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Using the partially conserved axial-vector current hypothesis and assuming the axial-vector current to
remain an octet to a good approximation in broken SUs, relations are obtained for the couplings of baryon
resonances with the normal baryons and pseudoscalar mesons. Using a few observed decay widths as input,
the strengths of the remaining couplings are estimated. The results are compared with the results of other
authors using different approaches and with the sum rules following from a first-order symmetry breaking.

I. INTRODUCTION

N a recent paper,'? an estimate was made of ratios
of pseudoscalar meson-baryon coupling constants
in broken SUs3, assuming that the axial-vector currents
retain their octet character to a good approximation in
the presence of symmetry breaking,®* and using the
hypothesis of a partially conserved axial-vector current
(PCAC). In this paper we start with these assumptions
and obtain relations among the couplings of baryonic
resonances to baryons and pseudoscalar mesons in
broken SUs We consider in detail the §+, $—, and §+
baryonic resonances.
Starting with the basic equations obtained by taking
matrix elements of the PCAC relation, we use the ob-
served widths of a few decay modes of the resonances

* Work supported by the U. S. Atomic Energy Commission.

1 Present address: Physics Department, Brown University,
Providence, Rhode Island.

1 K. Raman, Phys. Rev. 149, 1122 (1966); 152, 1517(E) (1966).

2 The method of obtaining relations for coupling constants from
Goldberger-Treiman relations was first used by Riazuddin, Phys.
Rev. 136, B268 (1964) and by P. G. O. Freund and Y. Nambu,
Phys. Rev. Letters 13, 221 (1964). The latter authors also obtained
values of the decuplet coupling constants. However, their detailed
assumptions and results are different from ours. .

3 This assumption is supported empirically by the SUs extension
of the Adler-Weisherger relation. [See S. L. Adler, Phys. Rev.
Letters 14, 1051 (1965); W. I. Weisberger, ibid. 14, 1047 (1965);
L. K. Pandit and J. Schechter, Phys. Letters 19, 56 (1965); A. Sato
and S. Sasaki, Osaka University Report, 1965 (unpublished);
C. A. Levinson and I. J. Muzinich, Phys. Rev. Letters 15, ’ZlS
1965).] Theoretically, a motivation for it may be found by noting
that in a broken U (3)X U (3) symmetry scheme one may derive a
generalization of the Ademollo-Gatto theorem [M. Ademollo and
R. Gatto, Phys. Rev. Letters 10, 531 (1963); and C. Bouchiat and
Ph. Meyer, Nuovo Cimento 34, 1122 (1964)] which suggests that
not only the vector current but also the axial-vector current
remains a pure octet to the first order in the SUs symmetry
breaking; see, e.g., J. Schechter and V. Ueda, Phys. Rev. 144,
1338 (1966); and G. S. Guralnik, V. S. Mathur, and L. K. Pandit,
Phys. Letters 20, 64 (1966). Possible deviations from the octet
character of the axial-vector current and their consequences are
under investigation.

4 Recently, E. C. G. Sudarshan and N. Mukunda [Phys. Rev.
158, 1424 (1967)] have formulated a stability principle which
states that for many tensor operators, including an octet axial-
vector current, the assumption that one component of the tensor
operator is not renormalized to first order under a perturbation en-
sures that the complete tensor operator remains unchanged to first
order. They further argue that if empirical evidence could be ob-
tained for the nonrenormalization of a strangeness-conserving
component of the axial-vector current to the first order in thg SU;
symmetry breaking, this would ensure the nonrenormalization of
the whole axial-vector current to first order. This would support
our basic assumption. We are obliged to these authors for a
discussion of their work.

163

to solve for the axial-vector renormalization constants
entering the equations. These are then used for evalu-
ating the remaining coupling constants of the reso-
nances. The results for the coupling constants are
compared, where possible, with the results obtained
from other approaches.

In Sec. IT we write the relations for the couplings of
a 3+ decuplet baryon to a 3+ octet baryon and an octet
pseudoscalar meson. By eliminating the axial-vector
renormalization constants from the basic equations, sum
rules are derived for the decuplet coupling constants in
terms of the physical masses of the octet and decuplet
baryons. Using the experimental values for the widths
of three of the decay modes of the §* baryons, the
renormalization constants for the couplings of the axial-
vector current are deduced, and are used for evaluating
the remaining coupling constants. The predicted
coupling constants are compared with the results of
other authors obtained by different methods.

In Secs. ITI and IV we consider the couplings of the
%~ and §* baryonic resonances (assuming each of these
to form an octet) with the 4+ octet baryons and the
octet pseudoscalar mesons. In Sec. V we summarize
our conclusions.

A similar evaluation of the coupling strengths of
meson resonances and the corresponding axial-vector
renormalization constants will be reported elsewhere.

II. RELATIONS FOR DECUPLET COUPLINGS
We start by assuming the PCAC relation
N Q%)= Caga(®) , 2.1

where @.MN«) is an axial-vector current density, ¢.(%) is
a pseudoscalar meson field operator, and « is an SU;
octet index. In exact symmetry, C, would be inde-
pendent of «; in broken symmetry it will, in general,
depend on a. We take the matrix element of each side
of (2.1) between a 3+ octet baryon B and a $+ decuplet
baryon resonance B*. Writing the matrix element of
the axial-vector current ®@,*0) as a sum of terms
proportional to g, 4*¢?, Prge, and ¢*¢?, taken between
a Rarita-Schwinger spinor ¢,(ps) and a Dirac spinor
u(ps), we assume that the coefficient of each of these
terms transforms like the (invariant) matrix element
of an octet operator between an octet and a decuplet.
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This gives the following?®*S:

(B*(p1)| Gar(0)| Bi(pi))=[m:iM */ EE;JV2Caip,(p1)
X (=){Ga*(g) g+ F 4*(g)7v*¢*
+H*(g) P+ La*(gD) g g yu(pi) .
Here we have defined P=(p,+p:) and g=(p;—p.).
Cair denotes an SU;3 Clebsch-Gordan coefficient.

For the matrix element of the meson source operator
Fe(®) = ((2+nuad) va(x), we write the following:

(Br*(p:1)17(0)! B(p:)) ]
=[mM */ E:Es 12 figok i (qW0(p 1) gPu(pi) -
From (2.1)-(2.3) we obtain, for ¢?=(p,—p:)*=0, the
relations®
Coai/[Ga*(0)+ (M *—m;)F 4*(0)
+ M #2—mH)H 4*(0) ]=dafisaK isa*(0).
Here, Ki7.*(g?) is the form factor for the PBB* vertex,

normalized to K;s.*(ue?)=1, and we have used the
definition

(2.2)

(2.3)

(2.4)

da=Ca/pal.

The relation (2.4) can give rise to a symmetry break-
ing in the PBB* couplings fis. through the dependence
of the quantity

[G4*(0)+ (M s*—mi)F 4*(0)
+ (M %2~ m2) H 4*(0)]/doK i7.*(0)  (2.4b)

(2.4a)

on the indices q, 7, and f. If this quantity were inde-
pendent of , 7, and £, then the PBB* coupling constant
would be the product of the Clebsch-Gordan coefficient
C.ir and a quantity independent of a, 4, and f, so that
the relative values of fiz, would be the same as with
exact symmetry for the PBB* coupling.

In (24b), G4*(0), F4*(0), and H*(0) are, by
assumption, independent of a, 7, and f. The dependence
of (2.4b) on a, 4, and f can arise from the dependence
of m; and M s* on ¢ and f, the dependence of d, on «,
and the dependence of K;s,*(0) on «, 4, and f.

The variation of m; and M * with ¢ and f is known
from the physical masses. To obtain some information
about the dependence of d.Kis.*(0) on a, i, and f, we
proceed as follows.

By taking matrix elements of (2.1) between spin-3
octet baryon states with masses 7; and ms we obtain

5 Here M* and m denote the masses of a decuplet baryon B* and
an octet baryon B, respectively. P, denotes a pseudoscalar meson
with SUj; octet index .

