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this state whatever their number. There is no freedom
in this number once the matter populations are given,
because of conservation law' s. Hence the photon entropy
is always zero, and the above-mentioned equal matter-
state population determines the equilibrium condition
for the whole system. This is in agreement with the
formal calculations of Sec. II.

The identification of equal matter populations with
infinite temperature is inapplicable, because it assumes
a canonical rather than the microcanonical ensemble.
Similarly, the Planck law is not to be expected here for
the photons. For the same reason the detailed-balance
argument given above is not valid in this case. It is,
however, possible within the formal framework of the
master equation to show what the appropriate form of
detailed balance is. Instead of Eq. (3.2), one may obtain
directly from the master equation or from Eq. (2.4) for

the generating function

dtLp =A ((st„+1)rts), —(rt„rtt)„.
d$

(3.6)

In the usual systems in contact with a heat reservoir it
is justifiable to neglect correlations and take

(rt,tt t). =n,nr, etc.

However, in our model the correlations produced by
the conservation laws are so strong that this assumption
is not justifiable. Indeed, one finds for our model that
the diBerence between the right- and left-hand sides of
Eq. (3.7) is not zero, but X/4.

In summary, all of the anomalies in this model can
be understood physically as due to the constraints
imposed on the system by the conservation laws.
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We have made measurements of the nuclear relaxation time r in the bcc phase of solid Hea for tempera-
tures between 0;3 and 0.04'K. The relaxation times were found to decrease when the size of the sample
chamber was reduced. In the range 0.2 &T &O.i'K, ~ is temperature-independent and inverselyproportional
to the exchange parameter J for our two smaller sample chambers. The relaxation is attributed to the single-
phonon process occurring in the magnetically irregular region of the sample boundary; Zeeman and exchange
energy in the bulk He then diffuse to the boundary in the time r. The diffusion, due to the exchange inter-
action, is temperature-independent. Below O.i'K, r increases mildly with temperature in the smallest
chamber. The temperature dependence of v below O.i'K indicates a possible phonon bottleneck. An order-
of-magnitude calculation shows that at about 0.2'K the rate at which the spin system puts energy into the
lattice becomes comparable to the rate at which the lattice can transfer that energy to the bath. The results
can be used to estimate the nuclear relaxation time in the millidegree region where the magnetic transition
is expected.

I. INTRODUCTION

A S a consequence of their large zero-point motion,
the atoms in solid Hea experience an unusually

large exchange interaction. This interaction, which is
described by the Hamiltonian 3Ct&= —AJIt Is, gives
rise to a manifold of energy levels called the exchange
system. The properties of this system have been the
subject of a great deal of experimental and theoretical
attention. ' ' The strength of the exchange interaction J
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characterizes the low-temperature thermal and mag-
netic properties of solid He'. For example, magnetic
ordering is expected to take place at a temperature of
the order of AJ/ktt. In the bcc phase at the molar
volume v =24.0 cm'/mole, J/2sr = 25 MHz, which
corresponds to a transition temperature T~ of about 1,8

' H. A. Reich, Phys. Rev. 129, 637 (1963).
~ R. L. Garwin and A. Landesmann, Phys. Rev. 133, Ai503

(1964); Physics 2, 107 (1965).' M. G. Richards, J.Hatton, and R. P. Giffard, Phys. Rev. 139,
A91 (1965).

4 R. C. Richardson, K. R. Hunt, and H. Meyer, Phys. Rev. 138,
Ai326 (1965).' R. C. Richardson, H. Landesmann, K. Hunt, and H. Meyer,
Phys. Rev. 146, 244 (1966). In this paper, the molar volume of
20.4 cm' mentioned in Table i and in Fig. i should be 20.04 cm'.' S. R. Hartmann, Phys. Rev. 133, A17 (1964).

r J. H. Hetherington, W. J. Mullin, and L. H. Nosanow, Phys.
Rev. 154, 175 (1967).
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Fn. I. Schematic behavior of the spin relaxation time r
as a function of temperature.

m'K. ' At the smallest molar volume in the bcc phase,
s = 19.7 cm'/mole, J/2s. =0.7 MHz, one finds T~=0.05
m'K. The influence of the exchange intera. ction on the
magnetic and thermal properties is very evident at
su%ciently low temperatures and can be studied
especially well employing nuclear magnetic resonance
techniques.

