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where

with

8 n=-sX' 8 n=(6/7)X' 8 "=(9/14)X
Bgn (9——/70)F; Bsn=(4/5)F; Ben=(25/7)Ir,

X=x,'/(es'+ 1)+ms'/(es'+1),

g2g3F=— (1+sees).
(eve+1) (eve+1)

In (Hl) and. (33), xs, es refer to the F~*(1760) and xs, ss to the Foe(1820).
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An infinite class of chiral-invariant pion-nucleon Lagrangc functions is discussed, Each member of this
class is shown to be equivalent, under canonical transformation, to the one in which thc commutator of the
axial current with thc meson field is an isotopic spin scalar. If the chiral symmetry is broken in this special
canonical frame in a manner that ensures the partial conservation of the axial current, then the theory
ls uIllquC.

'HE application of chiral SU(2)QxSU(2) current
algebra techniques to processes involving the

emission and absorption of a large number of soft pions
can become very cumbersome. Recently, %einberg' has

pointed out that this computational complexity can be
reduced by employing an effective Lagrangian' that is

chiral symmetric save for a part that yields a partially
conserved axial current. Since such an effective

Lagrangian satisles all the constraints imposed by
current algebra, it may be used in lowest order to obtain

the kinematical and isotopic spin structure of the
current algebra results for the behavior of scattering or
decay amplitudes when the four momenta of various

emitted (or absorbed) pions vanish. Higher-order cor-

rections cannot alter this structure; they can only

produce renormalization of coupling constants. The
correct values of the coupling constants can be inferred'

from the general structure of the current algebra

method.
%einberg' obtained an appropriate effective La-

grangian by first performing a canonical transformation

on the 0. model' and then sending the mass of the un-

* Supported in part by the National Science Foundation and
the U. S. Atomic Energy Commission.

t Present address.' S. Weinberg, Phys. Rev. Letters 18, 188 (1967).
2 The utility of an effective-Lagrangian method has also been

advocated, without regard to current algebra, by J. Schwinger,
Phys. Letters 248, 473 (1967). Sec also J. A. Cronin, Phys. Rev.
161, 1483 (1967).

~ J. Schwinger, Ann. Phys. (N. Y.) 2, 407 (&957);M. Gell-Mann
and M. Levy, Nuovo Cimento 16, 705 (1960).

physical 0 particle to inhnity so that it is removed from
the theory. It is the purpose of this note to investigate
an infinite class of chiral-invariant pion-nucleon
Lagrange functions of the type introduced by Gursey. »

This class is restricted only in so far as the canonical
pion-6eld momentum is required to involve the first but
no higher derivatives of the pion 6eld, with no depend-
ence on the nucleon 6eld. %e shall show that in the
limit of perfect chiral symmetry' every member of this
class is equivalent, under canonical transformation, ' to
the one in which the commutator of the axial charge
with the pion 6eld is an isotopic spin scalar, a com-
mutation relation characteristic of the 0- model. Thus,
in this limit, the physical scattering amplitudes are
uniquely defined, although their o6-mass-shell values

4 F. Giirsey, Nuovo Cimento 16, 230 (1960);in Proceedings of the
Tenth Annual International Conference on High-Energy Physics at
Rochester, i%60, edited by E. C. G. Sudarshan, J. H. Tincot, and
A. C. Melissions (Interscience Publishers, Inc. , New York, 1961),
p. 572; Ann. Phys. (N. Y.) 12, 91 (196I).

~ It is perhaps worthwhile to observe that if the theory is taken
to be of a fundamental kind, not simply an effective Lagrangian
that is used in lowest order, then in the perfect-chiral-symmetry
limit the nucleon state occurs as a degenerate mass doublet of
opposltc pax'ltlcs. Thc syIQQlctx'y-bI'caking lntcl action will l CDlove
the mass degeneracy and couM possibly extinguish one of the
states. There are presently two (~~ ) candidates for a chiral partner
to the nucleon: X(I520) and a less well established X{1700)
LRosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967)j.' The importance of canonical transformation was emphasized
to me in conversation with W. A. &ardeen and H. W. Lee. They
have independently obtained results similar to those of this paper.
Their work will appear in Canadfan SNmmer Institgte I.ectgres
(W. A. Benjamin, Inc., New York, to be published).
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can be altered by canonical transformation. The chiral
invariance can be broken in only one way if the di-
vergence of the axial. current is to be proportional to the
pion field. The theory is therefore ambiguous essentially
only to the extent that this strict hypothesis of a
partially conserved axial-vector current (PCAC) is not
maintained. For the most part we shall make use of the
freedom of canonical transformation and exhibit the
theory in its simplest form. Nevertheless, its more
general structure is also of interest, particularly with
regard to its extension to larger chiral transformation
groups such as SU(3)QxSU(3). This general structure
is outlined in the Appendix.