6 The independent couplings in (2.2) can be chosen in different
ways. However, the general explicit dependence on the masses
m and M of the matrix element of 9,G#(x) between a spin-3+
baryon B described by a Dirac spinor and a spin-3* baryon B*
described by a Rarita-Schwinger spinor is of the form shown
on the left-hand side of Eq. (2.4). Our assumption is that when
the matrix element of 9,@*(x) is written in this form, then the
couplings so defined (corresponding to the Ga*, Fa*, and H4*
terms) are the ones that may be assumed to behave, to a good
approximation, as invariant matrix elements of an octet operator.
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the relation

2412 (mat-m1) = doGroaK 12(0) . (2.5)

We now assume that for given e, Ki7¢*(0) and K12,(0)
are approximately equal and that they are largely in-
dependent of what the initial and final baryons are:

Kira*(0)= K it 1a*(0) = K 124(0) = K 1:9:4(0)

=K.(0), (2.6)

that is, we assume that when the change in the form
factors in going from ¢*=p,? to ¢2=0 is not too large,
it is essentially determined, for a given , by the value
of pa? and does not depend sensitively on the masses
and spins of the external baryons in the PBB and PBB*
vertices.

For given o, we can determine doK124(0) if g412e)
and Gisa in (2.5) are known. By using Cabibbo’s theory
of leptonic decays’” (together with an analysis of the
data on these decays), and assuming the values of the
wNN and KNA coupling constants, one may obtain
@eK122(0) for e=m and a=K. Since there appear to be
no reliable estimates available for a nBB coupling con-
stant, we cannot make a reliable estimate of d,K1s,(0)
by this method.

For the x VN coupling constant, we assume G,y x2/4m
~14.6. For the KNA coupling constant, recent deter-
minations by different workers do not agree; thus
Lusignoli et al.® give the estimate Ggya?/4r=4.841.0,
while Rood? gives a larger value: Ggn?/4r="7.4+1.0.
(For comparison, we note that if one had assumed exact
SUj; symmetry for the PBB vertex and taken the d/f
ratio for this vertex to be about 2, then using
G.nn?/4r=14.6, one would obtain Ggy2/4r=13.5.)

A considerable part of the difference between the
estimates of Lusignoli ef al. and of Rood seems to arise
from the difference in their descriptions of low-energy
I=0 KN scattering. The effective-range parametriza-
tion used by Rood for this amplitude appears to be
better; however, he has neglected the K—-K° mass
difference, the quantitative effect of which is not clear.
There are several uncertainties in the input data used
in the analyses, and at present it is not clear what is
the best value for Ggya?/4mr.1° We shall give the results
following from the estimates of both Lusignoli et al.
and Rood, stressing that the value of dxK12x(0) will be
uncertain to the extent that Ggw, is uncertain.

As shown in Ref. 1, if one assumes a value of about 2
for the d/f ratio of the matrix element of the axial-

7 N. Cabibbo, Phys. Rev. Letters 10, 531 (1960).

8 M. Lusignoli, M. Restignoli, G. A. Snow, and G. Violini,
Phys. Letters 21, 229 (1966).

9 H. Rood, CERN Report, 1966 (unpublished).

10 We are grateful to Professor G. A. Snow for a discussion of
the questions arising in the determination of Gzya2. We are in-
formed by him that further work on this is being done by
Lusignoli et al. Recently, a determination of Ggwa® has been
made by J. K. Kim, who obtains the considerably larger value
(1/47)GrNna2=216.0. See the note added in proof at the end of the
paper for a discussion of this.



1776 GRAHAM,
vector current between baryons, then with Ggwa?/4m
~4.8 one obtains a value of about 1.78 for the ratio
dxK k(0)/d-K (0); with Grya?/4w=~T.4, one obtains a
value of about 1.43. In exact SUs, with degenerate
meson masses, this ratio would be unity. Thus it is seen
that a considerably large symmetry breaking can arise
from the factor d.K(0) in (2.4b), if the input value of
Grna?/4w, used in determining dxK x(0) through (2.5),
deviates considerably from its value in exact SU;
symmetry.

One may further examine how much of the symmetry
breaking would arise from the deviation of dx/d, from
unity and how much from the ratio Kx(0)/K .(0). In
Ref. 1 it has been shown!! how, using Cabibbo’s theory
of leptonic decays and a recent analysis of the data on
leptonic decays, one may obtain the estimate

R=dx/d.~1.27. 2.7

Then, using the estimates of dxKx(0)/d.K.(0) dis-
cussed earlier, we obtain

[(ENA(O)/KWNN(O);"\' 1.4 (28&)
when one assumes Ggy?/4r=~4.8, and
Krns(0)/K-nn(0)~1.15 (2.92)

when one assumes Ggyi?/4r~T7.4. If we neglect the
deviation of K ,yx(0) from unity, we would obtain

Krna(0)=1.4 (2.8b)
and

for Ggrna?/4r~4.8 and 7.4, respectively.

The estimates given above show that assuming that
the axial-vector current is an octet to a good approxi-
mation, one may obtain for the PBB* coupling con-
stants a fairly large deviation from the values in exact
SU3 symmetry. With our assumptions, the magnitude
of this deviation will be determined by the mass
splitting in the baryon decuplet (and octet) and by the
extent to which d.K ,(0) depends on a.

To determine G4*(0), F4*(0), and H ,*(0), we write
Eq. (2.4) for three different choices of By* and B;:

1 61 2060, GA*(O) f1
1 02 2092 FA*(O) = f2 , (2 10)
1 83 28:ms) LH4*(0) fg
where
o=(M*—mi); m=3M* +m.),
- CaKifn*(O) fifa
F S — , (2.11)

ﬂaz eaif

11 See Ref. 1, Erratum. The data on leptonic decays used here
were those of N. Brene, L. Veje, M. Roos, and C. Cronstrém,
Phys. Rev. 149, 1288 (1966). It was noted in Ref. 1 (Erratum)
that instead of assuming R=1 and obtaining v 764 as in the work
of Brene et al., one may assume 8y =604=0.212 and obtain R=1.27.
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and the subscripts 1, 2, and 3 denote three choices of
B/* and B;. Solving (2.10) gives

H 4*(0)= ©(123), (2.12a)
Fao)= 2 (Ol 0u) 123y, (2.12b)
(82— 061) (85— 61)
CH0)= (82f1—01f2)
(62— 1)
' [8102(17o— 29701) + 61 ml]¢(123), (2.120)
(82— 81)
where
Ir(fe—Jf) (fi—f)
123)=-
#(129) z{(az—al) (ag-ag:l
[(627%2——-511%1) (5377&3—52’1?72)]_1. (2.13)
(85— 61) (85— 82)

Considering Eq. (2.12a) for all possible choices of
Bi, Bs* and P,, we obtain seven sum rules of the form

0(123)= o(127),

where j=4,5, ---, 10.

Noting (2.5), (2.6), and (2.11), it is seen that the
sum rules (2.14) relate the PBB* coupling constants to
the PBB coupling constants and the physical B and B*
masses in broken SUj, if the axial-vector renormaliza-
tion constants g4¢?® are assumed to be known. The
latter may be obtained from Cabibbo’s theory of
leptonic decays,” using the experimental value of the
d/f ratio (d/f)a for the matrix elements of the axial-
vector current between the spin-3+ octet baryons.

Setting a== in (2.4), taking (Bs*,B;) as (V¥ N),
(Y1*2), and (V1*A) in turn, and using the available
experimental values of the decay widths for N* — N,
V*— Ax, and V* — Zri2;

(2.14)

I'(V*— Nr)=120 MeV,,

T'(Vy*— Ar) =364 MeV, (2.15)
T(Y*— Z7)=3.6 MeV,
we obtain!s
G4*(0)=0.77,
F4*(0)=0.78, (2.16)

H 4*(0)~—0.018.

