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From a sum rule for backward »-p scattering, valid only in the limit of large four-momentum transfer ¢?,
we obtain an inequality for backward e-p inelastic scattering which depends upon the commutator of space
components of isospin currents. Given chiral U (6) X U (6) current algebra, the total backward scattering
at fixed large ¢?is predicted to be at least as great as that from a point Dirac particle with charge =3 e.

ECENTLY, from Adler’s sum rule for neutrino

processes!
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we have derived? an inequality for electron- and muon-
nucleon scattering by isospin manipulaton:
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This inequality is of some interest inasmuch as it
predicts a large amount of inelastic scattering at high
momentum transfer ¢%, something which can be experi-
mentally tested. The magnitude is comparable to that
resulting from scattering off point charges; this result
can be traced back to the assumption of locality of the
isospin current.

However, electron-nucleon scattering is described by
two form factors, and the sum rule, Eq. (2), involves
only one of them, the “charge” form factor which con-
tributes to forward scattering. There arises the question
of whether there is any such relation for the other form
factor which describes backward scattering. The pur-
pose of this paper is to provide a partial answer for large
g% We write
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Here E and E’ are the incident and final lepton energy
and @ the scattering angle; ¢*=—4EE’ sin*36) and
v=E—F/', the laboratory energy of the virtual photon.
All hadron states of appropriate momentum have been
summed over in writing Eq. (3).

The old inequality is?
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The new inequality is (as [¢%| — « only)
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and j;* is the plus component of isovector current,
normalized such that the commutator in Eq. (5) is
unity for the U(6)XU(6) algebra.? Corresponding to
Adler’s old neutrino sum rule! [the 8 sum rule] for o1

0

/ dvlo?(¢%v) —ar?(¢%p)]

G2
=—7T— / d% (P|[J¢t(x),J6(0) ]| P)eia-= (6)

GZ
=—(cos%.+2 sin?f,).
™

We also find (as [¢%| — o« only)
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0 (spin-O constituents). [U©XU(6) algebra]
(M
J,=(x) is now the full Cabibbo current (V—4,
AS=0, 1). Although similar, Eq. (7) is not Adler’s & sum
rule,! which lacks the convergence factor ¢%/»2
As might be expected, the result depends upon the
structure of the commutator of space components of
isovector currents. With the chiral U(6) X U(6) algebra,®
the commutator on the right-hand side of Eq. (5) is
unity, and we expect relatively large scattering. How-

#R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev.

Letters 13, 678 (1964).
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ever, one can imagine models in which the isospin cur-
rent is carried by spinless objects; in this case the com-
mutator vanishes and there is no lower bound to the
backward scattering cross sections.

We start, as with the derivation of the forward-
scattering inequality, Eq. (4), with the amplitude M,
for scattering an isovector current j,*(x) from a proton
in the forward direction? (see Fig. 1).

M (g,P)=[¢*PuPy=(quPrtqPu)q- P+(q-P)*gu]

XFi(g%q- P)+-[9u— 8wg*F2(q%q- P)

+[q;4 Pv+9va— gqu'P]/92

+[polynomial in ¢ and p]. (8)

We include Born terms?® in the definition of F; and F.
M, is defined (up to normalization factors) such that
when lepton pairs are attached it is a piece of the S
matrix. It is not necessarily the time-ordered product of
currents. Notice

quM* = P"+[polynomial in ¢ and P] 9)
and

Py=Py / PILit 0,501 P, (10)

The neutrino- (and antineutrino-) proton scattering
cross section is proportional to ImF; and ImF,. The
backward-scattering cross sections o2 are proportional
to the coefficient of g,,:

o Im{(q-P)2F1—q*Fs} . (11)

Adler’s sum rule is obtained by demanding, as is sug-
gested by Regge theory,® asymptotic behavior for the
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coefficient of ¢, P, less strong than constant. Thus
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Regge behavior also suggests®” that F, needs one sub-

traction. We shall assume this is the case:
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We now study M, as go— i, q fixed. As in Ref. 4,
the coefficient of 1/g, is an equal-time commutator. In
the limit go— ¢,
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The most reasonable estimate is that
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which would be rigorously true if ImF; did not change
sign. We assume that there are no delicate cancellations
here and we may use Eq. (15). With this estimate, the
terms involving F; are of order 1/go? in the limit.
Writing #,=(1,0,0,0), we find, barring pathological
cancellations,
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(The axial part can be treated in a similar way.) On the
other hand, the term O(1/g) is
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4 We follow the derivation outlined in J. D. Bjorken, Phys. Rev.
148, 1467 (1966); see also Proceedings of the Third Coral Gable
Conference Symmetry Principles at High Energy (W. H. Freeman
and Company, San Francisco, 1967).

5 The apparent pole at ¢2=0 in Eq. (8) is cancelled by another
pole in the Born terms. We set the nucleon mass equal to unity.

