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From a sum rule for backward p-p scattering, valid only in the limit of large four-momentum transfer g&,

we obtain an inequality for backward e-P inelastic scattering which depends upon the commutator of space
components of isospin currents. Given chiral U{6) g U(6) current algebra, the total backward scattering
at 6xed large quis predicted to be at least as great as that from a point Dirac particle with charge ~z g.

KCKNTLV, from Adler's sum rule for neutrino
processes'
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we have derived2 an inequahty for electron- and muon-
nucleon scattering by isospin manipulaton:
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This inequality is of some interest inasmuch as it
predicts a large amount of inelastic scattering at high
momentum transfer q2, something which can be experi-
mentally tested. The magnitude is comparable to that
resulting from scattering o8 point charges; this result
can be traced back to the assumption of locality of the
lsospln current.

However, electron-nucleon scattering is described by
two form factors, and the sum rule, Eq. (2), involves

only one of them, the "charge" form factor which con-
tributes to forward scattering. There RI'lses the question
of whether there is any such relation for the other form
fRctoI' which descllbes backward scRtteI'lng. The puI'-

pose of this paper is to provide a partial answer for large
q2. %e write
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Here E and E' are the incident and anal lepton energy
and 8 the scattering angle& q'= —4'' sin'(-,'8) and
v =E—E', the laboratory energy of the virtual photon.
All hadron states of appropriate momentum have been
summed over in writing Eq. (3).

The old inequality is2
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The new inequality is (as Iq'I ~ oo only)
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and j,+ is the plus component of isovector current,
normalized such that the commutator in Eq. (5) is
unity for the U(6)XU(6) algebra. ' Corresponding to
Adler's old neutrino sum rule' Lthe p sum rulej for ol

dvLot"'(q', v) —ol"&(q',v)]
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We also 6nd (as IqsI ~ ~ only)
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0 (spin-0 constituents) .
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Jo (&) is now the full Cabibbo current (V—A,
~~=0~ 1) Although similar, Eq. (7) is rtot Adler's a sum
rule, ' which lacks the convergence factor q'/v'.

As might be expected, the result depends upon the
structure of the commutator of space components of
isovector currents. With the chiral U(6) X U(6) algebra, '
the commutator on the right-hand side of Eq. (5) is
unity, and we expect relatively large scattering. How-
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e-E AN D p —N SCATTERING

The following physical picture of the result Eq. (5)
suggests itself: If the "elementary constituents" (if any)
of the nucleon, which couple to isospin, were spinless,
there wouM be very little backward scattering at large
q', because backward scattering demands helicity Qip.
If the constituents have spin ~~, the scattering should be
incoherent and proportional to the sum of squares of the
magnetic moments of the constituents. s

Experimental veriftcation of the inequality Eq. (5)
may be diKcult because of the problems of radiative
corrections.

The author thanks J. D. Walecka for asking the right
question, his colleagues at SLAC for discussions, and
Helen Quinn and Sam Herman for a reading of the
manu scI'1pt.

FIG. j.. Klnelnatlcs 'fol fol'-
ward scattering of a current
from a nucleon.

Proton

where we have used Eq. (12). The quantity in brackets
is proportional to the vector piece of o.s"r(q', I) or ere"&

as defrned in Eqs. (3) and (11).After a routine struggle
wltll 1101'IIlallzatlo11 fac'tol s (IIlost sllllply done by coll-
sidering free fields) one arrives st the sum rule Eq. (7).
The same isospin manipulations' as used in obtaining
Eq. (4) from Eq. (6) are suflrcient to get Eq. (5) from
Eq. (&).

It is tempting to assume the result Eq. P) to be gen-
erally valid for all g'. However, consideration of the
llmlt as g ~ 0 gives

(I . f -)'=—1

in considerable disagreement with experiment.

' This picture is similar to that discussed for forward scattering
(19) by K. Gottfried /Phys. Rev. Letters 18, 1174 (1967)g. There also

exist sum rules of this kind in nuclear physics: for a review see
deForest and Walecka, Advan. Physics 15& 1 (1966}.
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Necessary and su6icient conditions are given for the validity of the W'einberg-type current-spectral-
function sum rules. For one class of the sum rules, the validity rests on the equality of the vacuum expecta-
tion values of the corresponding Schwinger terms. For the other class, the condition involves the triple
commutator of the space component of the current, with the Hamiltonian (of the world). Comments are
made on the usual derivation of the sum rules and Lee, steinberg, and Zumino's algebra of fields.

' 'HE sum rules of Keinberg' for the spectral func-
tions of the chiral SU(2) XSU(2) currents have

been successfully used to relate the p and A& masses,
and to calculate the electromagnetic pion mass diGer-
ence. ' Generalization to the case of SU(3) &&SU(3) has
led to a calculation of the ratio Iirr/Ii, s 4 in fair agree-
ment with experiment. awhile all this demonstrates the
usefulness of the steinberg-type sum rules, their va-
lidity has not yet been rigorously established, ' except
in the context of a Lagrangian model of Lee, Weinberg,
and Zumlno~ which~ however~ has been bI'ought into
question by a recent consideration related to the

' S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
~ T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and J. K.

Young, Phys. Rev. Letters 18, 7N (1967).' H. T. Nieh, Phys. Rev. Letters 19, 43 {4967).' S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, D9 (1967).' A critical comment on the derivation of the spectral function
sum rules is given by T. D. Lee, S. steinberg, and B. Zumino,
Phys. Rev. Letters 18, 1029 (1967).' See Ref. 5.

electromagnetic corrections to the pion P decay. r It is
therefore of interest to know exactly the conditions
under which the %einberg-type sum rules are valid.
In this paper we shall give the necessary and suQicient
conditions for their validity. For one class of sum rules,
their validity rests on the equality of the vacuum
expectation values of the corresponding Schwinger
terms. For the other class, the condition involves the
triple commutator of the space component of the current
with the Hamiltonian (of the world).

Consider any local current density J„(x),which may
or may not be conserved. The most general spectral
representation for the current, correlation function is

&&E(gs P.P./P')PI( p')+p—~p.ps(—p') j,—{1)
7 K. Johnson, F. E. Lour, and H. Suura, Phys. Rev. Letters 18,

1224 (1967); N. . Cabibbo, L. Maiani, and G. Preparata (to be
published). Ke will come back to this point later.