This paper reports measurements of the exchange-
lattice relaxation time v over the tempera, ture range
0.3&T&0.04'K. The Zeeman system, which is in
relatively good thermal conta, ct with the exchange
system in this temperature range, is used both as a,

heater and a thermometer for the exchange system. Our
results suggest that below 0.2'K the relaxa, tion takes
place at a boundary of the sample and the relaxation
time is the characteristic time for the energy to diffuse
to that boundary. At temperatures less than 0.1'K,
diffusion continues to transport energy to the boundary,
but a phonon bottleneck inhibits the transfer of the
energy out of the solid. The results permit us to estimate
spin relaxation times down into the millidegree region.

II. E~ERIMENTAL

Relaxation measurements were carried out by means
of pulse techniques on samples ranging in molar volume
from 24.1 to 20.8 cm'/mole in sample chambers of
different sizes. After formirlg the He' sample in the
chamber, the transverse relaxation time T2 was meas-
ured to determine J and the density by comparison with
previous results. 4 The exchange-lattice relaxation time
was measured by partially saturating the spin system
with several 90' pulses and then observing the recovery
by means of recurring small angle pulses. A boxcar
integrator made it possible to plot the recovery of the
nuclear signal on a chart recorder. The Larmor fre-
quency oi/2s vttas chosen to make the Zeeman specific
heat C,= snko)'/k&T'] approximately 20% of that of
the exchange system Cz ——ssL(AJ)'/k&Tsj. Thus any
effects due to the Zeeman system are small while still
permitting us to heat the exchange system.

Sample chambers of three different sizes were em-
ployed in the experiment. Chamber I had a radius of
0.1 cm and a length of 1 cm. Chamber II was the
annular region between two 1-cm-long concentric
cylinders of radius 0.14 and 0.15 cm. Chamber III was
the same as I but was ulled with 200 No. 40 AWG
I'ormex insulated copper wires. In this chamber, the
solid He' crystals grew in the space between the wires
and had a typical dimension of 10 ' cm. The He' had
an impurity content of 200 ppm of He4, as measured
with a mass spectrometer.

The experiment was performed in a cryostat using
adiabatic demagnetization of chromium methyl-
a,mmonium alum. A Speer 220-0 resistor was calibrated
a,gainst the susceptibility of solid He' (m=23 cm'/mole)
which obeys Curie's la,w within our experimental error.

III. RESULTS AND DISCUSSION

Before presenting the results of this work. , it will be
useful to review what is already known about the
relaxation mechanisms operating in solid He'. Energy
is put into the spin system by placing the sample in an

IOO

'The transition temperature T~ can be estimated from the
theory of Domb and Sykes LProc. Roy. Soc. A240, 214 (1957)g.
These authors show that for a Heisenberg ferromagnet with a
spin $ in a bcc lattice (eight nearest neighbors) the Curie tem-
perature T, is given by T,=0.66/2(JA/kz). However there is
some evidence that the coupling in solid He' is antiferromagnetic
PA. L. Thomson, H. Meyer, and P. N. Dheer, Phys. Rev. 132,
1455 (1963);D. H. Thouless, Proc. Phys. Soc. 86, 893 (1965);L.
H. Nosanow and W. J.Mullin, Phys. Rev. Letters 14, 133 (1965).g
The relation between the Noel temperature T~ and the Curie
temperature T, is given by G. S. Rushbrooke and P. J. Wood
LMol. Phys. 6, 409 (1963)g for the same

IJ . For a system of
spins q and eight nearest neighbors, one then obtains T~=1.TENT,
Unpublished calculations on the melting curve by two of us
Q'. R. T. and H. M., Cryogenics (to be published) j show that the
highest molar volume of solid He', which is stable below about
2 m'K is 24.0 cm'/mole. For this~molar volume, one calculates
Tg=1.8&j.o 3'K.
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I'rc. 2. Relaxation data for the two molar volumes 21.9 cm'/
mole (J/2m =5.5 MHz) and 22.8 cm'/mole (J/2m=10. 3 MHz).
The data at 22.8 cm'/mole were obtained in different runs.
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externally applied steady magnetic 6eld Ho and
saturating with rf pulses the resulting Zeeman system
(the manifold of energy levels for the system which
arise because of the coupling I'Hp). Relaxation of the
Zeeman energy may proceed either directly to the lattice
or indirectly via the exchange system to the lattice. In
the latter case the recovery is characterized by two time
constants. A quantitative description of the different
energy reservoirs and relaxation times is given in
Refs. 2—4.

