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A bootstrap of the K* meson is attempted in the Kr channel via a representation due to Abbe, Kaus,
Nath, and Srivastava. Here a total amplitude is constructed purely in terms of Regge trajectories, and
crossing is used to determine the parameters. An unknown coupling constant G,xx enters the caluclation.
When we takeits SU (3) value, our bootstrapped values are mx*=960 MeV (experimental value is 890 MeV)
and I'g*=28 MeV (experimental value is 50 MeV). When we choose for G,xx two times its SU (3) value, a
simultaneous bootstrap of mx* and T'x* occurs at the experimental value. We have also plotted the S-, P-,
and D-wave phase shifts for the K= system in the low-energy region. The scattering lengths for I=% S and
P waves are found to be: ap=~ —0.078 and a;~+0.017.

1. INTRODUCTION

T is by now well-known that single-particle exchange

forces coupled with the N/D partial-wave dispersion
relations fail to produce any reasonable quantitative
agreement for mesonic amplitudes. In particular, such
models appear oversimplified in their handling of the
exchange forces to generate narrow widths for the
mesonic resonances. Among other things, these models
leave much to be desired in the way of a consistent
treatment of particles as “dynamic” in the direct as
well as the cross channels. A truly dynamic approach
was first attempted by Chew! based on bootstrapping
entire Regge trajectories. Various refinements of Chew’s
proposal (the strip approximation) have recently
appeared in the literature.? The strip approximation,
however, introduces arbitrary parameters (e.g., the
strip width) into the theory and also mutilates the
Mandelstam analyticity for the scattering amplitudes.
As a consequence, for instance, the imaginary part of
the scattering amplitude fails to develop the correct
threshold behavior.

Recently, a theory was proposed for bootstrapping
the entire Regge trajectories.? In this scheme the total
scattering amplitudes are constructed such that they
are unitary, respect Mandelstam analyticity, and are
free of any arbitrary, undetermined parameters.
Furthermore, this bootstrap program involves the
Regge trajectories alone, in contrast to the earlier
proposals which also involve the Regge residues as
extra input. A prerequisite for any practical theory of
Reggeized bootstraps is that it must converge very fast
in terms of the top few trajectories. The encouraging
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feature of I is that in situations where comparisons
with the exact results were possible, the representation
converged very rapidly in terms of the number of
Regge trajectories included.

The program in I involves evaluation of the back-
ground integral in the Regge continuation, since we
need the amplitudes 4 (s,f) for s, t>4m,* for the ==
case; and in this region the partial-wave expansion
fails to converge. The computation of the background
integral, on the other hand, is rather hard because it
converges on the cut in ¢ (}<4m,?) only in a limiting
sense as one approaches the real axis from the complex
¢ plane. Thus, a simplified version of the full program
proposed in I was applied to calculate the p-meson pa-
rameters self-consistently.* The simplification basically
consists of replacing the ¢ cut (due to the 27 continuum)
beginning at ¢{=4m.* by that due to p and f° mesons.
This calculation produced a width for the p meson which
was 125 MeV in contrast to about 600-MeV width
produced by the usual N/D calculations.?

In view of this significant reduction in the width of
the p meson, we attempt here a similar calculation for
the K* bootstrap. In brief, the procedure is as follows:

We construct the partial-wave amplitudes for the
K system via the modified Cheng representation [see
Egs. (2.7), (2.9), and (2.10)] derived in I. As can
easily be checked, irrespective of the number of
trajectories included, the representation is unitary and
possesses the correct threshold and asymptotic be-
haviors. The total amplitudes [Eq. (2.3)] constructed
through these partial-wave amplitudes converges up
to cosf,=1+4-2m,%/k% where m, and k denote the pion
mass and the c.m. momentum in the s (#K) channel.
However, to impose crossing symmetry, a wider region

+W. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys. Rev.
154, 1515 (1967).

b A survey of various N/D attempts to bootstrap the p meson
is made by F. Zachariasen in Lectures on Bootstraps, given at
the Pacific International Summer School in Physics, 1965,
Honolulu, Hawaii (unpublished).
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in cosf, is needed. In order to implement it without
recourse to the background integral evaluation, which
is hard to do numerically,® we approximate the be-
ginning of the cuts in cosf, given by the 27 and 7K
continua by p and K* exchange singularities. The Regge
parameters are then determined by the maximum
satisfication of crossing (s<> %) via a figure-of-merit
method discussed in the text.