12 The masses and widths of the baryonic resonances used in
this paper have been taken from the data compiled by A. H.
Rosenfeld et al., Tables from UCRL 8030 (revised), August 31,
1966 (unpublished). The §*N*, ¥i* and E* partial decay widths
are there quoted as I'(WV* — Nu)=120-+2 MeV, I'(¥* — Ax)
=(36.4+0.8) MeV, T(V1*— Zn)=(3.64:0.8) MeV, and
T(E* — Er)=7.341.7 MeV.

13 The signs of G4*(0), etc. in (2.16) have been written with the
convention that the reduced matrix element in the PBB* coupling
is positive.
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TasiE I. Coupling constants of the decuplet * resonances with the octet 3+ baryon and octet pseudoscalar meson.2b-

Exact SU; Estimates for f*/4r  12/4x from Freund and Johnson and Wali and

PBB* Isoscalar Solution  Solution  experimental Nambu McCliment Warnock DDFS
coupling factors 24w ) (i) widths (Ref. 2) (Ref. 19) (Ref. 20)  (Ref. 14)
TNN* V2 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
TAY* 3 0.19 0.14 0.14 0.14 0.15 0.16 0.12 0.14
T2V * 1/4/6 0127 0.11 0.11 0.11 0.043 0.036 0.06 0.039
TEE¥ 3 0.19 0.1 0.1 0.076 0.08 0.08 0.08 0.059
=¥ * -3 0.19 0.14r,71  0.14r,71 0.064 0.035 0.06 0.01
e -1 0.19 017 0171 0.08 0.06 0.06 0.017
RNy* 1/4/6  0.127 0.063 0.092 0.12 0.19 0.094 0.09
KzN* —3V2 0.38 0.03 0.043 0.13 0.008 0.15 0.039
Eaz* 3 0.19 0.076 0.11 0.14 0.26 0.11 0.091
Kz=* 3 0.19 0.058 0.084 0.06 0.11 0.075 0.029
K=Y * —1/4/6  0.127 0.011 0.016 0.06 0.008 0.04 0.013
K=a 1 0.76 0.067 0.098 0.31 0.7 0.31 0.012

a Solution (i) corresponds to the choice (2.8) of Ky (0) and solution (ii) to the choice (2.9). 7, is defined by Eq. (2.19).

b In obtaining the solutions for f2/4m, the . 1 1
¢ See the note added at the end of the paper for a third solution.

Here we have used the following relation between the
widths and the coupling constants:

feep® (E+m)p?
T(B* — BP)= e
47 3M*

where E and p are the energy and momentum of the
final baryon B in the rest frame of the decaying reso-
nance B* and I'(B*— B+P) is the total decay width
of a given charge state of B* (into all possible charge
states of B+P).

To obtain the signs of the coupling constants derived
from (2.15) [note that these signs are required in (2.4)],
we have assumed that the relative signs of the coupling
constants in broken SU; symmetry are the same as in
exact SU3 symmetry. Such an assumption is supported,
for instance, by the self-consistent calculation of the
coupling shifts in broken SUs carried out by Dashen,
Dothan, Frautschi, and Sharp,'* who find for the PBB
and PBB* couplings that the relative signs of the
coupling constants are not altered even though some of
the coupling shifts are quite large.

Using (2.16), we have evaluated all the remaining
PBB* coupling constants for both the choices (2.8) and
(2.9) for the K-mesonic form factor. (These will be
referred to as solutions (i) and (ii), respectively.) Among
these, the mEE* coupling constant is the only one that
is related to a decay width; this is predicted to be

T(2* — E+1)~9.7 MeV. (2.18)

This may be compared with the experimental value of
(7.341.7) MeV.2

For both solutions (i) and (ii), it is found that the
predicted coupling constants fis« have the same signs
as the coupling constants in exact SUs. Thus our
assumption, used in determining the signs of the input

(2.17)

14 R. Dashen, Y. Dothan, S. C. Frautschi, and D. Sharp, Phys.
Rev. 143, 1185 (1966) and Phys. Rev. 151, 1127 (1966).

*, wAY1¥, and #2Y r* coupling constants, as deduced from the observed widths, have been used as input.

coupling constants, that the PBB* coupling constants
have the same sign as they would have in exact SUsj,
appears to be consistent if we assume the values (2.15)
for the widths.

The solution (2.16) is quite sensitive to the input
values of the widths; thus, in order to obtain accurate
values of the axial-vector renormalization constants,
the input widths must be known accurately. The
coupling constants predicted using (2.16) are, however,
not very sensitive to the individual values of G4*(0),
F4*0), and H4*(©0), so that the predicted PBB*
coupling constants can be expected to give the correct
orders of magnitude of the different coupling strengths
and a reasonably good estimate of their relative
magnitudes.

In the second column of Table I, we give the isoscalar
factors for the various couplings,'s which give the ratios
of the coupling constants in exact SU;.16 In the third
column we give the values of f2/4r in exact SUs;,
assuming fryn**/4mw=0.38, which is obtained from the
experimental value (2.15) of the N* decay width.!2

In the fourth column of Table I, we give the values
of the coupling constants f2/4r obtained using the
solution (2.16) and the value (2.8b) for the off-shell
extrapolation factor for the K-meson vertex functions.
In the fifth column of Table I are given the coupling
constants obtained by using (2.16) and the value (2.9b)
for the off-shell extrapolation factor.

In order to obtain the 7 coupling constants, one
requires the value of C,/u,? and of the extrapolation
factor K,*(0) for the n-meson vertex functions (assum-

18 The phases of the isoscalar factors used here are chosen as
given by J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963). The
second column of Table I is obtained on writing the couplings in
the order P+B — B*.

16 A discussion and review of coupling constants in unbroken
SUs and their comparison with experiment have been given
recently by M. Goldberg, J. Leitner, R. Musto, and L.
O’Raifeartaigh, Nuovo Cimento 45, 169 (1966).
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ing this factor to be roughly the same for all the n-meson
vertex functions). In the absence of any information
about these, we have written the coupling constants f,
in terms of a factor , defined by

T9= [C,,K,,*(O)/ynzj/[C,K,,*(O)/p.,,?:l . (219)

We may make the following observations regarding
the PBB* coupling constants given in Table I:

(i) The pion coupling constants are of the same order
of magnitude, f,2/4w=0.1 to 0.14, except for the 7V N*
coupling constant, which is considerably larger.

(i) The # coupling constants f, are of the order
0.17,7! to 0.14r,7%.

(iii) The K coupling constants in solution (i) are
appreciably smaller than the = and 5 coupling constants;
fx?/4w=0.01 to 0.08. The values of the K coupling
constants in solution (ii) are larger than those in
solution (i) by a factor of about 1.2 and are closer to
the values of the pion coupling constants, although still
on the whole, smaller.

(iv) The deviations from exact SUs symmetry of
the values of the K-meson coupling constants are seen
to be considerable.

If, in solving for G4*(0), F4*(0), and H4*(0) from

Egs. (2.10), we use as input the widths for N* — N,
V1* — Ar, and E* — Er, assuming!?

(5% — Er)=1.3 MeV, (2.20)
and the first two widths in (2.15), we obtain'®
G4*(0)=~—0.48, F4*(0)=0.95, H4*(0)~0.01. (2.21)

The coupling constants f obtained by using the values
(2.21) for G4*(0), F4*(0), and H4*(0) do not all have
the same relative signs as they would have in exact
SUs. This is not consistent with the assumption made
in determining the signs of the input coupling constants
used in order to solve Eq. (2.10) for G4*(0), F4*(0),
and H4*(0). [This may indicate that the value (2.20)
for the decay width I'(E* — Er) is in error.] We there-
fore prefer the solution for the coupling constants ob-
tained from (2.16).