Region abo~e 1.5'E. Above 1.5'K both the Zeeman
system and the exchange system are strongly coupled
to the lattice although relatively weakly to one another.
Energy put into the Zeeman system is delivered directly
to the lattice due to the modulation of the dipole-dipole
interaction by classical diffusion.

Region between 1.5 and 0.6'E. In the neighborhood of
1'K, the Zeeman system becomes uncoupled from the
lattice: the energy in the Zeeman system is delivered to
the exchange system (which continues to be strongly
coupled to the lattice) due to the modulation of the
dipole-dipole interaction by exchange. This relaxation
mechanism is temperature-independent for 1&&TN.

Region be/veen 0.6 and O.Z'E. Through this region,
the coupling between the exchange system and the
lattice becomes weaker than that between the Zeeman
and exchange system. The latter two come into equi-
librium with one another and relax collectively to the
lattice. The mechanism of relaxation is the two-phonon
(Raman) process which is due to the modulation of the
exchange interaction by lattice vibrations. This process
has a strong temperature dependence, T '", 6(m(10.

Region between O.Z aed 0.1'E. At about 0.2'K, the
exchange-lattice relaxation time becomes temperature-
independent and the time dependence of the relaxation
process becomes nonexponential. This behavior was first
reported by Richards, Hatton, and Giffard. '

We have made a detailed investigation of the charac-
teristic time in the temperature range 0.3&T&0.04'K
and over a wide range of molar volumes. The signal-to-
noise ratio in the recovery curve was relatively poor
because the rf pulses, used to measure the magnetiza-
tion, were kept small. Also the departure of the recovery
from a simple exponential (see below) made the analysis
more involved in the region below 0.2'K. These circum-
stances accounted for most of the scatter in the data.
In Fig. 2, data at molar volumes of 21.9 and 22.8 cm'
are shown. Detailed studies showed three characteristic
features of the relaxation process in the temperature
range 0.2~& T ~& 0.1'K.

(1) The relaxation rate depended on the size of the
sample chamber. In three different sized chambers a
variation of as much as a factor of 20 was observed, the
smallest chamber having the shortest relaxation time.

(2) In all of the sample chambers, the characteristic
time was temperature-independent: In the two smallest
chambers it was inversely proportional to J (see Fig. 3).

(3) The time dependence of the relaxation process

j.'IG, 3. The temperature-
independent values of the
characteristic relaxation time v

for our three chambers. The
smaller chambers have the
shorter times. The lines drawn
show the slope for v ~J '. The
triangular points represent the
data of Richards, Hatton, and
GiBard (Ref. 3), and are
plotted using values of J ob-
tained in Ref. 4.
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9 See for instance, P. G. de Gennes, J. Phys. Chem. Solids 4,
223 (1958); H. Mori and K. Kawasaki, Progr. Theoret. Phys.
(Kyoto) 27, 529 (1962); H. S. Bennett and P. C. Martin, Phys.
Rev. 138, A608 (1965).

"Note added in proof More recen.t measurements have been
reported--by Hunt, Thompson and Meyer, Phys. Letters 2SA,
313 (1967).

was not exponential in the usual sense and was qualita-
tively the same for the various densities and sample
chamber sizes. The extensive data were analyzed
by plotting the logarithm of the fractional change in
magnetization versus time a,nd then measuring the
slope at times long after the saturating pulses. These
resulting times 7 were empirically found to be approxi-
mately 3v& where r& was obtained by a more exact
analysis according to Eq. 3 derived below.

These observations suggest the following interpreta-
tion. The energy put initially into the Zeeman system
is rapidly transferred between it and the exchange sys-
tem bringing the two into equilibrium with one another.
Relaxation of the coupled system proceeds by diffusion
of the energy to the boundary of the sample where the
exchange system and He' lattice interact strongly. At
the boundary, energy is delivered from the Zeeman-
exchange systems to the lattice and then from the
lattice to the surrounding reservoir (bath). This latter
process (lattice)-(bath) takes place very rapidly so that
the characteristic time for the over-all relaxation is the
time required for the energy, mainly exchange energy
to diffuse to the boundary. The diffusion process is
exchange diffusion and its characteristic time is

rg) R'/4D g, ——

where R is the distance the energy must diffuse and D~
is the exchange diffusion constant which is proportional
to J and temperature-independent' for T&&T~. A
temperature-independent diffusion constant has been
observed in solid He' below 1'K by Reich' " using
NMR techniques. He attributed this result to exchange.
If we associate Reich's value of the diffusion constant,
2X10 ' cm'/sec at V= 22 cc/mole, with Drr and using
R= 10 ' cm for sample chamber III we Gnd v-~ =8 sec.
The relaxation time observed for these conditions was
5 sec. Thus the observed relaxation time is of the same
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Fzo. 4. The energy transfer rates (AT=0.1T) for the (lattice)—
(bath), (lattice) —(bath) at frequency J within a range J and
(exchange) —(lattice) processes. The intersection of the lines
labeled Qaz, and Qz,M defme the bottleneck temperature Tq.

order as the diffusion time ~D, depends correctly on J,
and is temperature-independent.