We have investigated the self-consistency of both
the mass and the width of the K*. The calculation
requires a knowledge of G,xz, which is unknown.
Initially, choosing the SU; value, we find the boot-
strapped K* width to be smaller than the experimental
value while the corresponding mass is larger. However,
if G,k is taken to be about 2 times its SUs value, then
both the mass and widilh are found to be remarkably close
lo the experimental value. This seems to us to be an
interesting result.

2. FORMALISM
We consider the reaction
w(p1)+K (k1) — 7 (p2)+ K (k2)
and define the usual Mandelstam variables
s= (prtkr)?= (patko)?=[(k*+mx)' 2+ (k*+m*)' 2 P
t= (pr— p2)?= (k1—ks)?*= —2k*(1—cosb,) (2.2)
u= (p1—ko)?= (k1—p2)*=+2mg>+2m,*—s—t,

where £ is the s-channel c.m. momentum, 6, the scatter-
ing angle, and mg, mr are the masses of K and «
mesons, respectively.

(2.1)

A (stu)=>" (2141)A, (s)Pi(cosfs),  (2.3)
1=0
where
Si(s)—1
A4 ()=,
ip(s)
p(s)=k/\/s (2.4)
The crossing matrix (s <> %) reads
Al(s)=32, X AT (uys) (2.5)
Il
where
-1 4
x11'=( ) _1); (2.6)
3 3

here I stands for the isotopic spin.

Now the Regge continuation of the partial-wave
amplitudes has to be made for odd and even !’s sepa-
rately. We represent the .S matrix in terms of the direct-
channel Regge poles [a,(s)] and the Born terms via the

¢ Methods to numerically evaluate the background integrals
for ¢ values on the cut are presently under investigation.
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new representation obtained in I. Thus we can write

an+l* ()

dl’

e(V'—1k2(8)

7«—[— InB+ (s),

lnSt-‘-’=Z

n

2.7

anyl (8)

where the Born terms, B;*(s), are obtained via par-
ticle exchanges in the crossed ¢ and # channels. Here
+(—) stands for even (odd) signatures. £(s) is defined
as
s+ (mpst-mr)2— 22— 2.2
coshéa(s)= 1.
2k?

(2.8)

By(s) is computed by projecting out the p and K* ex-
changes in 7 and # channels, respectively, and then the
next singularity in the cosf, plane is replaced by the
K*r threshold in the # channel. This obtains for £(s),
the form given by (2.8). The computation of the Born
terms is straightforward?; we just quote the relevant
results. For the even-signature trajectory we choose
the K** trajectory (as trajectory), and for the odd one,
the K* trajectory (o trajectory).®

Then, for the /=% and £ channels we can write down
the final expressions.

I=1.

(i) Odd partial waves:

ar*(s) e(l"l)h i\/jk GﬂKKGprﬂ
InS; 12(s) = dl' l @
w18 I'—1 \/s A
e WHDET ik Graga
X[Qz(coshs-)— ]“_*‘ -
Tt ] osys e

e () k2
X/z(s)[Qz(coshgl)— " ] (2.9)

(ii) Even partial waves:

az¥ (s) W=Dk ’L\[Q_k GpKKGPr”
lnSH_llz(s) = dl, =
wiey V=l /s 4n

{ e*(l‘l'l)& ik GK*K‘IrZ
Xia(s)[Q’(COSh&)_ 11 }510}4—@: A

— (D g2
X[h(s)l:Qz(cosh&)-—el_,_l :|-—6;0}. (2.10)

=32, Here we just take the Born terms, since there
appear no well-established particles with 7=3 (at least
none seem strongly coupled to the elastic K system).
We have for both odd- and even-parity cases the

7 See, for instance, B. Diu, J. L. Gervais, and H. R. Rubinstein,
Nuovo Cimento 31, 27 (1964); 31, 341 (1964); R. H. Capps,
Phys. Rev. 131, 1307 (1963). .