6 This assumption is, we believe, the least trustworthy in the der-
ivation of that result. This is because non-Regge behavior has
been shown to exist in the coefficient of P,P, [J. Bronzan, I.
Gerstein, B. Lee, and F. Low, Phys. Rev. Letters 18, 32 (1967);
V. Singh, Phys. Rev. Letters 18, 36 (1967) ]. If similar asymptotic
behavior, corresponding to a fixed pole or Kronecker § at J=1,
also occurs in the coefficient of g,Py, we lose the sum rule Eq. (6)

+[terms more convergent as go— ], (16)

Thus the term multiplying F»(¢%,0) contributes to any
operator Schwinger terms involving [ 7*,7:"]. A devia-
tion of the commutator of space components of the cur-
rents from the chiral algebra prediction is measured by
ImF,. Indeed
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as well as the once-subtracted dispersion relation, Eq. (13). Argu-
ments that this does not happen in simple models have been given
by the above authors; there are other arguments by G. deAlfaro,
S. Fubini, G. Furlan, and A. Rosetti (to be published).

" H. Harari, Phys. Rev. Letters 17, 1303 (1966).
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Current

Fi1c. 1. Kinematics for for~
ward scattering of a current
from a nucleon.
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where we have used Eq. (12). The quantity in brackets
is proportional to the vector piece of o’?(¢%) or oy’?
as defined in Egs. (3) and (11). After a routine struggle
with normalization factors (most simply done by con-
sidering free fields) one arrives at the sum rule Eq. (7).
The same isospin manipulations? as used in obtaining
Eq. (4) from Eq. (6) are sufficient to get Eq. (5) from
Eq. (7).

It is tempting to assume the result Eq. (7) to be gen-
erally valid for all g2 However, consideration of the
limit as ¢ — 0 gives

(kp—ua)*=1,
in considerable disagreement with experiment.

Proton

(19)

e~-N AND u-N SCATTERING
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The following physical picture of the result Eq. (5)
suggests itself: If the “‘elementary constituents” (if any)
of the nucleon, which couple to isospin, were spinless,
there would be very little backward scattering at large
q% because backward scattering demands helicity flip.
If the constituents have spin §, the scattering should be
incoherent and proportional to the sum of squares of the
magnetic moments of the constituents.8

Experimental verification of the inequality Eq. (5)
may be difficult because of the problems of radiative
corrections.

The author thanks J. D. Walecka for asking the right
question, his colleagues at SLAC for discussions, and
Helen Quinn and Sam Berman for a reading of the
manuscript.

8 This picture is similar to that discussed for forward scattering
by K. Gottfried [Phys. Rev. Letters 18, 1174 (1967)]. There also
exist sum rules of this kind in nuclear physics: for a review see
deForest and Walecka, Advan. Physics 15, 1 (1966).
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Necessary and sufficient conditions are given for the validity of the Weinberg-type current-spectral-
function sum rules. For one class of the sum rules, the validity rests on the equality of the vacuum expecta-
tion values of the corresponding Schwinger terms. For the other class, the condition involves the triple
commutator of the space component of the current with the Hamiltonian (of the world). Comments are
made on the usual derivation of the sum rules and Lee, Weinberg, and Zumino’s algebra of fields.

HE sum rules of Weinberg! for the spectral func-
tions of the chiral SU(2) X.SU(2) currents have

been successfully used to relate the p and 4; masses,
and to calculate the electromagnetic pion mass differ-
ence.? Generalization to the case of SU(3)XSU (3) has
led to a calculation of the ratio Fx/F.3* in fair agree-
ment with experiment. While all this demonstrates the
usefulness of the Weinberg-type sum rules, their va-
lidity has not yet been rigorously established,® except
in the context of a Lagrangian model of Lee, Weinberg,
and Zumino,® which, however, has been brought into
question by a recent consideration related to the

LS. Weinberg, Phys. Rev. Letters 18, 507 (1967).

2T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and J. E.
Young, Phys. Rev. Letters 18, 759 (1967).

3 H. T. Nieh, Phys. Rev. Letters 19, 43 (1967).

*S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967).

5 A critical comment on the derivation of the spectral function
sum rules is given by T. D. Lee, S. Weinberg, and B. Zumino,
Phys. Rev. Letters 18, 1029 (1967).

5 See Ref. 5.

electromagnetic corrections to the pion 8 decay.” It is
therefore of interest to know exactly the conditions
under which the Weinberg-type sum rules are valid.
In this paper we shall give the necessary and sufficient
conditions for their validity. For one class of sum rules,
their validity rests on the equality of the vacuum
expectation values of the corresponding Schwinger
terms. For the other class, the condition involves the
triple commutator of the space component of the current
with the Hamiltonian (of the world).

Consider any local current density J,(x), which may
or may not be conserved. The most general spectral
representation for the current correlation function is

(T4, (0) o= (27 / dtp 6(p)eiv-=

X [(guv"'PuPr/P2)Pl(“P2)+PquPO (=M1, (1)

" K. Johnson, F. E. Low, and H. Suura, Phys. Rev. Letters 18,
1224 (1967); N. Cabibbo, L. Maiani, and G. Preparata (to be
published). We will come back to this point later.