As seen in Fig. 3, the dependence of the relaxation
time on the sample chamber size is in qualitative agree-
ment with the expectation for the diffusion mechanism.
Hop&ever, the quantitative agreement is poor. We sus-
pect that this is due to the conditions under which the
samples were formed. The various size sample chambers
can only set upper limits on the size of the crystallites.

The time dependence of the relaxation process can be
estimated for the diffusion mechanism by solving the
diffusion equation

pzz= Dz'zt'pzz,

where kzzps=Ta ' and T~ is the temperature of the
exchange system. For computational purposes we use
the following model: (a) The geometry of the sample in
the space between the copper v ires is approximated by
a long cylinder whose radius E. is the typical distance
to the boundary of the space; (b) the speed of the
relaxation process operating in the boundary region is
taken into account by assuming that all of the energy
in the exchange system which reaches the boundary is
taken away; and (c) the time dependence of the decay
of the energy at the center of the cylinder is taken to be
typical of the time dependence of the decay of its aver-
age energy. If a,t t=0 the temperature of the cylinder is
uniformly Tz(0), then at time t later one has

pzz(t) —Pzz(0) = [Ps(~)—Ps(0)$
Xexp[—2'/(4Dyt) j. (3)

This equation describes the time dependence of the
observed relaxation process accurately for times greater
than rg).

Eegioe helot 0.1'E. For temperatures below 0.1'K
the relaxation times increase with decreasing tempera-
ture for chamber III, the smallest one, and are propor-
tional to J ' (see Fig. 2). We believe that the (lattice)—
(bath) proces& which operates rapidly at T)0.1'K has

slowed sufficiently so that at 7&0.1'K a lattice-to-bath
bottleneck is observed.

We suggest the following explanation for this bottle-
neck. The coupling of the exchange system to the lattice
in the magnetically irregular. region near the boundary
of the sample gives rise to a one- or two-phonon process
much faster than that which occurs in the bulk of the
sample. At all temperatures this process is su%.ciently
fast so that energy delivered to the boundary region by
the exchange diffusion process is immediately trans-
ferred to the lattice. The bottleneck occurs in the
(lattice) —(bath) relaxation process. Although the
process at the boundary is very fast and therefore its
characteristic time does not enter into the present
considerations, the qualitative nature of this process is
of grea, t importance. If it is a two-phonon process, the
energy in the exchange system is delivered to all of the
phonons which in turn transfer it to the bath at the
rate~~

QLn
——1'(Ac/V)-,'[E(Tz) E(1')j, —

where 3 is the area of contact between the lattice and
bath, V the volume of the sample, c the velocity of
sound of the He' and I' a measure of the acoustic mis-
match between the He' and bath material (in this case
the insulated copper wires). E(T) is the energy in the
He' lattice at tempera, ture T. Whereas, if the process is
a, one-phonon process, the energy in the exchange
system is delivered to a small band of phonons with
energy range AJ=nJ at frequency J, which in turn
delivers it to the bath at the much slower rate"

9&iV/ keys
Qz.n~ =

~ ~
kzzhT,

&LB B

where rzs= V/(FAc). Ã is the number of He' atoms,
and O~ is the Debye temperature of the He'. A bottle-
neck will occur if the rate at which the exchange system
delivers energy to the lattice

(6)

exceeds the rate at which the lattice can transfer this
energy to the bath. We have calculated the energy
transfer rates for AT=0.1T given by Eqs. (4), (5),
and (6) for the solid Hes sample at v= 24 cm'/mole and
using the following values of the various constants:
(J/2s-)=25 MHz 0~=20'K" c=2X104 cm/sec&

V/A = (1/2) X10 'cm, 1"= 10-', zr = 1, r z,zz
= (1/4) X 10-s

sec, and v. =3 sec.
The results are shown in Fig. 4. We note that if the

exchange to lattice process is a one-phonon process, the
bottleneck occurs at temperature Ty for which

"W. A. Little, Can. J. Phys. 37, 334 (1959).
"See, for example, J. A. Giordmaine and E. R. Nash, Phys.