Earlier, various authors had obtained relations among
the PBB* coupling constants in broken SUj symmetry,
starting with the assumption that, to the lowest order,
the symmetry-breaking interaction transformed like a
component of an octet tensor.!” The PBB* coupling
constants may then all be expressed in terms of five
parameters. For the PBB* couplings, sufficiently
reliable data are not available to evaluate these five

17 C, Dullemond, A. J. Macfarlane, and E. C. G. Sudarshan,
Phys. Rev. Letters 10, 423 (1963); E. C. G. Sudarshan, in Proceed-
ings of the Athens Topical Conference on Recently Discovered
Resonant Particles, Athens, Ohio, 1963, edited by B. A. Munir and
L. J. Gallaker (University of Ohio Press, Athens, Ohio, 1963);
V. Gupta and V. Singh, Phys. Rev. 135, B1442 (1964); C. Becchi,
E. Eberle, and G. Morpurgo, 3bid. 136, B808 (1964); M. Konuma
and Y. Tomozawa, Phys. Letters 10, 347 (1964); M. Suzuki,
Progr. Theoret. Phys. (Kyoto) 32, 279 (1964).
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TasLe II. Comparison of §+ decuplet coupling constants
with the first-order sum rules (2.22).

Solution (ii)
[for Kgna(0)=~1.15]

Solution (i)
[for KKNA(O) ~ 14_]

Sum Left-hand Right-hand Left-hand Right-hand
rule side of side of side of side of
in (2.22) sum rule  sum rule sum rule  sum rule

(a) 2.34 2.22 2.34 2.22
(h) 1.7 1.4 2.0 1.85
(c) —1.96 —1.83 —2.36 —2.30
(d) —0.86 —0.70 —-1.0 —0.89
(e) 0.92 1.42 1.11 1.87
) 2.32r,71 0.99 2.32¢,71 1.42
(2) 2.34r,71 0.78 2.34r,71 1.2

parameters (and hence all the couplings). However, one
may obtain seven sum rules between the 12 coupling
constants listed in Table I; these are the following!”:18:

2f(wEEX) = —V2 f(xNN*)+3 f(wA ¥V 1¥)

+W3) @2V *), (2.22a)

2f(KZE*) = (v/6) (RN Y *)+ (v/6) f(rZ¥1¥)
—VZf(xNN*), (2.22b)

—2f(RAEX) = — (v/6) f(RN Y {*) V2 f (N N*)
—2f(mAY¥), (2.22¢)

—V2f(KZN*)=—(v/6) f(KEY (*)+2V2 f(xNN*)

+2f(rEEF)—6 (AT ¥), (2.22d)
JEED) = (/6) f(KNY 1*)+2 f(xEE*)
—V2f(xNN*), (2.22¢)

—2f(2Y *)=3(/6)[—f(KEY*)+f(KNY1*)]
+4[2f (rEE*)+V2f(rNN*)]
—6f(wAY1¥),

—2f(nEE*) = G/ O)[—f(KEY *)+f(KNY¥)]
+3[2f/(rEE*)—2V2f(xNN*)]. (2.22g)

It is instructive to examine how well these first-order
sum rules are satisfied by our estimates for the coupling
constants. In Table IT we list the numerical values of
the two sides of the sum rules (2.22) for both our
solutions.

As a whole, it is seen that the coupling constants
given by solution (ii) agree better with the first-order
sum rules than those given by solution (i). This was to
be expected, because the choice (2.9) of the K-mesonic
form factor which gives solution (ii) was obtained by
assuming Ggwya?/4w=7.4, which is closer to the value
of Ggna2/4r in exact SU; (with a d/f ratio of 1.5 to 2
and with G.yn?/4m=14.6) than the value of 4.8 which
led to (2.8) [which was used in obtaining solution (i)].

For the first four sum rules, the deviation (with our
values of the coupling constants) from the equality
required by the sum rules is comparatively small,

(2.22f)

18 The sum rules (2.22) are written in the form given by Gupta
and Singh (Ref. 17), with a redefinition of the phases.
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though not negligible. The deviation is smaller for
solution (ii). For the fifth sum rule, involving f(KEQ),
the deviation is quite large; the reason for this is not
clear. For the sixth and seventh sum rules, the deviation
is large if we assume 7,~1 [see Eq. (2.19)]. If one
assumes that for the 5 couplings, which do not involve
a change in the strangeness, the deviation from first-
order symmetry breaking should be small, one is led
to expect that

=15 to 1.7, (2.23)

from solution (ii). Noting that the mass of the 7 is large
and of the same order as that of the K meson, it is not
unreasonable to expect an off-shell extrapolation factor
K ,¥(0) of the same order as that for the K-meson vertex
functions [for which we used the estimates (2.8) and
(2.9)]. This would account for a part of the deviation
of 7, from unity.

We shall finally compare our estimates of the coupling
constants with those made by other authors using
different methods. These are shown in the seventh,
eighth, ninth, and tenth columns of Table I. For
convenience in comparing the results, all the coupling
constants have been normalized so that f.ynx*¥/4m
=0.38, corresponding to a width of 120 MeV for the
33) N

The seventh column gives the predictions of Freund
and Nambu.? Although our starting point is the same
as theirs, their detailed assumptions and results are
different. Our predictions for the = and 5 couplings are
of the same order of magnitude as those of Freund and
Nambu, except for the #2V,* coupling, for which their
value is considerably smaller. The KZN* KEY¥,
and KEQ coupling constants predicted by us are con-
siderably smaller than those of Freund and Nambu.

The results obtained by Johnson and McCliment!?
are given in the eighth column of Table I. Their value
for the #2Y1* coupling constant f2/4r is about a third
as large as ours. Their predictions for the KNV ¥,
KEQ, and KAE* couplings are considerably larger than
ours, while their values for the KEN* and 5ZV,*
coupling constants are appreciably smaller than ours,
even if we assume 7,~1.5 in obtaining our value of
2T ).

In the ninth column of Table I are given the values
of the coupling constants obtained by Wali and
Warnock? from an N/D calculation; we have taken
the solution for which their symmetry-breaking
parameter x has the value unity, which gives the
physical masses. If we choose 7, as in (2.23), then their
values for the 5 coupling constants are roughly of the
same order as ours. Their predictions for the KZN*,
KEY+*, and KEQ coupling constants are considerably
larger than ours. We note that their value for f(zZ¥*),

( 18 g Johnson and E. R. McCliment, Phys. Rev. 139, B951
1965).

20 K. C. Wali and R. Warnock, Phys. Rev. 135, B1358 (1964);
F. Ernst, R. Warnock, and K. C. Wali, bid. 141, 1354 (1966).
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although smaller than our input value, is closer to the
experimental value than those of the other authors
discussed here.

The tenth column in Table I gives the coupling
constants obtained by Dashen, Dothan, Frautschi,
and Sharp* by a self-consistent calculation. Their K
coupling constants are roughly of the same order of
magnitude as ours except for KEQ and KZE* which
are considerably smaller. The major difference is that
their n couplings are much smaller than ours, even
when we use (2.23) for ,. The 72¥1* coupling constant
obtained by these authors is also considerably smaller
than our input value.

Table I thus shows how the predictions obtained for
the coupling constants by other authors compare with
ours. We note that our estimates of the coupling con-
stants are fitted to the observed value of f(z2V¥)
which now experimentally appears to be considerably
larger than was expected earlier. In Sec. IIT we apply
our method to the couplings of the $~ baryonic reso-
nances.

III. COUPLINGS OF i~ OCTET
BARYON RESONANCES

In this section we discuss the coupling of a spin-§—
octet baryon resonance B* to a 3t octet baryon B and
a 0~ meson P. We shall group into an octet the N* at
1512 MeV, the V* at 1660 MeV, and the E* at 1815
MeV.2 The first-order Gell-Mann-Okubo mass
formula® then suggests the existence of a ¥¢* at about
1670 MeV. Some evidence for such a state has been
obtained from the analysis of K—p reactions.?? Also,
the dynamical calculation of Martin suggests that the
Y¢* to be included in this octet should have a mass of
(16604-60) MeV.22 We shall therefore assume a ¥o* at
about 1670 MeV and examine the predictions for its
couplings.