Ke begin by considering a free, massless nucleon
Lagrange function"

It is invariant under not only constant isotopic spin
lot.Rtlons

RI'c I11Rdc clcRI' lf wc dc6nc a 1'cRl, uQltRly function

so that

M(s)
U(s) = = U(—s)-'= U(s*)',

M( —s)

M(s) = U(s)8'(s'),

H(s') = LM(s)M( —s)j'"
If this decomposition is inserted into

M(««: y') M(i~ y')'= e&""M(ve y)M. (i~ y)'e &"-" (11)

we 6nd that H( Q) 1s l—Ilvar1ant under the chlral
transformation

&(-4")=&(-4') (12)

Since only isotopic spin rotation can preserve the length
of the meson 6eld that can take on arbitrary values,
this demands that H be a constant, which by R parity
convention may be taken to be positive,

f~ s~ir cap (2) &(—g') =«««&0.
but a constant chiral isotopic spin transformation as
well:

f~ e vsk~ ~f~— (3)

0v ~+M(v«—& 0) 0

In order that the Lagrange function be Hermitian,
M(s) must be a real function, '

M(s*)*=M(s) .
Chiral invariance is maintained if the pion Geld P is
transformed into a new field p' which satisfies

M(y«~ y') =e»&'"M(y«~ y)s»&'",

or) within RQ clgcnstatc of +5 with clgcnvRlue +5 = $ ~

M(ve P') =e"'"M(is P)e~"". .

LThe transformation law Eq. (6) in the other eigenstate
y« —— i is just —the Hermitian adjoint of Eq. (7).]

The implications of the transformation law Eq. P)

it ls thus invariant under a chlral SU(2) 8 SU(2) group
of tI"Rnsfol'rnatloQS. The chil'Rl lnvRI'1RQce ls upset, by
the addition of a nucleon mass term «««~. However,
it can be restored if the mass constant m is replaced by
a function M of the pion field P„ if the latter transforms
appropriately. Ke shall require that no derivatives of
the pion 6eld occur in 3f so that the canonical pion 6eld
momenta «r, ' are simply related to 8&,. Invariance
under isotopic spin rotat. ions and parity conservation
require that M be a function of y«~ P, so we wr. ite

Accordingly,

&~= —g y—8+mU(y«~ p) f

with the chiral transformation property of the meson
Geld depending upon the choice of the unitary function
U(s) and dined by

U(««, tl') =e&""U(«~ y)e&""

The unitary matrix U(m. P) represents a continuous
group of SU(2) transformations. The various different
choices of the unitary function U(z) correspond to
djgerent parametcrizations of this group which are
related by canonical transformation of the meson field.
%C may exhibit this by noting that the unitary matrix
may be written as

U(~ 6)=C1—f'4'g(4')3'" —«f~ Pg(4'), (16)

where f is a scaling parameter (coupling constant)
introduced in order to make the function g dirnension-
less. This arbitrary function de6ncs a canonical trans-
formation of the meson Geld from the old 6eld p to a
new field C by

with

V= exp i (dr) ~—.'y. Lg(y«} —1]

Thus the entire class of Lagrange functions which we
have considered are equivalent under canonical trans-
formation to one with

7 We use a metric tensor gI'" with g"=—1, and y matrices in a
representation such that yo is Hermitian, y ~ =y, while y"~= —y~,
and y~ =yoy1y~y'= —yJ'.

