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It is shown that the electromagnetic-current operator in the strong-coupling theories is unique.

" 'N this paper we discuss the behavior of electro-
' - magnetic (e.m.) current in static strong-coupling

theories using the lie-algebraic formulation of these
models due to Cook, Goebel, and Sakita. ' Of course,
this problem has been. studied before: Bose' and Singh'
have discussed charge-independent static theory and
these discussions were extended to SU(3)-symmetric
theories. 4' But all these discussions assume a rather
specific form of the e.m. current, namely, that it is

proportional to a component of the "translation
operator. "One purpose of the present work is to show

that this is not a separate assumption, but that its
validity can be rigorously proved. We also make precise
the meaning of this proportionality. Secondly, there
seems to be no uniform treatment of the isoscalar part
of e.m. current in charge-independent pseudoscalar

theory. Thus this problem is not discussed at all in
Ref. 2, while the discussion in Ref. 3 yields a magnetic-
moment sum rule which does not agree with the results

of an explicit calculation due to Pauli and Dancoff. 6

Therefore, the conclusions of Ref. 3 must, of necessity,
be incorrect. We show in this paper that the isoscalar

e.m. current in charge-independent, pseudoscalar theory
is exactly zero. ' Thus the I ie-algebraic treatment leads

to an identical conclusion as Pauli and Banco ff.'
All our conclusions follow from two results: First we

derive a condition which e.m. current must satisfy in

the strong-coupling limit [Eq. (2)g. This condition,

together with the behavior of the current under the
"primitive invariance group,

" completely specifies its
tensorial character under the strong-coupling group.
The solution for the current operator is then implied by
a uniqueness theorem. Finally, we discuss the applica-

tion of this theorem to various cases.
Consider the photoproduction amplitude of mesons

on static isobars: photon+i ~n+j, where ir. denotes

the state of meson, and i and j, respectively, the initial

and final isobar. To lowest order in electromagnetism

where M, is the energy of the sth isobar, and X(A)" is
the matrix element of the meson source between ith and
jth isobar. J is the e.m. current. X denotes the strength
of meson-isobar coupling. ln the strong-coupling limit
X ~ oo, T &*'(a&) must be finite in the physical region due
to the unitarity condition. From this we get, proceeding
as in Ref. 1, the condition that J must commute with
A, i.e.,

[J,A ]=0. (2)

Notice that Eq. (2) may also be viewed as a super-
convergence condition. .' Equation (2) has been noted
independently by Biswas et al. ' We now prove the
uniqueness theorem.

Theorem: Consider a group G which is the semidirect
product of a K and T, C=ET, where E is compact and
T is Abelian, and an induced representation g of 6 for
which the representation of the little group 0- is taken
to be one dimensional. I et 0; be a set of operators that
transform like an irreducible representation of K, i.e.,
G(k)O,G '(k) =A,, (k)0j, keZ. [The A„j(k) constitutes
a representation of E.j The set of 0; is unique up to a
multiplicative constant if (i) [0;,Ti]=0, where the Ti
are the generators of T; and (ii) A;j(k)%;.=4; for all

kgo implies that lt j is unique.
Proof: Let It) be an eigenvector of Ti with eigen-

values tJ,. The set of all eigenvalues defines the orbit.
Since the representation of the little group is assumed
to be one dimensional, there exists only one vector with
a given eigenvalue ti Thus, from .[0;,Tij

I
t) = 0 we have

O,
I
t)=X,(t) It) and from this

the Chew-l. ow equation for this process is written as

(J)js(g )si (g ) jk(J)si
T j'(te) =X+ +

& cVs M, —te M—s—M~+to

+ (one- or more-meson intermediate states), (l)
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«k)0'g '(k)g(k) It)=l'(t)g(k) It), kE&.

From the assumed transformation properties of 0;, we
have

3;;(k)Ojg(k) It)=x;(t)g(k) It).
' lt has been shown elsewhere PS. K. Bose, P. C. De Celles, anil

W. D. McGlinn, Phys. Rev. Letters 18, 873 (1967)j that for
meson-baryon scattering in the static limit the requirements of
superconvergence and strong-coupling (bootstrap) are equivalent
in the approximation in which single-resonance intermediate
states saturate the scattering amplitude. Analogous reasoning can
be made for the photoproduction amplitude.