The expressions analogous to (2.2) and (2.3) are
given by

(B*(p7)| @aM0) | Bi(p:))=[m:M ¥/ E:E;1V%,(py)
X (=) {dais[ GalgD) 8vs+ Falg)v ¢"vs
+3Ca(g) PP gvs+ L£a(g2) g gvs ]
+ fairl G (gD 85+ F (gD Pvs
+3,() PP gPys+ L1(gD) g vs Jyu(ps), (3.1)

% M. Gell-Mann, Phys. Rev. 125 1067 (1962); S. Okubo,
Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).

22 Evidence suggesting the existence of a §~ Y¢* was obtained
by J. D. Davies et al. and by R. Armenteros et al. [see the reports
presented by these authors and the review by M. Ferro-Luzzi, in
Proceedings of the Thirteenth International Conference on High-
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967), p. 1837, who found that K~ reactions of energies
near 1700 MeV could be better fitted by assuming a ¥¢* in the
$~ partial wave in this region, in addition to the §~ ¥,* at 1660
I\Ilf_eV. We are obliged to Professor J. Leitner for a discussion on
this.

28 A dynamical calculation by A. W. Martin, using as input the
properties of the §= N* and Y* predicts the ¥¢* mass to be
(16603-60) MeV and the E* mass to be (18003=80) MeV. See
A. W. Martin, Nuovo Cimento 32, 1645 (1964).
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TasiLE I1I. Solutions of Eq. (3.3) for the §~ resonances.

Solution (i) Solution (ii)
[for Kgna(0)~1.4] [for Kzna(0)~1.15]

Ga(0) 0.135 0.68
4(0) 0.075 0.056
3¢4(0) —0.017 —0.019
g,(0) 1.14 0.89
5,(0) —0.025 —0.034
3¢,(0) —0.016 —0.01

and

(B*(p9) | 1a(0)| Bi(pa)) = [miM /*/ EiEs]V*gisa
X Risa*(@Wu(pr)Prvsu(ps). (3.2)

Here y,(p;) is a Rarita-Schwinger spinor for a spin-§~
particle, and dai; and fais are the symmetric and anti-
symmetric SUs coupling coefficients of Gell-Mann.?!

Taking matrix elements of (2.1) between B* and B
states leads, at ¢2=0, to the following relation:

[dairGa(0)+ fairGs(0)]
+ (M #mi) [ daisFa0)+ faisF(0)]
+ (M #2—m [ daif3a(0)+ fair3Cs(0) ]

= dagifaxifa*(o) . (33)

We again assume that for given o
Jci/a*(o) sza(O) )

where K154(0) is the form factor of the PBB vertex (at
zero square of momentum transfer). The factor multi-
plying gis on the right-hand side of (3.3) is then known
for a=7 and a=K. We shall again consider the two
choices (2.8) and (2.9) for the K-mesonic form factor.

By considering Eq. (3.3) for seven different choices
of 7, f, and @, one may derive sum rules similar to
(2.14) ; there are 11 such sum rules.

Data for the decay widths are at present available for
six decay modes; these are as follows':

(34)

[(N*— N7)~40 MeV, T(¥V1*— Zr)~15 MeV,
r(Y*— KN)=7.5MeV, I'(Vi*—Ar)=~2.5 MeV,
T(5* — Er)~1.6 MeV, T(8*— AK)~10.4 MeV.

(3.5)
Using these and the relation
g p*(E—m)
T s (0
™

with a notation similar to (2.17), we may obtain the
coupling constants gis«?/4m. To obtain the relative
signs of the coupling constants gisa, We Write the ex-
pressions for the coupling constants corresponding to
the vertices in (3.5) which would hold in exact sym-
metry, i.e., as a sum of D and F couplings with appro-
priate coefficients, and examine what choice of the
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relative signs of g;;o would allow the best approximate
solution for the D and F reduced matrix elements. We
assume that this gives the correct relative signs of
the Zifa-

Writing the six equations of the form (3.3) corre-
sponding to the six couplings in (3.5), we may solve for
the six unknowns G4(0), etc. Because there are two
K-meson coupling constants among the input couplings
(3.5), the solution will depend on the value assumed for
the K-meson form factors. The solutions corresponding
to the assumptions (2.8) and (2.9) for this form factor
will be denoted as solutions (i) and (ii), respectively;
they are shown in Table III.2* Using these values of
G4(0), etc., we have evaluated the other coupling
constants.

In the second column of Table IV we list, for com-
parison, the forms of the couplings in exact SUs;. In the
third column we give the input values of the coupling
constants, obtained from the observed widths (3.5),
used in solving Egs. (3.3). The predicted values of the
coupling constants for solutions (i) and (ii) are given
in the fourth and fifth columns, respectively, for g, and
in the sixth and seventh columns for g%/4w. The
predicted values of the partial widths for the decay
modes ¥ ¢* — 2, ¥o— NK, and Z* — 2K are given in
the eighth and ninth columns of Table IV.

The # couplings listed in Table IV correspond to the
assumption 7,~1.5 [see Eq. (2.23)]. For r,~1, the
predicted coupling constants g would be larger by a
factor 3.

Because the input decay widths (3.5) are not known
accurately at present, our predictions for the coupling
constants can be regarded as giving only rough values
of the strengths of the various couplings. Although the
solutions for the individual values of G4(0), etc., are
quite sensitive to the input widths, the values of the
predicted coupling constants are much less sensitive to
these. A measurement of the decay width for E* — XK
and of the partial decay widths of the Y¢* if the
existence of a §~ YV * at about 1670 MeV is confirmed,
would provide tests of our predictions.

We shall first compare our results with those of
Martin,?® who made a simple dynamical analysis of
the 3~ octet baryon resonances. He assumed an N* at
1512 MeV and a ¥¢* at 1660 MeV with the partial
widths for N*— Na, V*—Zr, V*—Am, and

24 For comparison, we note that if the §~ octet baryons are
assigned to the 70 representation of SUs [e.g., see I. Gyuk and
S. F. Tuan, Phys. Rev. 140, B164 (1965) ], and if the 3t octet
baryons and the axial-vector current are assigned to the 56 and 35,
respectively, the D/F ratio of the matrix element of the axial-
vector current between the 3+ and §~ octet baryons is predicted
to be 3. If the 3~ octet is assigned to the 700 of SUs, this ratio is
—0.6. In the 1134 representation, there are three possible assign-
ments for a 3~ octet; for two of these the matrix element of the
axial-vector current (between a 3% octet baryon in the 56 and the
3~ octet baryon) is pure D or pure F, while for the third assign-
ment, the D/F ratio is 0.6. [The SUs Clebsch-Gordan coefficients
used in obtaining these were taken from J. C. Carter, J. J. Coyne,
and S. Meshkov, Phys. Rev. Letters 14, 523 (1965).]
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Tasie IV. Couplings of the octet §~ resonances with a 3+ octet baryon and an octet 0~ meson.b-°
Estimates for g dPrEdiCtSdh Martin’s
: ; i ecay widths estimates
cg?;g];?sg g Solgglon SOI(I;it)lon Estimates (MeV) (Ref. 23)
from the [for [for for g*/4m Solu- Solu-  Decay Values
PBB* Couplings g observed  Kgna(0) Kzwna(0) Solution Solution tion tion widths of
couplings in exact SUs widths ~14] =~1.15] @) (ii) (@) (i) MeV) g*/4r
TNN* V3(D—F) 2.16 (0.37) (0.37) 80 0.74
TAY* —3%V3D —0.66 (0.035)  (0.035) 11 0.15
72V * —2V2F 2.36 (0.44) (0.44) 13 0.375
72V o* 2D 1.72 1.74 0.24 0.24 9 9 6 0.16
wEE* —V3(D-+F) 0.71 (0.04) (0.04) 1 0.025
2NN* W3 (D+-3F) —0.83 —0.69 0.054 0.038
A Y o* 2V3D 0.42 0.41 0.014 0.014
72V * —2v3D =071 -0.72 0.04 0.04
nEE* V3(D—3F) 1.78 1.64 0.25 0.21
ENY* V2(D+F) —1.31 (0.14) 0.14) 3 0.056
ENY* (2/4/6)(D—3F) 2.1 1.96 0.35 0.3 21.5 184 46 0.76
KZN* —V3(D+F) —-1.25 —141 0.12 0.16
KAN* W3 (D—3F) 0.72 1.06 0.04 0.09
KEY* VZ(D—F) 1.51 2.05 0.18 0.33
KEY* (—2/4/6)(D+3F) —0.02 0.23 3X107%  4X1073
RAz W3(D+3F) —1.85 0.27)  (0.27) 5 013
Kz=* V3(D—F) 1.85 1.78 0.27 0.25 29 27 6 0.56

a In the sixth and seventh columns, the numbers in parentheses are the values of g2/4= obtained from the observed widths (3.5), corresponding to the

values of g in the third column, .
b The 5 couplings here have been given for 7, ~1.5.
¢ See the note added in proof at the end of the paper for a third solution.