8 We consider such functions as de6ned by formal power series.

U(«r c)=~(C') «y. g @, —

,(@«) P f«c,«jii« (19b)
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and we may restrict the discussion to this standard
form. The simplicity of this standard form is made clear
by the structure of the infinitesimal chiral response 2,"=gy"iy„~ r,f —a(—C') II,I' (30)

C —& O'= C+6&ciC

defined by the infinitesimal version of Eq. (15)

U(i~ C')=U(i~ C)+,'i(-~ Bv, U(ke C)),

(20)
The time components of these current operators satisfy
local commutation rela. tions appropriate to the chiral
SU(2)QxSU(2) group. The naive apphcation of the
canonical commutation relations gives the more general
equal-time commutators

6&c&C = ——o(C')8v . LV '(g), Vi,o(g')j,=, = ie.b, V,'(g)8(r—r'), (31a)

6(')II I'= —~.b.~~bc" (24b)

Ke shall restrict the meson Lagrange function to
depend at most quadratically on the conjugate Geld

II,& so that this field is linearly dependent on BI'C .With
this restriction, and a conventional normalization of the

field variables, the Lagrange function is uniquely deter-

mined by the chiral and isotopic spin invariance:

II~I'B„C~—+2 II~i'II„, 2f II~"4—~1I„i,4'i, (25).
The fields IIo„C„form a canonically conjugate pa.ir

L~.(*),11o (")j = = &- ~(*-"), (26)

while the spatial component II ~ is a dependent 6eld

varia, ble. It is defined by the action principle as

D.'= (C")~'L~{C") 'C'.j (27)

Vector and axial-vector current operators can be

defined in the usual fashion by replacing the constant
infinitesimal isotopic spin and chiral tra.nsformation

parameters by space-time functions and computing the

response of the total Lagrange function to this extended

variation. Ke compute in this way

(28)

with

V,~=fy"~ r,f IIP&bsGC'e, —

We may now easily construct a meson Lagrange
function that is invariant under the chiral transforma-
tion (21) in addition to the usual isotopic spin invariance

(22a)

C a '4bc~~b@ c ~ (22b)

We shall write this Lagrange function in first-order form

so that the correct canonical variables are clearly
defined. Since

8'o&8 C =Bv 0.(C') 'fC'i8 Ci, (23)

the kinematical terIn II I"8„4 that occurs in this func-

tion will be invariant if the conjugate held transforms as

b«ilI. ~= —C.~(C')-'fbi'&II&~, (24a)

L V."(g),Vi, "(g')j, ( = ie.b.V,"(g)8(r—r')
—i8"(8(r—r')L8, i,C'—C,C i,j),

(31b)

L V.'(g),A, '(g') j,=,.=i,„W,o(g) s(r- «),
t V '(g), A i,"(g')j, , = e,b,A,"(g)g(r r')—

+&~~&~(r r') ~'.(I—/f)~(C") C.),
(32b)

L~.'(*),V "(")j,=, = ....~. {.)~(r-")
—i~ (~(r—r') .".{I/f) (C")+.i,

(33)

L~.'(g),& '(g')j =, =i ...V.o(g)~(r-r),

fA.'(g),Ai, "(g')j, , =i&,b, V,i'(g)g(r r')—
—'~.{~(-")DI/f) (C')'~. +C.C,j). (34b)

The quantities that involve the spatial gradi. ent are the
so-called "Schwinger terms. " The structures that we
have listed are those that follow from a straightforward
application of the canonical commutation relations.
However, this method yields no Schwinger terms that
are associated with nucleon Geld, a result in contradic-
tion to general principles, and one that shows that great
care must be exex'cised in handling the bilinear forms
that compose the current operator. Therefore, our re-
sults Inust be taken only as 8 heuI'istic lndlca tlon of the
nature of the Schwinger terms. We note that the
Schwinger term which occurs in the axial-vector
commutator LA ',A~~j differs' from that which occurs
in the vector commutator LV,O, Vi,~j. Thus the special
canonical frame that we have chosen is such that the
fields (C.,a) form a linear (-'„-',) representation of the
chiral SU(2) 8 SU(2) algebra.