8 A possible trajectory due to the enigmatic x meson is ignored.
Even if it were to exist, its width appears to be rather small and
hence its coupling to this channel should be weak.
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following solution (iii):

2tk ik
lnSza/z (S) = ('— 1)l+13—\;;GK *K,,2}l (S)Qz (COShEl) —\/—EJ‘;

GpKKGpww

X_'T'a (5)Q:(coshs).

™

(2.11)

The various symbols in (2.9)-(2.11) are defined as
follows :

s+mK*2—2mK2— 2m,r2—- 1
cosh§(s)= po” ,

2

My
coshfs(s)=1+—,
2k2

(2.12)
25— 2mg*—2m2+m,?
a(s)= )
2k?

25— 2mg%—2m2— (mg2—m,2)/mg 2+ mg 2

h(s)= e

The G’s and m’s stand for the various coupling
constants and masses.

The Born terms due to spin-2 exchanges have not
been included in the modification, since then contribu-

0.8 4
0.7 4
0.6 4

054

sin €

0.3 4

0.2 4

0.1 4

0 ;
ot — 02 03 04 05 06 07 058

Fic. 1. sin e is plotted against I'x* with a fixed value of
mg*?=41.7m.* and G,xg2=0.5G,++*. The lower curve corresponds
to the crossing for real part of the amplitude while the upper
curve corresponds to the full amplitude,
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Fic. 2. sin e is plotted against mg* with a fixed value of
Tx*=0.36m, and G,xg2=0.5G,~.2. The lower and the upper
curves are as in Fig. 1.

tion in the low-energy region is only a few percent of
the vector exchange.?

Regarding the trajectories, we choose them to be
straight lines, since the experimental data up to date
seems to indicate that the trajectories in the meson-
meson and meson-baryon system are remarkable
straight lines.® In any case, for our present analysis,
we need the trajectories only in the elastic region, and
hence the detailed asymptotic behavior is not of great
import. We choose for o (above thereshold):

Reai(k) =a0i+Cuk2 ) (aoZ %)
=ag+Crk?oitl,  (<3}) (2.13)
and

Ima; (k)= Cysk2eitt,

This form for the trajectory ensures the correct thresh-
old behavior.
The width of a resonance (T") is given by

Ima(S,)
P=— " (2.14)
(\/S r) Rea (S r)

Now the constants Cy;, Ca; can be eliminated in favor
of the masses and widths of K* and K** mesons. In
the bootstrap for the K* parameters, we vary aq
over reasonable values and by direct computation find
that the results are not very sensitive to its chosen value.

From Egs. (2.9)-(2.13), we can construct the total

9 K. V. Vasavada, Phys. Rev. 144, 1351 (1966).
10 M. N. Focacci, W. Kienzle, B. Levrat, B. C. Magli¢, and
M. Martin, Phys. Rev. Letters 17, 890 (1966).
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F16. 3. Same as in Fig. 1 but with G,xg?=2.1G,r+*

amplitudes 4Z(s,u) [Eq. (2.3) on which crossing (2.5)
has to be imposed to determine the parameters]. This
is performed in the next section.

3. CALCULATIONAL DETAILS

Various couplings that occur in Sec. 2 are obtained as
follows: G,rr and Ggxx. are related to the widths of
p and K* in the equations

2 Gora ky?
= -

3 4r m,?

2 Grrgq® ki

and (3.1)

where &, and kg« are the c.m. momenta in 77 and =K
channels at the p and K* meson masses, respectively.

G,kg is a priori unknown. However, invoking SU (3),
we can relate it to Gorr:

3.2)

=2__1
GpKK2— EGp7r1r2-

After the left-hand cut is shifted, our representation
for A (s,u) converges (via the partial-wave expansion)
for s, u values between the threshold, (ne,+m.)?
=21.1m,? and m,?=30m,* (see last section). Thus, we
can construct 4 (s,u) for 21.1<s,2<30.