V1* — NK as given in the tenth column of Table IV,

and estimated that the location of the Z* and V*
should be the following:
M (E¥)=18004-80 MeV,
=) 3.7

M (Y ¢*)=1660=:60 MeV.

His estimates for the partial widths of the =* and ¥ o*
are also given in the tenth column of Table IV.

In the last column of Table IV we give the coupling
constants g2/4w corresponding to the widths quoted by
Martin. We note that the xNN*, 7AY* and KNV *
coupling constants assumed by Martin differ consider-
ably from our input values, while the #2¥* coupling
constant is roughly the same. His estimates for the
72V o* and 7wEE* couplings are of the same order as
ours, while his estimated values of the KNY* and
KZE* coupling strengths differ considerably from our
values.

We finally note the following features of our estimates
for the coupling constants given in Table IV:

(i) In contrast to the PBB couplings and PBB*
couplings for the decuplet §* resonances, it is no longer
true that the K couplings are, on the whole, smaller
than the = couplings. This is already so for the (input)
values of the couplings obtained from the observed
decay widths. Thus the KNY* and KAZ* coupling
constants are of roughly the same order of magnitude
as the TNN* and 72V * coupling constants, while the

7AY* and wEE* coupling constants are considerably
smaller.

(ii) Solution (i), corresponding to the choice (2.8) for
the K-mesonic form factor, differs from solution (ii),
obtained with the choice (2.9), mainly in the values of
the KAN*, KEY+* and the nVN* coupling constants.
The KEY¢* coupling constants given by the two
solutions differ in sign; however, because its magnitude
is very small, this difference in sign is not significant.
The other coupling constants given by the two solutions
do not differ significantly.

(iii) The values of the coupling constants listed in
Table IV enable estimates of the relative weights of
different pole contributions to reactions in which 3—
resonances are produced, such as 7+N — Vi*+K,
K+N— N*+K, K+N — E*+K, etc. For instance,
the small magnitude of the KEY¥* coupling constant
would predict that the contribution of the 3~ V*
resonance at 1670 MeV to the reaction K+N — K+2
would be much suppressed (relative to the contribution
of the ¥1* resonance at 1660 MeV), in contrast to the
reaction K+ N — K+N, in which the ¥¢* would give
an important contribution which may enable it to be
detected.

(iv) We have examined how well the coupling con-
stants obtained by us satisfy the sum rules that would
follow from a first-order symmetry breaking that
transformed like an SU; octet.25 These sum rules are

% V. Gupta and V. Singh, Phys. Rev. 136, B782 (1965). For

the analogous sum rules for the PBB couplings, see M. Muraskin
and S. L. Glashow, 7bid. 132, 482 (1963).
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the following?e:

(WO)gENY*)+ (v g2V 1*)— 2g(nEE*)+3g(rA Y 1*) — 3g(RAE*) = g(KZEX) ,
(—v/6)gBNY *)— (v/$)gaZV 1*)+g(rNN*) = — 2g(KEN*)+3g(42V 1*)— 3g(1NN*) ,
(V3)g(m2 Y 1*)— g(rEEY) = 2g(KEN*)+V3g(rZV *)+ (v/$) g (KEY *)— §V2g(KEY o) ,
—28(@NN*)+(v/§)g(r2Y1*) —3g(@A ¥ 1) = (v/6)g(KEY 1*)+ g(KZN*)—3g(KAN*),
(Vg2 *) — g(nEE*) = (v/6)g(KEY *)+ 2g(RZE*)+-3g(n2V 1*) — 3g (nEE™) ,
28(xNN*)— (/D) [g@w2Y *)— g(KNY1*)]= — 25 (KZE*) +\Bg(n 2V ")+ PVZg(RN Y %),
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(3.8a)
(3.8b)
(3.8¢)

(3.8d)
(3.8¢)
(3.8f)

—V3g(@AY *)—V2gENY*)= —V3[g(nAY *) — g(n2V *) JH-V2g(KEY*)+3g(r2¥ *)

In Table V we have given the values of the left- and
right-hand sides of each of the Egs. (3.8), using our
values of the coupling constants [for each of our
solutions (i) and (ii)]. It is seen that the deviations,
with our values of the coupling constants, from the
predictions of first-order symmetry breaking are, for
most of the sum rules, smaller for solution (ii) than for
solution (i), as for the 3t decuplet couplings.?”:28 As
suggested earlier for the 3% couplings, this may be
expected, because the value (2.9) for Kzya(0), which
was used in obtaining solution (ii), was in turn obtained
by assuming Ggw?/4m="7.4, which is closer to the SU;
symmetric value than the value Ggya?/4r~4.8 used in
obtaining (2.8). However, for the $~ couplings we have
used two K-meson coupling constants as input constants
in the basic equation (3.3) (in contrast to the $+
couplings, where only pion couplings were used as
input). The result that an input value of the K-mesonic
form factor K zxa(0) which was obtained from a value
of Ggna that is closer to exact SUs leads, after solving
the equations (3.3) and using the solutions to predict
the coupling constants, to output values of the coupling
constants which are again closer to exact SUj (as they

(B*(p1)| @a0)| Bi(p:)

+/DgENY *)—g(KEV*)]. (3.8g)

deviate less from the first-order sum rules), may be
regarded as a check of the consistency of our procedure
and of the qualitative nature of our results.

For the sum rules (3.8¢) and (3.8g), which involve
the 5 couplings, the deviation from the first-order sum
rules is much less, and more strikingly so for solution
(i), when one uses 7,~1.5 rather than r,~1. For
r,=~1.5, this deviation is of the same order as the
deviation from the other sum rules in (3.8). [For the
sum rule (3.8b), the deviation is roughly the same for
7.~ 1.5 and for 7,~1, for solution (ii).] This is in agree-
ment with the corresponding results for the first-order
sum rules for the 3+ couplings, where the deviation
from the sum rules (2.22f) and (2.22g) is much less
when one uses 7,~1.5 rather than 7,~1 (which is what
suggested the estimate r,~1.5).

IV. COUPLINGS OF SPIN-; RESONANCES

Describing a §* baryon by a Rarita-Schwinger spinor
¥ss, We may write the expressions analogous to (2.2)
and (2.3) for the couplings of a §+ octet baryon to a 4+
octet baryon and a pseudoscalar meson as

=[mM ¥/ E:Er1"%,0(p7) (— ) {dais [ (Fa(g)vMvs+3Ca(g) Pys+-LalgD) @ ys) PP o— 3 Ga(g?) (¢ Poys+ g™ Prys) ]
+ fairll(F (@D ys+3C,(¢) Prys+L, (@) Y PP o— 3G (¢2) (¢ Poys+ g Peys) Bu(ps),  (4.1)

and

(B*(p)] 12(0)| Bi(pa))=[miM */ E;Ef12g(qP W00 (p 1) PP Poysu(ps)

The couplings for a 5~ baryon would differ from (4.1)
and (4.2) in not having the factor v; between the
spinors.

