Qnd that the quadrupole contribution is
such as to make the previously obtained lowest-order
equations valid to all orders in p'/M'. From the above,
one immediately finds a solution

(3.38)

in agreement with our previous results.
Let us then brieQy summarize our results for the

various vector-meson —baryon couplings for degenerate

Let us note that Eqs. (3.32) and (3.34) are essentially
the equations previously obtained on restricting one-
self to electric and magnetic vertices and retaining only
terms to lowest order in p2/M2. ' lt is quite remarkable
that the contribution of the quadrupole terms is such
as to make the previously obtained lowest-order equa-
tions valid to all orders. We have then found a solution
for all vector-meson —baryon vertices occurring in the
VB*—+ VB reaction with our truncation.

The last set of equations we must consider are the
ones obtained from VB*—& VB* scattering. Qn using
our relations for the quadrupole vertices Eqs. (3.30)
and (3.31), we arrive at, for AJ~ ——0 (2 ~ 2)3
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B and B*masses. %C have

gz =0, gu /gm~=$ & (3.39)

a relation between electric and magnetic couplings

also
gjr"= (2M/u)gz', (3 40)

gz = (p/4M)(1 p'/4—M )da

and an M1 transition at the B*BV vertex

(1—pm/4M2) 'dy= d2= d—g.

For the B*B*V couplings, we have

(3 42)

hg =g~f, (3.43)

h~ =—2h~/(1 —p'/4M'),

~.=-»./(1-, /4M ). (3.44)

The above Eqs. (3.39)—(3.44) are the results obtained
on the basis of cojhnear U(6) symmetry for the vector-
meson —baryon couplings. ' ' The results Eqs. (3.39)-
(3.41) and (3.43) were previously obtained by using an
MI transition at B*VBvertices directly and retaining
terms to lowest order in p'/M2 in the evaluation of the
absorptive parts. Ke have used general vertices, re-
tained terms to all orders and have again obtained
results consistent with collinear U(6) symmetry.

Use of our results in conjunction with a vector-
meson —pole model for electromagnetic form factor leads
to the usual collinear U(6) predictions for magnetic
moments, etc.

~ P. G. O. Freund and R. Oehme, Phys. Rev. Letters 16, 1085
(1965);K. J. Barnes, P. Carruthers, and F. Von Hippel, ibid. 14,
82, (1965); B. Sakita and K. C. Wali, Phys. Rev, 139, 81355
(1965); A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy.
Soc. (London) 284A, 146 (1965);R. Oehme, in Preludes &s Theorek-
ca/ Physics (North-Holland Publishing Company, Amsterdam,
1966)~

IV. SUM RULES A5'D BROKE5 SYMMETRIES

In Sec. III we have seen how the use of SU(3) sym-
metry at vertices, with our truncation in the inter-
mediate-state sum, has led to results consistent with
the collinear U(6) symmetry. We note, however, that
Eq. (2.2) is valid for any individual scattering process.
Thus, we can restrict ourselves to only isospin invariance
at the vertices and employ the physical masses of the
particles involved. Then on considering a particular
scattering process, such as pE ~ pS, and truncating
our intermediate-state sum by limiting ourselves to
nucleon and E* intermediate states, we obtain rela-
tions between individual vertices involving the masses
of p, Ã, and E*.The relations satisfying the equations
are chosen by requiring that they reduce to our previous
results on going to the SU(3) limit.

The above procedure will lead to results correspond-
ing to broken U(6) symmetry. Hjgher jntermedjate
states shouM also be included; however, one may hope
that the inclusion of the lowest states, with physical
masses and eouplings, is sufhcient as a 6rst approxima-
tion. In practice one may expect that for complete
saturation an infinite dimensional representation of some
noncompaet group is needed.

Let us examine the particular usc of pB —& pB scat-
tering on using only isospin invariance. From each of the
individual scattering processes which we may consider,
wc wiO be able to relate the "electric" and "magnetic"
p vertices. Then on assuming p-meson pole dominance
for the isovcctor form factor we will be able to relate
the various magnetic moments. Other scattering proc-
esses such as pB —+ coB, etc., may also be examined.
However, for the case in which the masses of the initial
and Anal vector mesons are diferent, our sum rules must
be evaluated a suitable value of the momentum trans-
fer, whereas in our case, as mentioned in Sec. II, it is
su%.cient to choose $=0.