1772



]63 F LECTROMAGNETI C CURRENT IN STRONG —COUPLI NG THEORY 17jj
Now g(k) rotates the vector

~
t) to a vector with eigen-

value t~' ——Eg;(k)t; where E~,(k) is the matrix repre-
sentation of E which depends upon the assumed
transformation properties of T~. Thus,

A;;(k)O;~ kt)=X;{t)
~
kt)

=A;;(k)X;(kt) ikt).
This implies

X;(kt) =A;;—(k)X;(t) .
Thus if X;(t) is known at any point on the orbit it is

known everywhere and this determines 0;.
In particular let 0- be the little group at the point t~.

Then
X;(t))=A;;—(k)X,(t(), kgo;

i.e., X,(t~) is an eigenvector of A;;(k), kCo with eigen-
value 1. If it is unique then 0; is unique. If such an
eigenvector does not exist, then 0;=0.

Let us now apply this theorem to two cases:

(f) Charge indepertdel-t psegdoscalar theory. If one
assunles that the electromagnetic current J; is a linear
combination of an isospin scalar J~' and an isospin
vector J, then Eq. (2) implies the two parts separately
conllTlutc with A~. Thc stlong-coupllllg gI'oup fol this
theory is (in the notation of the theorem) K=SU(2)
XSU(2), and T is a 9-parameter Abelian group. For the
representation of this group, used to classify isobars, '
the little group at one point on the orbit is the group
generated by L+I (where J, are the generators of space
rotations and J; are the generators of isospin trans-
formations) and the representation of o chosen is the
singlet. It is easy to see that the theorem implies J;0=0
and J =RA where A is a generator of T. From this
sohltlon fOI' Js and %'1th, know lcdgc of thc cxpllclt
matrix-representation of the A's from Refs. 2 and 3,
wc derive the "old" Pauli-Danco6 result for total
magnetic moment, i.e.,

t4= I4/(5+1) Xconst.

In particular the neutron and proton moments are equal
and opposite a result lIl conflict with cxpcI'1Incnt.

(Z) SU(3)-symmetric pseldoscalar theory The strong-.
coupling group for this theory is [SU(3)&&SU(2)]T24.

The 24 translation generators, A; [i=1, 2, 3 are space
indexes and n=1, 2 8 are SU(3) indexes) cor-
respond. to a P-wave SU(3)-octet meson. For the
representation of this group used to classify isobar
states, advocated by Goebel4 and Cook and Sakita, ' the
little group has for generators J+L, and H (H is the
hypercharge operator). Again the representation of the
little group is chosen to be one dimensional. (This
representation is also the one arrived at by Dullcmond
and Van der Linde using conventional Hamiltonian
methods. ") If now the electromagnetic current is
assumed to transform like an octet„and commute with
the charge operator which is a generator of SU(3), then
it is easy to see that the theorem implies

J;=C[cf; +4(1/v3)A;4j.

Experimental consequences of Eq. (4) have been dis-
cussed in Refs. 4 and 5. The resulting relations for
magnetic moments and e.m. mass difference seems to be
in good agreement with experiment. Indeed, for the
present case the "uniqueness theorem" was obtained
by Qoebc14 starting with the assumption that the tensor
operator under consideration is "a function of the
coupling operators. "No such assumption is utilized in
the present derivation. Instead we use the strong-
coupllng condition Eq. (2) which the tensor operator
must satisfy in this limit. Furthermore, our formulation
of the "uniqueness theorem" is more general as it
applies to a wider class of theories (such as the charge-
independent pseudoscalar theory treated in the pre-
ceding section).

%C wish to thank Dr. T. Cook for informative
dlscusslons.

Note added il proof. After writing this paper we have
discovered that Eq. (2) has been noted previously by
Sakita in his talk at The Third Coral Gables Conference,
1966 [see Proceedir4gs of the Third Coral Gables Cor4

ferer4ce ol Symmetry Prieciptes at Ehgk Er4ergy (W. H.
Freeman and Company, San Francisco, California,
1966)j.
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