The commutator of the time component of the axial
current with the meson heM operator reproduces the
structure of the chiral field alteration Kq. (21),

L~.'(g) C' (*')j,=, = —a.,{I/f) (C )g(r—,) (35)

The special canonical frame that we have used simplifies
this commutatol fol ill general lt also colltalIls terms
involving C,C b and is not an isotopic spin scalar. This

' Presumably the corresponding vacuum expectation values also
differ, and hence our model does not satisfy a condition employed
by S. Weinberg )Phys. Rev. Letters 18, 507 (1967)j in deriving a
sum rule on the spectral weights of the vector and axial-vector
vacuum correlation functions.



simplicity is reRected in the algebraic closure"

LA.'(x), (1/f)a(C (x')')j,=, =b8(r —r')4. (x) . (36)

If we require that the chiral symmetry be broken in a
manner that makes the divergence of the axial current
proportional to the pion 6eld, and if we also require that
the commutators of the axial charge with the meson
6eld close in the sense illustrated above, then our model
remains unique. Ke obtain this strict PCAC if we add
to our Lagrange function

&s=(I '/f')~(~')

for then the chiral. variation of the complete Lagrange
function is

5'c'(2 ++2 +&s) = ~a"r—)s»e+ (Ii'/f)'4»~ ~

and the principle of stationary action gives

(I"/f)@'—
Thc cxpanslon of thc syIllIBctry-breaking LagI'anglMl

(37) in powers of the tucson field gives a meson mass
term and multiple meson scattering terms,

Zs ——const —-,'p'C C —s f'(O' C' )'+ (39)

The lowest-order meson-meson scattering term which

occurs here, together with that contained in the chiral
symmetric meson Lagrangian (25), yield immediately
the current algebI'a result of VVeinberg for pion sca.-
tering lengths. These differ from the scattering lengths
computed by Schwinger' using an CGcctive-Lagrangian
method. This discrepancy arises because the axial-
current-meson 6eld commutator in Schwinger's model
is not an isotopic spin scalar, and hence the model does
not possess the commutator closure illustrat. ed in

Kqs. (35) and (36). A canonical transformation can be
performed on this model so that the commutator closure
is obtained, but then the PCAC condition is destroyed.

I have enjoyed stimulating discussions on this topic
with F. Gursey, %. A. Bardeen, and B.%.Lee.

APPEÃDIX

Ke shall outline here a method which does not employ
the special canonical frame used in the test. It may
prove useful for the extension of the theory to larger
chiral symmetry groups. This general treatment requires
first a discussion of the properties of the matrix U that
occurs in the nucleon Lagrange function (4).

"It has been observed by Bardeen et al. /Phys. Rev. Letters 18,
1170 (j.967)g that Eq. (36) follows directly from Kq. {35)if the
Jacobi identity is applied to the double commutator LA, ', LA P,Si,jj,
and the axial-vector commutator Eq. (34a) together with isotopic
spin transformation property

PV 0(x),yg(x')g] f. -—-ie f„y,.{x)b(r—r')
18 used."S.Weinberg, Phys. Rev. Letters 17, 6I6 {1966),

The matrix U{b~ P) is not only unitary,

U(be P)t= U(—m fi) = U(w y)
—',

but also unimodular;

detU(~ P) =1. (A2)

which, witli U(0) =1 and continuity in p, implies the
unlIDodulallty. If wc wI'ltc, to 61st order,

UL~ (@+~@)j=L1+bbh(4) jU(~ @),

then tlie ullitaiity COIiditioII (A1) requires that, gg is
Hermitian, while the first-order formula

detL1+bbh(y) j=1+i trbh(y)

and the determinantal constraint (A2) require that ~h
have a vanishing trace. Hence"

(~/~&.)U(b~ 6)= sd. (se) rsU( ~0).
Since the derivative operation is commutative,

[1g&7 b j 2regbar g )

the derivative function d, s($) must satisfy the inte-
grability condition

8
d &c(4') dec(4) = 2tfes($—)de, (Q)es„(A4).

Bfa Bfs

Combined infinitesimal isotopic-spin rotations of the
meson 6eld (22a), (22b) and the nucleon field (2) leave
the unitary matrix invariant,

U(be p) =e—I"'"U{be fi")e&"'""

and imply that

sLU(b 0),r.j=..bAsd. z(y)r, U{b'y)

If we use these results to express

U(b~ P")=d.s(y")srsU(b~ y")II

'~Re could equally well write

(S/S4.) U(~'r 4) = U'(sr y)id. s(y)rg, .