The crossing equations are explicitly given by (2.5)
and (2.6). Eliminating A%2(u,s) we obtain

44312 (s.u)— AY2(s,0) = 342 (u,s) . (3.3)

For the satisfaction of crossing, we define a figure of
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merit as follows:
[AL(s,u)— AR (s,u)
sine(s,u)= | (3.4)

VZ{[ A% (s;u) PHLAR(s,0) Y12

where A% and A% denote the left- and the right-hand
sides of the equation (3.3). Since both A% and A% are
complex, we calculate sin e and sin e; for the real and
the imaginary parts of A™% separately. We choose a
fine mesh of points for the s and # in the region men-
tioned above and compute sin ez and sin e; for each
(s,) pair. For crossing to be satisfied exactly, sineg,;=0.
So, the average

3.5)

(sine€)yy =% ({sineg)uy+ (siner)ay,

where (sineg)s, and (siner),y are themselves averages
over the real and the imaginary parts, denotes the
deviation from the satisfaction of crossing.

(sine)ay is calculated from (3.5) for fixed values of
G,xg? and G,..* and different choices for the masses
and coupling constants for K*. A minimum value of
(sine)ey corresponds to a maximum satisfaction of
crossing symmetry and is in fact our bootstrapped
solution.

4. RESULTS AND DISCUSSION

Initially, we choose the SU(3) value for G,xz®
(=0.5G,++?). Figures 1 and 2 show the figure of merit
curves for the cases when T'x+ is varied holding m g«
fixed and vice versa. The minima in the curves corre-
spond to our bootstrapped values for the parameters.
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Fi6. 5. I=%, S-, P-, and D-wave phase shifts for the K-r system
for I‘K'=0 2m,, mg*?=41.Tm.%, and G,xg?=0.5G x>

As is clear from the curves, rather steep minima are
obtained indicating that indeed a good satisfaction of
crossing has been obtained.

We remind the reader that no minima need have
occurred. The bootstrapped values are

Tx+=28 MeV (exp. value 50 MeV),
myg+=960 MeV (exp. value 890 MeV).

We repeated the calculation for various values of the
unknown coupling constant G,xg? and find that a
simultaneous self-consistency in mg« and Tg« is achieved
at the experimental value when G,xg?=2.1G,.*. Figures
3 and 4 correspond to this case.

We also obtain the S-, P-, and D-wave phase shifts
for the I=3%, K system. Figures 5 and 6 depict these
for the SU(3) and the bootstrapped sets for the coupling
constants. When G,xz?=2.1G,..* (Fig. 6), the S-wave
phase shift is rather large. It simply reflects the fact
that a large S-wave contribution is needed for a good
satisfaction of crossing in the region chosen.

Also, various scattering lengths are computed as
shown below.!! For I=1

S-wave: ao=—0.078,

P-wave: a1=-40.017.

1 Of course, mK scattering is not directly accessible to experi-
ment. However, the best I =3, S-wave scattering lengths, deduced
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T16. 6. Same as in Fig. 5 for Tx*=0.36mr, mg**=41.Tm*
(experimental values), GorR2=2.1G,xs%.

One rather technical point needs mention. In the
modification via the Born term [Eq. (2.10)], the
Kronecker-§ term §; has been retained, even though
in the true spirit of angular-momentum analylicity
such terms ought not to be included. As discussed in
Ref. 12, in an approximately Reggeized theory the
810 term is consistent and must be retained. In this case,
by actual computation, we find that a good consistency
is obtained only when the §;0 term 4s retained.

Finally, we remark that the present calculation
along with the earlier one for the p meson? seems to
indicate that our formalism is capable of bootstrapping
narrow mesonic resonances. Such attempts via N/D
techniques have so far proved inadequate.
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from the low-energy KN scattering data, is found by A. D. Martin
and T. D. Spearman [Phys. Rev. 136, B1480 (1964)] to be
ao=—0.07£0.10, which is consistent with our determination.
However, an a.naly51s of the K4 decay, coupled with the PCAC
hypothems and other assumptions, is made by B. R. Martin
[Phys. Rev. 141, 1571 (1966)7], whose best scattering length is
a0=0.06+0.03, which disagrees with ours.
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