Employing our usual p«ccdurc, evaluating our form
factors at the p-meson poles, and limiting our inter-
mediate state sum to baryon octet and decuplet states,
we obtain for pE —+ pX scattering

25 pp
(gp~x ) 2(g,are.)2-

25s+

2t' pp+—
I

1— &x'x,=0, (4.1)
4m~'

where hN'&~, is as de6ned by Eq. (2.14) wjth &*
and p masses) and

»m 4 +~, )(p(p, ) I v„(o) Ip(p'))=
I

1—
~pp

I pgppN 'wy 5
&&'a(p~) —— g,mr~ IN(p;), -(4.2)

Smyth 3

where r„=e„p~bgpg ~y~y5.
F«m pZ ~ pZ scattering we have

2 pp pp

,(gnzz ) + (g, z~ ) —2(gpzz )~
9 ns y,

' 6',g'

pp
— Apzz'= 0, (4.3)

12 4m g~

where hype~ is de6ned similarly to h~~p~ and as a erst
approximation to SU(3) symmetry breaking we have
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taken m~=mq. Ke also have

lrm (qm+„, )(z+(pf) Iv„(o) Iz+(p, ))

2 —1

~(pr)
4m''

g, » lg(P') (4 4)
4mx'

,l~m, (q'+~, ')(&'(Pr) I V.'(0) l~(p'))

z

~(pr) g"~ ~(p')
4m 2 4m, 2

(4.5)

Lastly from p ~ p scattering we obtain

+2 1 + 2q
(g,-.-.") —(g,-.")—1— '

l~-. -. ;=o, (4.6)
36m='

where 6-.-.+, is dined similarly to the previous cases and

lim (q'+)((p')(. (Pq) I
V„'(0)

I (p,))

2 —I

X~(p;)((— . (4))
4m„-. '

Xote that in the above we have chosen the normaliza-

tions of the various coupling constants so that they are

equal in the SU(3) limit. On examining the above equa-

tions, we obtain the following broken collinear U(6)
symmetry relations between electric and magnetic

couplings,

gpss%

(2~&/p q) g(KN (4.g)

g,xg~ ——g,xs~ ——(2m'/p()g, xx, (4.9)

g -. -. = (2e-./p, )g„-.-. (4.10)

Of course, the above broken-symmetry relations are

only a first approximation relating U(6) symmetry

breaking in the masses to symmetry breaking at the

magnetic vertices. The e6ect of higher states in the
intermediate state sum and deviations from pole

Qn assuming p-meson pole dominance for the iso-

vector electric and magnetic form factors, which then

implies gppp g p gp+pf we obtain the following

relations between total magnetic moments:

3/5m))((p„—p„)= (v3/mx) p,x~ 3/5e-. (p——-. o—p„-. -)

=3/4m'(px —px-). (4.11)

dominance may be quite sizable. Let us, however, re-
member that Eq. (4.11) was obtained by using only
isospin invariance and pole dominance.

It is interesting to examine the predictions of Eq.
(4.11).Using the proton and neutron magnetic moments
as input, we obtain p,~~=2.0 nuclear magnetrons. Also,
on using the experimental value' @~+=4.3&1.5 we ob-
tain p~- ———0.3+1.5 nuclear magnetons.

V. CONCLUSIONS

We have examined a set of collinear superconvergence
relations for the absorptive parts of the amplitudes for
the processes VB —+ VB, VB~ —+ VB, and VB*—& VB*.
The sum rules are selected by the use of the infinite-
momentum limit. |A'e limit our intermediate-state sum

to single-particle states of the baryon octet and
decuplet.

The resulting equations lead to a nontrivial solution
relating all vector-meson —baryon couplings. For de-

generate 8 and 8* masses, the solution is consistent
with the collinear U(6) symmetry for the vertices.
Thus, for example, one obtains an 3lj transition at the
8*8V vertex on taking the 8 and 8* masses as de-

generate. If one retains the mass splitting between octet
and decuplet, collinear U(6) symmetry breaking at the
vertices and in the masses are related. Relations be-
tween the various VBB and VB*Bvertices have been
obtained while retaining the octet-decuplet mass split-

ting. However, the relations involving the remaining
vertices, for the sake of brevity, have been obtained
keeping the 8* and 8 masses degenerate.

Assuming vector-meson pole dominance for the form
factors and using our results for the vector-meson—

baryon vertices, one can obtain relations between form
factors consistent with the collinear U(6) predictions.
Thus, one may obtain relations between electric and

magnetic form factors of octet and decuplet, form
factors for vector-meson 8* production, and electric
and magnetic quadrupole form factors of the de-

cuplet.
Symmetry breaking at the vertices and in the masses

may be related by considering the diverse pB ~ pB
scattering processes and using only isospin invariance
at the vertices. On assuming p-pole dominance for the
isovector form factors, relations between the various
isovector magnetic moments of the baryons in broken

SU(3) symmetry are obtained. These results are only

a erst approximation, because deviations from pole
dominance and contributions from higher states may
be quite sizable.