26 The sum rules (3.8) were obtained from those given by Gupta
and Singh (Ref. 25), with a redefinition of the phases. Note that
we write the couplings in the order PBB*.

27 For the sum rule (3.8a), the deviation is smaller for solution
(i) than for solution (ii); however, for both solutions the deviation
is small.

28 Note that five of the six coupling constants occurring in the
first sum rule, (3.8a), are input coupling constants, obtained from
the available experimental values of the widths. Using the experi-
mental values of the coupling constants, the value of frzz**/4r

4.2)

Taking matrix elements of (4.1) between B* and B
states gives, at ¢*=0, a relation identical in form to
(3.3), where the quantities G(0), $(0), and 5¢(0) now
refer to the coupling of the 5+ resonance to a * baryon.

Present data suggest the existence of the following
5T resonances: (i) an N* with I=% at about 1688 MeV,
(ii) a Yo* at about 1815 MeV, (iii) a ¥* at about 1915
MeV, and (iv) a E* (with I=1%) at about 1933 MeV.12
If the N* is regarded as a Regge recurrence of the

predicted by the sum rule (3.8a) is 0.29. The values given by us
are 0.27 for solution (i) and 0.25 for solution (ii).
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TaBLE V. Comparison of the estimates for the couplings
of the §~ octet with the first-order sum rules (3.8).*

Solution (i)
[for Kgna(0)~1.4]

Solution (ii)
[for Kgna(0)=1.15]

Sum  Left-hand Right-hand Left-hand Right-hand
rule side of side of side of side of
in (3.8) sumrule sum rule sum rule  sum rule

(a) 1.9 1.85 1.9 177

(b) 2.48 2.86(3.04) 248 2.71(2.67)
© 1.47 2.37 147 2.22

(d) 0.50 0.28 0.50 0.42

) 147 —0.08(—3.8) 147 1.48(—1.86)
(f) 3.0 3.73 3.0 3.6

(2) 3.0 2.48(1.51) 3.0 2.9(2.0)

a For the sum rules involving the n couplings, the first number on the
right-hand side is for 7, ~1.5, while the number in parentheses is for 7, ~1.

nucleon, this would suggest it should be assigned to an
octet. If one assumes that the ¥¢* and V* at 1815 and
1915 MeV should also be assigned to this octet, the
Gell-Mann-Okubo first-order mass formula?! predicts
a &* at about 1990 MeV, which is not too different from
the mass of 1933 MeV for the observed E*. However,
if one starts by assuming that the Yo* and the E*
belonging to the same octet as the N* (at 1688 MeV)
have masses of 1815 and 1933 MeV, the mass formula
predicts that the mass of the ¥1* in the octet should be
about 1815 MeV. This relatively large discrepancy
makes it doubtful whether it is valid to assign the ¥Yo*,
Y.* and E* referred to above into an octet together
with the N* at 1688 MeV. However, it may be useful
to examine whether such an assignment, used in con-
junction with our procedure for determining the
coupling constants, can lead to a consistent solution
for the latter. This may provide a test of the validity
of the assignment of these resonances to an octet.

The following estimates are available for the widths
of some of the decay modes of these resonances!?:

I'(N*— Nx)=~72.5 MeV, T(V¢*— KN)~37 MeV,
[(V¢*—2r)~4.5MeV,  T(¥Vo*—An)=0.5 MeV,
I(Vi*—KN)=~6.5MeV, T'(V*—Ar)=7.8 MeV.

4.3)
Using the relation

I'=(g/30m)p*(E—m)/M* (4.4)

between the decay width and the coupling constant,
in a notation similar to (2.17), the magnitudes of the
coupling constants corresponding to (4.3) may be
worked out.??

The equations for the §+ resonances analogous to
(3.3) for the mA Y ¥, 727 ¢*, and nA Y ¢* couplings involve
only the D-type couplings. If we assume that the
coupling constants for these vertices have the same
relative signs as they would have in unbroken SU;

29 The couplings of the §* resonances in exact SU; have been
considered by D. M. Brudnoy, Phys. Rev. Letters 14, 273 (1965).
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symmetry, then we may solve for G4(0), F4(0), and
3C4(0). Using these in the other three equations, we
may attempt to deduce the signs of the coupling con-
stants for the other three couplings in (4.3) by the same
argument as was used for the §~ couplings.

When this is done, we find that these simple argu-
ments do not lead to any consistent solutions for the
signs of the coupling constants to be used as input on
the right-hand sides of the equations analogous to (3.3).

The simplest conclusion would be that the N*, ¥¢¥,
V1* and E* considered here should not be together
assigned to an SUj octet. No relations between the
couplings can then be obtained.

An alternative possibility would be that the PBB*
coupling constants of the $+ resonances in broken SU;
do not have the same relative signs as they would have
in exact SUs. In the absence of any information regard-
ing these signs, the signs of the right-hand sides of the
equations analogous to (3.3) are undetermined, and no
solutions can be obtained.

When sufficient information is available about the
$* baryon resonances considered here and other possible
£+ resonances to enable a reliable SU; classification,
our method may be applied to them to obtain informa-
tion about their coupling strengths and axial-vector
renormalization constants.

V. CONCLUSIONS

Using the PCAC relation and assuming that the
axial-vector current remains an SUj; octet to a good
approximation in the presence of symmetry breaking,
we have in this paper evaluated, in broken SUs, the
coupling constants of §*+ and §~ baryonic resonances
with the normal it baryons and the pseudoscalar
mesons. A sufficient number of observed values of the
decay widths were used as input in order to solve the
basic equations for the unknown parameters. For the
2~ resonances, additional values of the decay widths
are not available to serve as a check of the solutions.
For the 3+ decuplet couplings, the predicted value of
the E* — Er decay width is a little larger than the ob-
served width; however, more accurate data for this
width and for the input coupling constants are required
before one can make a quantitative comparison.

Our procedure gives also values for the various
(B*— B) axial-vector renormalization constants.3
However, these are quite sensitive to the values of the
input decay widths, and more accurate values of the
latter are needed in order to obtain good estimates of
the axial-vector renormalization constants.

We have compared our results for the coupling con-
stants of the §+ and §— resonances with the results ob-
tained from dynamical calculations and with the sum

0 An estimate of the axial-vector renormalization constants has
been made recently by Horn by considering matrix elements of
the PCAC relation between baryon states at infinite momentum;
see D. Horn, Phys. Rev. Letters 17, 778 (1966).
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rules predicted by first-order SU; breaking. It is found
that the deviation of the coupling constants from the
first-order sum rules involving = and K couplings is on
the whole smaller if we choose the off-shell extrapolation
factor for the K couplings as in (2.9), corresponding to
the larger value of Ggwa? namely, Ggya2~7.4. (For
the K=Q coupling, the deviation is still large; the reason
for this is not clear.) Further, for the sum rules involving
the n couplings, the deviation of our results for the
coupling constants from the sum rules is found to be
smaller if we choose 7, [as defined by (2.19)] to be of
the order of 1.5.

The deviation of our estimates of the coupling con-
stants from the first-order sum rules, although relatively
small for most of the sum rules with a suitable choice
of r, and K zn4(0), is still appreciable. A more precise
statement can be made about these deviations when
sufficient data on the couplings are available to provide
accurate values of the input coupling constants and to
enable our predictions to be tested. If it turns out that
the data agree better with our estimates than with the
first-order sum rules, this may be taken as suggesting
that even when the symmetry breaking in the couplings
of the baryon resonances is too large to be well approxi-
mated as a first-order perturbation, one may still obtain
a useful description of it in terms of the nonlinear rela-
tions between the shifts in the masses and the coupling
constants provided by Goldberger-Treiman relations
such as those we have used in this paper.