but the unitary restriction (Af) shows that d is simply re~@~cd t

d.~(e) =d.~( y)-

The latter is easily established by noting that the
determinant is invariant under isotopic spin rotations,
so that p, may be taken to be nonvanishing only for
8=2 WhClC

detU(irsgs) =detU(bryan) ~= detU( —irsPr)
= LdetU(irs+. )] '
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in terms of the field P, we learn that the derivative
matrix is an isotopic-spin-invariant in the sense that

e.d.4~(B/B4.)d.b(4) =".~d~b(4)+eb"d"(0) (A7)

%e are now in a position to determine the nature of
the meson Geld response

y
' —

@ +B«iy,

to the inGnitesimal version of the chiral transformation
defined, by Eq. (15).We have

8«&y.(B/By.) U(&c y) = ,'i(U(-ve y), bv ~)
=ibv ~U(i~ p)

+'i[ U( -ivy} hv ~5 (A9)

and, employing (A3) and (A6), secure

8«&P.d, t, (P) = Bvb+Bv, e.g,gad, b($),
or

b«&p, = Bvb[db, '(p)+eb.,$.5. (A10}

The structure pf this transformation law can be
clariGed considerably, To this end, we multiply the
isotopic spin invariance statement (A7) and the integra-
bility condition (A4) by appropriate numbers of the
inverse derivative matrix d '(p) to get

"~A.(B/Be.)d.b '(4) = ~-ad. b '(0)
+Cbcdded (Q) & (A11)

8
d..-'(y) db (~) db. '(~—) &-- '(e)-

Bpg Bfg

= 2e.bylaw. -'(y) . (A12)

The isotopic spin invariance (A11} implies that d '($)
may be expanded as

d.; (y) = B. A(~')+~.~ B(~')+""e.C(e'), (»3)
while the integrability condition (A12) requires that the
scalar coefficients satisfy

the kinematical term m &8„p that occurs in this function
will be invariant if the conjugate Geld m, & obeys the
chiral transformation law

B'"~."=—B»[(B/B4.)db. '(0}—~".5~.". (Af g)

One can verify, with the aid of the integrability condi-
tion (A12), that the quadratic structure

with

&.b(4) =A. '(4)d. ~ '(4), (A19)

a symmetrical, positive-deGnite matrix, is a chiral-
invariant. Accordingly, using a conventional normaliza-
tion of the Geld strengths, the chiral-invariant meson
Lagrangian is given by"

2,= —m "B„pa+2~,"N,b($)ir„b. (A20)

The vector- and axial-vector-current operators are
identified by the response Eq. (28) of the complete
Lagrange function to isotopic spin rotations and chlral
transformations whose inGnitesimal parameters are
extended to space-time functions. %e Gnd

Va" A"=2~a%''irt "&bso4e,

A."=A"iVskrA+d. ~ '(y)~bv+~-b"b, y. . (A22)

In order to verify that the time components of these
operators indeed generate a spatially local group of
chiral SU(2)N}SU(2) transformations, we couple the
currents to external, classical gauge Gelds B,I' and 8',~:

Z= Z~+Z.+A:B„.+V:W„.. (A23)

It is a simple matter to verify that under an isotopic
spin lotatlon

5( }A "=—e,b,8COyAc", (A24a)

~"'V,I'= —e,b,b(O~V & (A24b)

A moderately lengthy calculation that. makes use of
(A11)»d (A12) gives the chiral transformation
properties

5~~}A,~=—eg„8vg V,t',

~'~'V, &= —e,b,bV gA, I'.

(A25a)

(A25b)

(A+/'B)(C —1)=0, (A14a)

B(C—1)—(A+y2B)(d/dy~)c=o (A14b)
Hence

AB+C' 2C 2(A+&'B)(d—/4P—)A =0. (A14c) Bg=—V,&B„Ro,—A,&8„8v,

Bye c~6gbc807g Bpg Vc~lg)c8Pg

~ Isaac faba~&b KpeAc &sbo~Vb &

These equations possess a solution only if C=I, or
C= 2 with A =J3=0. The latter case must be excluded,
for it gives a singular matrix d '(P). Hence C= 1

~'"e.= ~"A(4')+4.Bvb4 P(4'),
and the principle of stationary action gives the di-

(A15) vergence conditions

with

2[A(~')+~'B(~')5(did~')A4')
=A(~')B(~')-1. (»6)

gee turn now to the construction of a 6rst-order
meson Lagrange funct1on. Since

~'"BA.=»b[(BIB' )~b. '(4) "-5'., (—A1&)

B„V.v= ..b.W„bV: ~.b.B—„@:, (A26a)

B„A,"= c.b,W„bA,—v a,b,B„bV,"— (A26b).