Rev. 138, A1510 (1965).
's H. H. Sample and C. A. Swenson, Phys. Rev. 158, 188 (1967).
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Q~z, =Qz,m, which is given by

0 (kBO) rLB

12uE hJ ~

Since rLn~ 0~ ' and r~ J ', then Ts~ 0, the tem-
perature at which the bottleneck occurs, is a mild
function of molar volume. The value Ty=0.2'K is
consistent with our observations, and leads us to assume
that such a process operates rapidly in the region of the
sample boundary. The two-phonon process would not.
form a bottleneck until Qzn~QEL, which occurs at
about 5m'K.

At temperatures above T~ the restricted band of
phonons is able to transfer the energy delivered to it
(by the exchange system) to the bath without being
overdriven and heated. At temperatures below T~ this is
not the case and in the limit where the (lattice)-(bath)
process determines the observed relaxation time we
have Tg TL, and

dL&'zr 3 (kJ'l' kzrdP J.
LBJ' ~

dk 4 Ekz & dt

When T~= T, QLnz can be written

(9)

Equations (8) and (9) combine to give the relaxation
time associated with the bottleneck

1 (k~0) e)s (T, s

TQ= — - - TLB T ~

12 kkJ& T& ET
(10)

The actual shape of the recovery is, of course, non-
exponential. "

Since the (exchange) —(lattice) and (lattice) —(bath)
relaxation processes are in series, we expect the over-all
relaxation time to have the form

r(total) = r+rs= rL1+(Ts/T)s7. (11)

As remarked above, Ts o- 0'; hence the dominant molar
volume dependence of this combined relaxation time at
all temperatures is the 1 dependence in T. For the
data given in Fig. 2 for the volume 21.9 cm'/mole, we
obtain Ts=0.06&0.02'K using Eq. (11). The value

'4 A very similar relaxation process (spin-lattice-bath) has been
considered by B.W. Faughan and M. %. P. Strandberg, J. Phys.
Chem. Solids 19, 155 I',1961).

given by Eq. (7) for this volume is 0.2'K and hence the
calculated and observed bottleneck temperatures are
in order of magnitude agreement.

It should be pointed out that the mild temperature
dependence below about 0.1'E. may be inQuenced by
the isotopic phase separation" in our samples. At pres-
sures close to the melting curve, the temperature of the
phase separation is about 0.08'K for a, sample with 200
ppm He4, which is the region where the temperature
dependence of r is observable. Therefore the observed
characteristic temperature Tb may differ from that for
pure He'.

It is interesting to compare the present work to the
recent results of Osgood and Goodkind. '~ They esti-
mated the spin relaxation time of solid He' at "/.5 m'K,
to be less than 10 min for pressure of 36 atm. Part of
their sample chamber was also packed with copper wires
with about the same surface to volume ratio as our
chamber III. If we assume the relaxation mechanism
at the boundary does form a bottleneck, we can use
Eq. (11) to estimate their time. Using r=3 sec and
Ts=0.05'K appropriate to @=24 cms/mole, we fjnd
a characteristic time of 2 min. However, according
to their Fig. 1, Osgood and Goodkind did not have the
copper wires in the He' where the measurements was
taken and, therefore, their time probably was limited
by the diffusion through He to their auxiliary chamber.

IV. SUMMARY

Below 0.2'K it is found tha, t diffusion due to exchange
is transporting nuclear spin energy to a boundary where
relaxation occurs. The relaxation process at the bound-
ary is predominantly a one-phonon process. The emitted
phonons are in good contact with the "bath" (copper
wires) above 0.1'K. Below that temperature, the con-
tact lessens and results in a bottleneck for the over-all
relaxation process.

These experiments permit us to estimate the optimum
conditions and the corresponding times for cooling He'
nuclei to the millidegree regions by means of heat con-
duction. The best conditions for heat transfer are to
have He' with a large exchange and in the form of very
small crystals packed between copper wires. The time
estimates for He' at about 24 cm'/mole (I'=35 atm)
are consistent with the time constants recently observed
by Osgood and Cloodkind. "

» D. 0. Edwards, A. S. McWilliams, and J. G. Daunt, Phys.
Letters 1, 21g (1962).

jtl E. B. Osgood and J. M. Goodkind, Phys. Rev. Letters 18,
894 (1967).