The main limitations of our work are probably the
following:

(1) Because of the uncertainties in many of the
experimental values of the decay widths we have used
as input, we cannot expect our estimates for the
coupling constants to be accurate ones. If the data we
have taken for the input widths are not much in error,
we can expect our results to give the correct orders of
magnitude of the coupling constants and an estimate
of their relative strengths. When the widths used as
input are measured accurately, good estimates may be
obtained of the coupling strengths as well as of the
(B* — B) axial-vector renormalization constants.

(2) Because few reliable estimates have been made
of coupling strengths of baryons with a » meson, any
assumptions about the 5 couplings cannot be adequately
checked at present.

However, if one requires that for couplings involving
no change in strangeness, the SU;s symmetry breaking
should be relatively small and hence described fairly
well by a first-order perturbation transforming as an
octet, then one obtains a rough estimate of the unknown
factor 7, entering the equations for the # couplings:
r,~1.5.

For the 7 and K couplings, the off-mass-shell factor
entering the basic equations has been eliminated by, in
effect, taking the ratios of equations for PBB and
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PBB* couplings, assuming that the off-shell extrapola-
tion factor is roughly the same for both these latter
couplings, and using the #VN and KNA coupling con-
stants as input. We believe that this procedure for
eliminating the off-mass-shell factor is a good approxi-
mation and will not introduce much error.

The method used here may be used for estimating
the coupling strengths of the higher baryon resonances
as well, when sufficient input data become available.
Similar work on the couplings of mesonic resonances
will be discussed in a separate paper.

Note added in proof. (i) Recently, evidence has been
obtained confirming the existence of a ¥¢* near 1700
MeV; the spin-parity assignment $~ is favored. [See
R. Armenteros ef al., Phys. Letters 24B, 198 (1967).]
This supports our assumption that there exists a Dj;s ¥V o*
near 1670 MeV which should be assigned to an octet
along with the N* at 1512 MeV, the V;* at 1660 MeV,
and the E* at 1815 MeV. (See Sec. III of the paper.)
The mass and width of the Y¢* are quoted by the
authors (see R. Armenteros et al.) as (1682=2) and
(554+4) MeV, respectively; the branching ratio for
decay into the Z channel is quoted as being about 50%.

When more measurements are made on this ¥o¥,
enabling an accurate determination of its parameters,
a comparison may be made with our estimates.

(ii) Recently, a detailed analysis of KV scattering has
been made by J. K. Kim [see report on Strong Inter-
actions by G. Goldhaber, in Proceedings of the Inter-
national Theoretical Physics Conference on Particles
and Fields, Rochester, 1967 (to be published)] who
obtains (1/47)Grxs?~16.0, (1/47)Gry~20.3.

This value of Gzwa? is close to the value which would
be obtained in exact SU; symmetry for the PBB
couplings (with a d/f ratio of about 1.5). With this
value of Ggn4? the estimates of dx/d, etc., would be
the following:

dxKg(0)/d-K.(0)~0.97, Kzna(0)/K yn(0)==0.77.

Thus, Kgxa(0)=>0.77 if K,yy(0)>~1. Note that
K kw1 (0) is now less than unity; also, the deviations of
dx/d. and Kgya(0)/K,yn(0) from unity seem to
largely compensate each other.

If Kim’s value of Ggya is used as input, one obtains
for the coupling constants (1/4r)/? for the decuplet
couplings KNV *, KEN*, KAgE*, KZE* KEYV* and
K=Q, the values 0.21, 0.1, 0.253, 0.193, 0.037, and 0.22,
respectively. (For the = and » couplings, the results are
the same as in solutions (i) and (ii), see Table 1.)

Similarly, for the 5~ octet baryons, the values of
/4 for the couplings 7=V ¥, nNVN*, 9AY ¥, nZV ¥,
nEE* KNY*, KIN* KAN* K=2YV.*, KEY.* and
KZE* are found to be 0.33, 0.023, 0.025, 0.13, 0.33,
0.058, 0.58, 0.46, 1.56, 0.056, and 0.048, respectively.

These results will be referred to as solution (iii). The
relative signs of the coupling constants are the same as
those in solutions (i) and (ii).
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For the §* decuplet couplings, the couplings in solu-
tion (iii) seem to be as a whole closer to those in exact
SUs [with (1/47) f-nn*=20.38]. However, there is still
a significant symmetry breaking shown by the K-cou-
plings, particularly the KEZN* KEYV.* and KEQ cou-
plings. On substituting solution (iii) for f into the
first-order sum rules (2.22), the left- and right-hand
sides of (2.22b)-(2.22g) are found to be 3.1, 3.8;
—3.57, —3.54; —1.58, —1.83; 1.67, 2.84; 2.32r,7,
2.52; and 2.347,7%, 2.35, respectively. [ Equation (2.22a)
is the same as before.] It is now seen that the deviation
from the first-order sum rules (2.22f) and (2.22g) will
be small if 7, is of the order of 0.9 to 1. For the other
sum rules, the deviation is roughly of the same order
as in solutions (i) and (ii).

For the 3~ octet couplings, the Y¢*Zr coupling in
solution (iii) is not much different from that in solution
(i) or (ii). On the other hand, the K couplings in solution
(iii), and some of the n couplings, are considerably
different from those in solutions (i) and (ii). The KZV ¢*
coupling appears to be the one most sensitive to the
input value of Ggya. The decay widths for V¢*— 72,
V¢*— KN and Z*— K3 given by solution (iii) are
about 12.4, 3.6, and 0.5 MeV, respectively. Here, the
decay E*—ZK seems to be relatively suppressed,
while the 72 decay mode of the Y¢* is predicted to be
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the dominant decay mode, in contrast to solutions (i)
and (ii).

On substituting solution (iii) for the couplings of the
3~ octet into the first-order sum rules (3.8), the right-
hand sides of the sum rules (3.8a)-(3.8g) are found to
be 0.8, 2.9, 1.8, 0.98, 1.43, 3.7, and 3.4, respectively
when we take »,~0.9. It is found that there is better
agreement with the sum rules for ,~0.9 (i.e., better
than for a larger value of 7,). For the sum rules (3.8a)
and (3.8d), particularly the former, there is a larger
discrepancy than for solution (ii). A part of this may
be due to errors in the input values of the widths; a
more accurate knowledge of the latter will enable a
better assessment of our results.

We are grateful to Professor F. Giirsey and Professor
S. Meshkov for useful comments.
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=~ +p — n-+n Reaction near Threshold and Resonant States
of the =~ p System*

T. A. Moss
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana
(Received 20 July 1967)

We calculate the differential cross sections for the reaction #=+p — 5+ in the 7' =593 MeV to T, =704
MeV energy range using field-theoretic techniques, and taking into account three resonant states of the 7=+
system. We find interference effects among these resonances to be of importance, and that locating the
resonances at 1430, 1512, and 1567 MeV gives the best fit to the experimental data.

ECENTLY partial differential cross sections for

the production of 5 mesons in the reaction
7~+p—n+n have been obtained experimentally.!
Several authors®? have analyzed the data in terms of
strong interactions in an .Sy, resonant state. One author?
also took into account the Ds; resonant state. The
purpose of this paper is to calculate the angular dis-

* Work supported in part by National Science Foundation,
Research Participation Program for College Teachers.
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2 J. S. Ball, Phys. Rev. 149, 1191 (1966).

3 F. Uchiyama-Campbell and R. K. Logan, Phys. Rev. 149,
1220 (1966).
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tribution of the produced n mesons near threshold from
a field-theoretic viewpoint and compare these results
with the experimental data. It was found from these
calculations that three resonant states must be taken
into account in order to fit the experimental data well.

Calculations were made by taking into account the
Feynman diagrams shown in Fig. 1. The resonant states
are labeled following Rosenfeld ef al., with N (1400)
assumed to be a Py or Sy resonance, N(1518) a Dy
resonance, and N (1570) an Sy; or Py; resonance. The
nonresonant or crossing diagrams were neglected in
comparison with the diagrams (c).

8 A, H. Rosenfeld ef al., Rev. Mod. Phys. 39, 1 (1967).