@I:t is not difBcult to shoe& that this Grst-order function is
equivalent to the manifestly chiral-invariant second-order
Lagrangian that is proportional to

g travU(& y)a„U(k y) '=ave.d..(y)di. (y)a-„y~
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These divergence conditions imply"

[V,'(x), Vb'(x )],=, =is,b, V,'(x)h(r —r'), (A27a)

[V,o(x),Abo(x')]i=i =i eb,A, o(x)b(r r—'), (A27b)

[A.'(x),A «'(x')], , =ie.b, V,'(x)b(r —r'), (A27c)

the local chiral SU(2)QxSU(2) commutation relations.
The commutator of the time component of the axial

current with the meson field reproduces the chiral
meson Geld transformation

[A,'(x),y (x')],=, = {d,b '(dl)+ b„y,}is(r—r')
= (b bA (4")+AokbB(4"))i~(r r'—) .

(A28)

It is not diKcult to show that the validity of the Jacobi
identity applied to [A,', [A be,d,]]is equivalent to the

"See, for example, D. G. Boulware and L. S. Brown, Phys.
Rev. 156, 1724 {1967). U(i r P) = (1 f g ) —I ie Pf.— . (A31)

constraint (A16). This double commutator is generally
a complex structure involving various isotopic spin
values. However, if we require that 8=0, the axial
vector-meson Geld commutator is an isotopic scalar,
and the double commutator closes back to the meson
field. With B=O the constraint (A16) requires that

A(4') = —(1/f)(1—f'd')'"= —(1/f)a(4') (A29)

and we recover precisely the special canonical frame
used in the text. This is made explicit if we use (A3) to
construct the unitary matrix U. We may "integrate
along a straight line" using

(d/W)U(~. fl) )=g.d.b(d) )rbU(i fl),)
=A(QX) 'ia; flU(ie flX) (A3O)

to obtain immediately
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Isoscalar Nucleon Form Factor from O(4,2) Dynamics*

HAGEN KLEINERT
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The most general theory of isoscalar form factors with O{4,2) as dynamical group and a purely algebraic
current operator has been constructed for a fermion representation space. Adjusting one free parameter
appropriately, we obtain for the J = ~+ ground state

(1 t/0 71)"— .' (1—t/0. 71)' (1—t/0. 'l1)

ae is determined to be tss = ——',.The agreement with experiment is excellent for Gsre/tse, moderate for Gee,
and bad for p~.

I. I5'TRODUCTION
'N a previous paper, ' the dynamical features of the

- ~ two maximally degenerate unitary representations
of 0(3,1) have been extensively discussed. The electro-
magnetic form factors have been calculated, and they
are found to decrease too slowly as a function of the in-
variant momentum transfer t. If one uses the other uni-
tary representations of 0(3,1), one can improve the
shape for small momentum transfers. ' Indeed, when re-
stricted to this range, the theory has been able to re-
produce the regularity in the pionic decay widths of
baryon resonances astonishingly well. ' For larger t, how-
ever, the form factors start oscillating, a feature that one
does not expect on general grounds.

*Research supported in part; by the Air Force Once of Scien-
tific Research, OfBce of Aerospace Research, United States Air
Force, under AFOSR Grant No. AF-AFOSR-30-65.' A. O. Barut and Hagen Kleinert, Phys. Rev. 156, 1546 (1967).

~ Hagen Kleinert, Fortschr. Physik (to be published).' A. O. Barut and Hagen Kleinert, Phys. Rev. Letters 18, 754
(1967);Hagen Kleinert, ibid 18, 1027 (1967)..

To obtain better results, mixing of 0(3,1) representa-
tions is needed. This need is also indicated by the fact
that more than one 0(3,1) tower seems to exist. There
are, for instance, four I 2p g g resonances in the
Rosenfeld tables. If several towers do exist, then the
physical particles will, in general, be mixtures of these
towers.

Such a representation mixing occurs most naturally if
one formulates dynamics in terms of a group larger
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