Let us note a few points about the inclusion of higher

intermediate states. It has been previously pointed out'
for the case of mesons that states should not be in-

troduced singly but in sets corresponding, for example,
to higher representations of a rest symmetry like

' A. McInturff and C. Roos, Phys. Rev. Letters 13, 246 (1964).



U(6)QxU(6)QxO(3) with collinear U(6)QxO(2) invariance
for the vertices. These sets then separateIy saturate the
sum rule for t= 0 and the results for the lowest multiplet
remain unchanged. .' Similarly for the baryons it may be
possible to introduce higher states in sets corresponding
to higher representations of some suitable group con-
taining U(6)QxU(6) so that each set separately satis6es
the superconvergence relation for 3=0 .

In general, the saturation of our sum rules with
particles of definite mass and spin corresponds to a
power-series expansion of the integrals over absorptive

~Recent calculations by Oehme, as well as by Freund and
Rotelli, for the case of mesons, indicate that this is indeed what
happens if higher representations of U(6)QxU(6)8)0(3) are in-
cluded (private communication). See also P. G. O. Freund, R.
Oehme, and P. Rotd. li, Phys. Rev. (to bc published).

pMts Mound I=O. Thc cxRct satuI'ation fol' R finite
interval in t requires, of course, an infinite set of par-
ticles with unlimited spin. In order to saturate our sum
rules for small 6nite values of t, we may try to use the
sequence of states which saturate the forward super-
convergence relations. The nonforward superconver-
gence relation will certainly imply stringent additional
restrictions on the mass spectrum and on the vertices.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor R. Oehme for sug-
gesting the pI'oblcIIl, continued guidance, Rnd stimulat-
ing dlscusslolls.

8 For a detailed discussion of these points, see Ref. 2.
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This paper investigates what remains of crossing symmetry in theories that are conventional local Geld
theories in all but one respect: that in6nite irreducible representations of the homogeneous Lorentz group are
used. Only vertex functions are studied here; results for scattering amplitudes will be reported in a sequel.
It is found that: (i) Form factors for scattering (t (0) and form factors for annihilation {/)4') are strongly
related to each other by the requirement that the interaction Lagrangian density be local, but they are no]
connected by analytic continuation. (ii) In the case of half-integral-spin Acids, the empirical fact that the
parities of particles and antiparticles are opposite makes it necessary to use a pair of conjugate irreducible
representations, rather than a single unitary irreducible representation. An analog of the Dirac equation
allows one to avoid parity doubling and to ensure a proper physical interpretation, provided that quantiza-
tion is carried out with anticommutators.

I. INTRODUCTION

OCAL 6eld theory possesses a number of "good"
& properties of a general sort, such as microcausality

and crossing symmetry; and some "bad" specific prop-
erties, for example, the fact that the 6rst Born approxi-
mation is an extremely poor representation of experi-
mental form factors. Infinite-component 6eM theories
were 6rst introduced because of the ease with which they
can accommodate internal symmetries of the type of
SU(6), but even apart from SU(6) they turned out to
have considerable intrinsic interest. In these theories the
Grst Born approximation to the form factors is remark-
ably similar to the best parametric fits to experimental
data. ' On the other hand, it is not clear that their gen-
eral properties are satisfactory. ' In a previous paper'

Supported in part by the National Science Foundation.' See, e.g., G. Cocho, C. Fronsdal, H. Ar-Rashid, and R. White,
Phys. Rev. Letters 17, 275 (j.966).

~ See, e.g., E. Abers, I. T. Grodsky, and R. K. Norton, Phys.
Rev. 159, 1222 (1967).' C. Fronsdai, Phys. Rev. 156, 1653 (196'i).

it has been shown that locality, in the dual sense of a
local Lagrangian density and local commutation rela-
tions, can be satis6cd, and that the conventional rela-
tion between spin and statistics is at least favored. The
purpose of the present paper is to show precisely what
are the crossing properties of a sample in6nite-compo-
nent "local" Geld theory.

The conclusions that have been reached here, with
regard to vertex functions, are as follows. The require-
ment that the Born approximation be given by a local
interaction Lagrangian density implies that scattering
and annihilation form factors are strongly related to
each other. However, the form factors for the two chan-
nels are sot related to each other by analytic continua-
tion in the invariant momentumt ransfer. This does not
mean that analyticity is lacking, but only that the
analytic continuation of a vertex function from negative
to positive values of the invariant momentum transfer
has no direct physical significance. In the case of han-
integral-spin theories, it is found (as first pointed out to


